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Herpes simplex virus type-1 (HSV-1) is a human virus that causes lifelong infections in
a large population worldwide. Recurrence of HSV-1 from latency in trigeminal ganglion
(TG) is the trigger of the morbidities seen with this virus. In addition to causing fever
blisters and cold sores, occasionally the virus can also cause corneal lesions resulting in
blindness in untreated individuals. Several host cell proteins play important roles in HSV-
1 infection of the eye. HSV-1 enters into the corneal epithelial cells via its interactions with
cell surface receptors. In parallel, the Toll-like receptors sense viral invasion and activate
defense mechanisms to fight the infection. New data shows that Optineurin, a host
autophagy receptor is also activated to degrade viral particles. In contrast, activation of
heparanase, a host enzyme, induces an immune-inflammatory response, which triggers
pro-inflammatory and pro-angiogenic environment and ultimately results in many of the
clinical features seen with HSV-1 infection of the cornea. Rarely, HSV-1 can also spread
to the central nervous system causing serious diseases. In this review, we summarize
the latest knowledge on host molecules that promote pathophysiological aspects of
ocular herpes.

Keywords: herpes simplex virus type 1 (HSV-1), ocular infection, pathophysiology, pathogenesis, host
determinants

INTRODUCTION

Herpes simplex virus-1 (HSV-1) is a double-stranded DNA virus, which belongs to the Alpha
herpesvirus subfamily of herpesviruses (Whitley and Roizman, 2001). It is a nuclear replicating
enveloped virus, which is often acquired during childhood after direct contact with infected skin
lesions, saliva or other body fluids. Humans are its natural hosts but this virus with extreme host
range can infect virtually all cell types and experimental animals (Karasneh and Shukla, 2011). In
humans, it predominantly infects mucosal epithelia of the orofacial region including the eye and
establishes lifelong latency in the neurons especially those present in the trigeminal ganglia (Whitley
and Roizman, 2001; Farooq et al., 2010; Farooq and Shukla, 2012). During latency, HSV-1 remains
dormant expressing the latency associated transcript (LAT) and possibly a small number of other
viral proteins. While symptomatic reactivation is less common virtually all infected individuals
tend to asymptomatically shed the reactivated virus via tears and saliva (Kaufman et al., 2005).
Given its affinity to establish infection of the neurons, the virus is classified as a neurotropic virus.
It is a ubiquitous virus infecting as high as 80% of the human population. HSV infections are
largely asymptomatic, yet the infected individual can shed the virus independent of the occurrence
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of any obvious disease manifestations (Kaufman et al., 2005).
The virus causes a wide range of symptomatic diseases but the
lesions or ulcers on oral mucosa or lips (herpes labialis) are the
most common manifestation of the viral infection. In addition,
herpetic whitlow, herpes gladiatorum, eczema herpeticum and
herpetic sycosis of the beard area as well herpetic eye infections
are routinely reported. In extreme cases, an uncontrolled spread
of primary or reactivated HSV-1 to central nervous system (CNS)
can initiate a rapidly progressing and potentially fatal encephalitis
in humans (Fraser and Valyi-Nagy, 1993).

VIRION STRUCTURE AND LIFECYCLE

Herpesvirus family members share an identical structure. They
are primarily composed of a lipid bilayer envelope that expresses
about a dozen glycoproteins required for viral entry and cell-
to-cell spread; a tegument, which mainly contains proteins
including transcriptional regulators required for initial infection;
a capsid, which contains a linear copy of the double stranded
DNA genome (Karasneh and Shukla, 2011; Figure 1). Electron
micrograph of the virions suggests about 200 nm spherical
structure that contains an icosahedral capsid, which is about
∼125 nm in diameter (Dai and Zhou, 2018; Yuan et al., 2018).
Spikes of glycoproteins protrude from the viral envelop. Many
of the envelope glycoproteins are highly conserved among
herpesviruses and proven to be essential for viral infectivity
(Shukla and Spear, 2001). Viral DNA genome is about 150 kbp
long, and it is known to encode for 80 or more genes (Whitley and
Roizman, 2001). The HSV genes have high GC contents in the
range of 67%. Tegument is a collection of nearly a dozen proteins,
which play important roles in promoting viral transcription,
reducing host transcription and disrupting the host antiviral
response early during infection (Dai and Zhou, 2018).

INFECTION OF THE EYE

Infection of the eye by HSV-1 is considered the most frequent
cause of corneal blindness in the developed world including the
United States (Farooq and Shukla, 2012). HSV infection of the
conjunctiva, iris or the cornea is accompanied by an acute onset
of pain. Blurring of vision, mostly arising from the inflammation
of the local tissue, ensues shortly after the infection causing rapid
vision issues and discomfort. Depending on the immune status
of an individual (immune competent or compromised) virtually
all types of ocular cells and tissues show susceptibility to HSV-1
infection. The most common manifestations of ocular HSV-
1 infection include conjunctivitis, blepharitis, keratitis, iritis,
uveitis, and retinitis (Lobo et al., 2019). HSV epithelial keratitis
normally reported as dendritic ulcers can limit itself to the corneal
epithelium. It is more common and easier to resolve via the
use of topical and/or systemic antivirals such as Acyclovir or
its analogs (Farooq and Shukla, 2012). Occasionally, HSV-1 can
spread into the corneal stroma causing an immunoinflammatory
condition called stromal keratitis. Stromal keratitis can sustain
for long durations and cause severe vision loss due to scarring

of the tissue. Similarly, HSV-1 associated cases of conjunctivitis,
blepharitis, iritis, uveitis and retinitis are also reported (Lobo
et al., 2019). Often the conditions can be resolved via use of
antiviral chemotherapy and local or systemic corticosteroids to
reduce inflammation (Liesegang, 1988, 2001).

EXPRESSION OF HERPES SIMPLEX
VIRUS-1 ENTRY RECEPTORS IN THE
EYE

Entry of HSV-1 into natural target cells such as the cells of the
corneal epithelium and the innervating neurons is a multistep
process that requires participation from many viral envelope
glycoproteins as well as a few host entry receptors expressed on
the cell surface (Farooq et al., 2010). Four out of a dozen or so
different glycoproteins that are present on the viral envelope play
essential roles during entry. These include glycoproteins gB, gD,
gH, and gL (Madavaraju et al., 2021). HSV-1 mutants lacking
any one of these glycoproteins fail to infect target cells. A fifth
glycoprotein, called gC, also participates but it is not considered
essential for entry (Spear, 2004). A simple understanding of their
functions in viral entry comes from host cell receptors that they
interact with. Most understood among these are the receptors for
gB, gC, and gD. The former (gB and gC) are thought to make the
initial contact with a target cell via their attachment or binding to
heparan sulfate proteoglycans (HSPG) (Shukla and Spear, 2001).
HSPG are expressed on the surface of virtually all mammalian
cells (Sarrazin et al., 2011). The proteoglycans contain one or
more negatively charged carbohydrate chains known as heparan
sulfate (HS) that are covalently linked to a protein core. HS
moieties make the initial charge-based interaction with HSV-
1 glycoproteins gB and gC. Basically, they bind to positively
charged motifs on these glycoproteins. The nature of protein
core is likely to be important since downregulation of a couple
of HSPG, such as syndecan-1 or syndecan-2 severely reduces
HSV-1 entry (Bacsa et al., 2011). Interaction with HSPG is
not essential for entry but loss of HS from cell surface, such
as the one found in a mutant cell line, reduces HSV-1 entry
down to ∼10% of normal levels (Shukla et al., 1999). HSPG
interaction is not only important for the virion attachment to
cells, but it is also needed for extracellular transport of the virions
on cell membrane projections called filopodia. This transport
phenomenon termed, viral surfing, enhances the efficacy of HSV-
1 infection by allowing a targeted unidirectional movement of
extracellular particles toward the body of the cell (Oh et al.,
2010). It is considered an actin/myosin dependent transport
phenomenon that has the potential to enhance infection at the
site of a tissue injury where the leading edge of remaining cells
generate a large amount of filopodia. After the initial attachment
via gB and gC, gD is recruited to find its receptor. Binding of gD
to one of its host cell receptors is considered essential for entry.
The gD receptors (described below) include nectin-1, HVEM
and 3-O sulfated HS (Spear et al., 2000; Figure 1). This key
interaction with gD receptor allows the viral envelope to fuse with
plasma membrane of the host cell, releasing the viral tegument
proteins and the capsid into the cytoplasm. Alternatively, in
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FIGURE 1 | Schematic diagram and model showing important host proteins and their roles in pathophysiology of ocular herpes infection. HSV-1 entry into a corneal
cell starts with the binding of viral glycoproteins gB and/or gC to cell surface heparan sulfate. Next, HSV-1 gD binds to one of its cognate receptors (Nectin-1,
HVEM, and 3-OS HS) to start viral capsid penetration into the cytoplasm. Toll-like receptors sense viral invasion and activate intrinsic immune responses to control
infection. A newly identified restriction factor, optineurin, reduces incoming or outgoing viral load by selective degradation of viral capsid and essential proteins via
autophagy. In parallel, mTORC2 complex acts to reduce viral replication in the nucleus. In a pro-viral role, heparanase, a host enzyme is upregulated to facilitate
HSV-1 release from the corneal cell by removal of cell surface HS. While the events summarized here do not describe the complete picture of viral invasion, they do
highlight many new findings and interventional targets in context with HSV-1 infection of the cornea. A cartoon describing the essential structural components of a
matured HSV-1 virion is shown (bottom right).

corneal fibroblasts, a phagocytosis-like uptake can deliver the
capsid into the cytoplasm (Clement et al., 2006). The capsid
is then efficiently transported on the host cell microtubules for
delivery to the nuclear membrane. Host cell motors such as
dynein or kinesin participate in this intracellular transport of
the capsid. The inbound transport of the capsid during entry is
mediated by dynein, whereas the outbound (toward the plasma
membrane for virion release) is performed by kinesin-1 (Banerjee
et al., 2020; DuRaine and Johnson, 2021). Once the capsid reaches
the nuclear membrane it uncoats and releases the viral DNA into
the nucleus for replication. Delivery of the viral DNA into the
nucleus also marks the end of the final step of HSV-1 entry.

HERPES SIMPLEX VIRUS-1 ENTRY
RECEPTORS AND THEIR EXPRESSION
PATTERNS IN THE EYE

All known gD receptors are expressed in the eye. Details on their
abundance and expression patterns are provided below.

Ocular Nectin-1
Nectin-1 is considered the most widely expressed entry receptor
for HSV-1 in the eye (Valyi-Nagy et al., 2004). It belongs to
the immunoglobulin superfamily, mediates cell-cell adhesion in

cadherin-based adherens junctions, and acts as a receptor for
herpes simplex virus (HSV) (Spear et al., 2000). In murine
ocular tissues widespread expression of nectin-1 expression can
be detected on cells of the conjunctiva, corneal epithelium as well
as the endothelium, iris, ciliary body, lens epithelium, choroid,
and the retina (Valyi-Nagy et al., 2004). Interestingly, fibroblasts
especially those found in the corneal stroma and the sclera do not
express nectin-1 (Tiwari et al., 2006). As a result, in the absence
of detectable amounts of nectin-1, HVEM and 3-O sulfated
HS (discussed below) are considered to be the key receptors
for HSV-1 entry into the corneal stroma. Also was interesting
that HSV-1 infection (lytic or latent) did not result in a loss
of nectin-1 expression in any of the murine tissues examined
(Valyi-Nagy et al., 2004). No loss in receptor expression during
latency is an important finding since reactivated HSV-1 in the TG
could potentially use the available receptors for traveling back to
the corneal epithelium causing recurrent damage to the tissue.
Nectin-1 is also expressed abundantly in murine brain indicating
its potential use during cell-to-cell spread of HSV-1 from the eye
to the brain (Shukla et al., 2006; Prandovszky et al., 2008).

Herpes Virus Entry Mediator
Herpes virus entry mediator (HVEM) is the second most
commonly expressed receptor for HSV-1 entry into the
cells of the eye (Kovacs et al., 2009). Its normal function
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involves regulation of tissue inflammation via interaction with
physiological ligands such as LIGHT and lymphotoxin alpha
(Cai and Freeman, 2009). It is considered a molecular switch
for inducing stimulatory or inhibitory immune signaling (Ware,
2009). Studies using immunohistochemistry show that it is easily
detectable in the conjunctiva as well as the corneal epithelium
and endothelium (Akhtar et al., 2008; Kovacs et al., 2009).
However, it is less detectable and focally expressed in the
corneal stroma. Interestingly, primary infection with HSV-1
causes increased expression of HVEM in the corneal epithelium
and stroma (Kovacs et al., 2009). The nerves innervating the
corneal stroma also seem to express detectable levels of HVEM
(Kovacs et al., 2009). It is a major mediator for entry into
the human conjunctival epithelial cells (Akhtar et al., 2008).
Independent of its role as an entry receptor for the virus,
HVEM plays an additional role in HSV-1 reactivation from
latency. A recent study provides exciting new information that
gD-independent immune modulating functions of HVEM can
regulate HSV-1 latency and reactivation cycles (Tormanen et al.,
2020). Thus, given its role in immune control of HSV-1 latency, it
is possible that activation of NF-kappaB during HSV-1 infection
may drive an upregulation of HVEM expression in certain tissues
(Sciortino et al., 2008).

3-O Sulfated Heparan Sulfate
Heparan sulfate proteoglycans (HSPGs) are well expressed
on the corneal surface as well as other tissues in the eye
(Tanihara et al., 2002). In retinal tissues, HSPGs are expressed
in the membrane of the retinal cells and secreted into the
extracellular space of retinal tissues, contributing directly to
the neural network formation required for vision processing.
In certain situations, including immunocompromised patients
HSV-1 virions can infect the retina as well (Cordero-Coma
et al., 2007). Abundant expression of HSPGs are detected
in corneal epithelium and the stroma. While HSPGs provide
non-specific attachment sites for many different viruses and
bacteria, 3-O Sulfated Heparan Sulfate (3-OS HS), which is a
subdomain of HS generated after modification of the parent
chain by 3-O sulfotransferases, is a well-established receptor
for HSV-1 gD (Shukla et al., 1999). Its expression on the
corneal surface was demonstrated by the binding of specific
peptides that were generated against 3-OS HS. These peptides
bind 3-OS HS on the murine corneal surface and block HSV-
1 infection of the cornea (Tiwari et al., 2011). 3-OS HS is
also expressed by the corneal stromal cells. Given the lack
of specific antibodies against this subdomain of HS very little
information exists about its expression in other ocular sites.
Likewise, its significance in viral reactivation from latency
remains poorly defined.

HOST VIRULENCE FACTORS

It is relatively common that viral infections exploit host proteins
for supporting their replication, growth and maturation. It is also
common that host cells respond to infection by up-regulating
certain proteins that have the potential to cause damage to

infected cells and tissues. Discussed below are a few important
proteins that play important roles in pathophysiology of HSV-1
infection of the eye.

Proangiogenic Factors
Angiogenesis or neovascularization can be a hallmark of HSV-
1 infection in the cornea. Healthy corneas are not vascularized,
which improves clarity of vision. The so called “corneal
angiogenic privilege” (Azar, 2006) is acquired because multiple
mechanisms such as tight packaging of collagen lamellae, higher
expression of anti-angiogenic factors and lower expression
of pro-angiogenic proteins such as matrix metalloproteinases
(MMPs) generate an environment that retards new blood vessel
formation and promotes clear vision. In contrast, an increase in
aberrant corneal vascularization including leaky or improperly
formed vessels upon HSV-1 infection can result in the clouding
of the cornea and loss of vision (Lobo et al., 2019). HSV-1
infection can cause an up-regulation of proangiogenic factors
such as vascular endothelial growth factors (VEGF), fibroblast
growth factor (FGF) and MMPs (Park et al., 2015). Evidence
exist that VEGF-A production can be enhanced by an HSV-
1 encoded immediate early transcription factor, infected cell
protein 4 (ICP-4) (Wuest et al., 2011). In addition, HSV-1
infection causes VEGF-A release from its receptor bound inactive
form (Suryawanshi et al., 2011). Both actions directly promote
angiogenesis, endothelial cell proliferation as well as migration,
and capillary tube formation. Similarly, expression and activity
of FGF-2, which is a HS-binding peptide, is significantly
enhanced upon HSV-1 infection of the cornea (Gurung et al.,
2018). FGF2 and other structurally related polypeptides of FGF
family are potent inducers of vasculature growth, endothelial
cell survival as well as normal and pathological hematopoiesis
(Qazi et al., 2009). FGF2 can promote corneal angiogenesis by
providing proliferative signaling as well as regulating expression
of other proangiogenic factors including VEGF and MMPs.
The latter have been well studied in context with neutrophil-
induced angiogenesis (Lee et al., 2002). Studies demonstrate
that infiltrating neutrophils secrete MMP-9 which contributes
to neovascularization of the cornea upon HSV-1 infection.
A direct role for MMPs in HSV-1 infection is still debatable
since it may depend on neutrophil signaling and complexity
generated by the simultaneous release of other cytokines and
growth factors. Presence of gamma delta T cells in the cornea
during HVS-1 infection also supports angiogenesis via IL-
17A production that in turn induces a local spike in levels
of VEGF (Suryawanshi et al., 2012). Somewhat indirectly,
certain chemokines (e.g., CCL2, CXCL1, and CXCL2) induced
during HSV-1 infection attract inflammatory cells (such as
neutrophils) that contribute directly to new vessel formation
(Giménez et al., 2013).

Pro-inflammatory Factors
Cytokines such as IL-1β, TNFα, and IL-6 have been well
documented as the key mediators of inflammation in the
eye (Santacruz et al., 2015). During HSV-1 infection IL-1α,
IL-6, IL-17, and IFN-γ as well as certain chemokines (e.g.,
MCP-1, MIP-1α, MIP-1β, and MIP-2) mediate proinflammatory
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conditions that promote neutrophil infiltration and corneal
damage (Azher et al., 2017). Similarly, IL-17, a proinflammatory
cytokine, is upregulated during infection and considered a key
participant in the pathogenesis of herpetic lesion development
(Suryawanshi et al., 2011; Amin et al., 2019). It signals
tissue infiltration by neutrophils, supports neutrophil survival
and locally drives cells to release harmful molecules such as
oxyradicals and certain MMPs. MMP-9 is a known marker
for corneal inflammation and a well-established sheddase for
HSPGs such as Syndecans (Bollmann et al., 2021). Similar
to MMPs, heparanase (HPSE), is also a well-studied HSPG
sheddase (Oshima et al., 2021). It is expressed in cells of the
cornea and very well studied for its unique enzymatic activity
as an endo-β-D-glucuronidase in mammalian cells (Agelidis
and Shukla, 2020). It is the only mammalian enzyme known
to cleave HS moieties present on proteoglycans and promote
their shedding from the surface. In that role it regulates
the remodeling of the extracellular matrix (ECM). HPSE is
synthesized in the endoplasmic reticulum as a 65 kDa proenzyme
precursor that undergoes proteolytic cleavage to yield 50 and
8 kDa subunits that heterodimerize to form the active enzyme.
The active enzyme is transported to the exterior of the cell
where it binds its substrate HS to cause its cleavage. Studies
have shown that it is upregulated late during HSV infection
through the action of transcription factor, NF-kB (Hadigal
et al., 2015). Infection-activated HPSE is translocated to the
cell surface where it removes HS. Once HS, the attachment
receptor for HSV-1, is removed from the cell surface, the newly
produced progeny virions are released to the ECM without
the risk of getting trapped by the mother cell, which in turn,
contributes significantly to enhance viral release (Hadigal et al.,
2015). Not only cultured cells but also infected murine corneas
demonstrate an increase in HPSE expression upon HSV-1
infection. Knockdown of HPSE in vivo inhibits virus shedding.
Since activated HPSE is a known contributor to inflammation
and angiogenesis it was shown that it acts a molecular trigger
to exacerbate the disease pathologies associated with HSV-1
infection of the eye (Agelidis et al., 2017). In human corneal
epithelial cells, upregulation of HPSE shows dependence on
NF-kB as well as HSV-1 infected cell protein 34.5 (γ34.5).
Studies demonstrate that HPSE also could relocate to the
nucleus to regulate β-catenin signaling (Koujah et al., 2021),
promote release of nuclear HS-bound proangiogenic factors and
regulate proinflammatory cytokine production. Its actions in
the cell nucleus generate pro-inflammatory and pro-angiogenic
conditions and help establish HPSE as a host virulence factor.
In addition to directly promoting a toxic environment inside
an HSV-1 infected cell, HPSE can also restrict cell-intrinsic
defense mechanisms resulting in a hostile takeover of the host
cell reprogramming by HSV-1 (Agelidis et al., 2021a). HPSE
through its diverse yet well-regulated interactome can interfere
with double-stranded DNA breakage response by blocking
signal transduction between sensors and downstream mediators
thereby reducing the cell’s ability to fight HSV-1 infection
(Agelidis et al., 2021b). Quite in contrast, the HPSE knockout
cells resist HSV-1 infection and use robust antiviral mechanisms
to thwart infection.

CORNEAL TISSUE-EXPRESSED HOST
PROTEINS THAT PREVENT OR LIMIT
HERPES SIMPLEX VIRUS
PATHOPHYSIOLOGY

At any given instance the corneal surfaces is exposed to many
pathogens including bacteria and viruses. While the tear film
itself does a good job of restricting access to the cornea several
newly identified proteins expressed in the cornea also tend to
limit the impact of infection either by activating the innate
immune response or directly participating in the clearance of
HSV-1 virions. Two major examples are discussed below.

Toll-Like Receptors
These plasma membrane as well as endosomal membrane-
expressed proteins are considered innate defense sensors against
a variety of pathogens including HSV-1 (Finberg et al., 2005). The
proteins belong to an evolutionarily conserved family of pattern
recognition receptors that activate innate and adaptive immune
pathways after sensing molecular patterns associated with
various pathogens. Toll-like receptors (TLR) detect pathogen-
associated molecular patterns (PAMP), which are invariant
molecular structures found within pathogens including HSV-
1 (Jin et al., 2007). TLR survey the plasma membrane and
intracellular compartments for the presence of viral signatures
such as viral genetic material and/or proteins. Once a signature
is detected, TLR and their cytosolic receptors engage their
downstream adaptor proteins to induce inflammatory cytokines
and other effector molecules to fight off the infection and also,
if required, cause death to the infected cells (Finberg et al.,
2005). Mitochondrial antiviral-signaling protein (MAVS) and
stimulator of IFN genes (STING) provide the cytosolic adaptor
functions and process the signals generated after engagement
with TLRs. Transcriptional activation of interferon regulatory
factor-3 (IRF3) and -7 (IRF7) is a direct result of TLR activation,
which in turn, induces the expression of IFN-α/β and other
antiviral chemokines (Ma and He, 2014). Detection of HSV via
TLRs also signals the assembly of inflammasomes and induction
of proinflammatory cytokines. Currently about a dozen TLRs
have been identified. Out of those, at least 6 TLRs (TLR1, 2, 3,
7, 8, and 9) may be involved in HSV–associated PAMP detection
(Finberg et al., 2005; Jin et al., 2007). It is already known that
TLR2 can uniquely recognize HSV-1 envelope glycoproteins and
lipopeptides, whereas TLR9 recognizes CpG motifs present in
HSV-1 genome. At the level of gene expression, mRNAs for
virtually all known human TLRs in corneal epithelium can be
detected by RT-PCR. Interestingly, all the TLR mRNA expression
is upregulated in corneas with active HSV-1 infection. Among
these TLR4, 8, and 9 showed the highest expression in HSV-1
infected human corneas (Jin et al., 2007). Given the significant
increase in expression it is speculated that TLR4, 8, and 9 may
also be involved in sensing of HSV-1 infection of the cornea.
At the protein level, both healthy as well as HSV-1 infected
corneas demonstrated Immunofluorescent staining for TLR2 and
9 expressions. Interestingly, TLR9 expression is less pronounced
in healthy corneas, but it is significantly enhanced in corneas with
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active HSV-1 (Jin et al., 2007). Significant differences were not
evident in TLR2 expression under healthy or infected conditions.
Other TLRs have not been thoroughly examined for ocular tissue
distribution and likewise, their precise roles in HSV-1 ocular
pathogenesis remain poorly defined.

Optineurin
Genetic screens have implicated Optineurin (OPTN), which
is also known as optic neuropathy inducing protein, in
many neurodegenerative diseases including primary open-angle
glaucoma (Ying and Yue, 2012). The gene encoding the OPTN
protein is well-expressed in the eye (Rezaie et al., 2007). Until
recently the functional role(s) of OPTN in a viral disease were
poorly defined. A recent study showed that OPTN can selectively
restrict HSV-1 infection of the cornea and the brain (Ames
et al., 2021). It was demonstrated that OPTN selectively targets
HSV-1 tegument protein, VP16, and gB, which is essential for
viral spread from cell-to-cell. The authors showed that VP16
and gB bind to OPTN and the protein complex is degraded by
autophagy. When mice lacking the gene for the OPTN protein
were infected with HSV-1 via the cornea, the majority of animals
failed to survive the infection within 10 days of exposure to the
virus. Quite interestingly the infected animals show significant
cognitive decline. Using a novel object recognition test, the
authors demonstrated that healthy animals either lacking OPTN
gene or the controls with intact OPTN gene showed a similar
preference to explore novel objects. However, after a month post
ocular HSV-1 infection the controls but not the OPTN mutant
animals maintained the same preference. Indicating a loss of
cognition related to memory the mutant animals did not show
any preference for novel objects. The authors also demonstrated
that OPTN functions in the cornea are important for the
recruitment of adaptive immunity and suppression of neuronal
necroptosis. A major outcome of this study was that ocular HSV-
1 infection can be lethal without OPTN as the virus can spread to
the central nervous system (CNS) and cause encephalitis.

INNATE AND ADAPTIVE IMMUNE
RESPONSES THAT CONTROL HERPES
SIMPLEX VIRUS-1 INFECTION OF THE
EYE

In addition to the newly discovered factors discussed above,
several well established innate and adaptive immune mechanisms
prevent viral replication and provide direct control over HSV-
1 infection of the eye. The immune controls exist at primary
infection sites such as the cornea or conjunctiva and within
the TG, where they regulate latency and reactivation (Rolinski
and Hus, 2014). It is the reactivation of HSV-1 from latency
in TG that triggers the morbidities associated with this virus.
The innate immune mechanisms that act almost immediately
to control infection include production of type I interferons
such as IFN-α and IFN-β by infected cells (Ma and He, 2014).
These cytokines are important for controlling both lytic and
latent HSV infections. Along the same line, IFN-γ helps drive

the virus in latent state and acts directly to prevent reactivation
(De Regge et al., 2010). Many innate immune cells such as
dendritic cells (DC), macrophages, natural killer (NK) cells and
mast cells (MC) protect the corneal tissue from primary as well
as reactivated HSV-1 infection (Rolinski and Hus, 2014). The
local population of DC, which is considered the major producer
of type I IFNs, plays a major role in defense against HSV-1.
In parallel, NK cells, which may also reside locally, produce
antiviral cytokines, and specifically target HSV-1 infected cells for
killing (Bigley, 2014). Local as well as infiltrating populations of
macrophages also provide the initial as well as persistent defense
against lytic and latent infections (Mott et al., 2007). Similarly,
infiltrating neutrophils are often the most prominent innate
immune cell type during HSV-1 infection of the cornea. However,
their role in HSV-1 infection may be dubious as they may
cause proinflammatory environment and local tissue damage
(Azher et al., 2017). IL-17 with its high potency proinflammatory
functions is initially released by innate immune cells such as γδ T
cells (Suryawanshi et al., 2012). IL-17 may be a chemoattractant
for neutrophil influx into the cornea. In addition to the innate
immune cells, the adaptive immune cells such as HSV-1 specific
CD4 + T and CD4 + T cells provide robust control against
HSV-1 infection of the eye (Farooq and Shukla, 2012). The
CD8 + T cells reduce infection and inhibit viral replication
by lytic granule-dependent as well as IFN-γ-dependent effector
mechanisms (Rolinski and Hus, 2014). These cells are thought to
be effective in keeping the virus under latency and preventing its
reactivation (Khanna et al., 2003). However, some recent findings
downplay the significance of CD8 + T cells in the maintenance
of latency (Mott et al., 2016). Similarly, virus specific CD4 + T
cells may contribute to HSV-1 immune pathologies and lesion
development in the cornea, but they are also beneficial and
helpful in HSV-1 clearance from the primary site of infection
and also, reducing the local viral load (Buela and Hendricks,
2015). A CD4 + T cell subtype called regulatory T cells (Treg)
also contributes to the progression of herpes keratitis but its
immunomodulatory role is still emerging and far from being well
defined (Varanasi et al., 2017). Like any other viral infections,
humoral immunity against HSV-1 is important but it is not
effective in controlling the virus possibly because antibody access
to the virions may be limited as they spread internally from cell to
cell and usually not found in the blood, which is a common source
of spread for many other viral diseases (Pollara et al., 2004).

HERPES SIMPLEX VIRUS-1
ENCEPHALITIS

Following primary infection of mucocutaneous sites including
the cornea, HSV-1 uses axonal routes to reach the peripheral
nervous system including the trigeminal ganglia for establishing
latency. Often, the virus can also make its way to the CNS
nervous system. As a result, HSV-1 genomic DNA can be found
in the CNS of a subset of the adult human population (Fraser
et al., 1981; Baringer and Pisani, 1994; Itzhaki et al., 1997).
Despite the presence of HSV-1 DNA in the brain, any strong
evidence of viral reactivation in the CNS remains elusive. For
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poorly defined reasons encephalitis develops in only a small
minority of human cases involving primary and reactivated
HSV-1 infections. Still HSV-1 remains the most common cause
of sporadic encephalitis in the United States. The molecular
mechanisms by which HSV-1 damages the nervous system
require additional studies. While local immune system including
aberrant release of proinflammatory cytokines such as TNF-α
certainly has a role, specific mediators such as reactive oxygen
species (ROS) and reactive nitrogen species (RNS), can be more
directly responsible for damage at the cellular level. TNF-α
can induce potent oxidizing byproducts directly or indirectly,
through membrane signaling inducing free radical-mediated
injury. A marked increase in chemically stable oxidative damage
products of arachidonic acid (AA) and docosahexaenoic acid
(DHA), F2-isoprostanes (F2-IP) and F4-neuroprostanes (F4-NP),
respectively is reported during acute HSV-1 encephalitis in mice
(Milatovic et al., 2002). Interestingly, higher levels of F2-IP can be
observed in infected mice until several weeks after recovery from
the acute, symptomatic phase of the infection. Oxidant tissue
injury, therefore, is a significant mechanism behind neuronal
damage during acute HSV-1 encephalitis.

CURRENT AND FUTURE THERAPIES TO
CONTROL OCULAR HERPES

Effective management and treatment of ocular herpes remains a
challenging task. While antiviral drugs do exist and provide relief
from common symptoms, the recurrent use of such drugs can
itself cause damaging vision and nephrotoxicity issues (Koganti
et al., 2019). Another problem is chronic inflammation that
may persist for years after the initial onset of the herpetic eye
disease. Usually, a superficial infection of the conjunctiva and
corneal epithelium (epithelial keratitis) are easily treatable with
existing antivirals and often resolve after the treatment, whereas
the infection of the corneal stroma (stromal keratitis) and uveitis
remain difficult to treat and often require long-term treatment
with antiviral as well as anti-inflammatory drugs such as
topical corticosteroids and nucleoside analogs (Liesegang, 1988;
Lobo et al., 2019). For superficial keratitis epithelial scraping
along with trifluridine drops is routinely prescribed. Oral
antivirals, exemplified by acyclovir, valacyclovir and famciclovir
constitute the most common treatments for ocular indications
as they demonstrate better treatment efficacy and better patient
compliance than topical drugs (Koganti et al., 2019). Ganciclovir
gel, which is a newer option, also provides good topical efficacy.
These drugs are nucleoside analogs that cause termination of
HSV-1 DNA synthesis (Koganti et al., 2019). Given the recurrent
nature of HSV-1 ocular infection, many patients are prescribed
low prophylactic dose of oral acyclovir (Lobo et al., 2019). Since

these drugs must be prescribed for very long time, emergence
of viral resistance is on the rise. Currently, Foscarnet is the only
injectable drug approved for the treatment of acyclovir-resistant
mucocutaneous HSV infection (Choong et al., 2010). Drug
resistance is hard to control since multitargeted therapy, which
has reduced the incidence of drug resistance in other chronic viral
diseases, is virtually non-existent against ocular herpes. New drug
discoveries that target new viral or host molecules offer hope.
These include an HSV-1 gD-targeting aptamer (Yadavalli et al.,
2017); innovative use of tranylcypromine to inhibit lysine-specific
demethylase 1 (LSD1) which suppresses HSV-1 lytic infection,
shedding, and reactivation from latency in animal models (Hill
et al., 2014); BX795, which inhibits AKT phosphorylation to
block HSV-1 protein synthesis in corneal cells (Jaishankar et al.,
2018) and 4-phenylbutyrate (PBA), which reduces ER stress and
synergistically increases the efficacy of existing antivirals and by
its own, reduces ocular HSV-1 infection (Yadavalli et al., 2020).
A couple of above-mentioned drugs such as tranylcypromine and
PBA are already approved for other clinical indications, therefore,
their approval for treating HSV-1 infection of the eye might be
more predictable timewise than the other experimental drugs.

CONCLUSION

Many host cell proteins mediate pathophysiological aspects of
HSV-1 infection of the cornea. Cells of the cornea can exhibit
a complex set of immunopathologies in the form of either
epithelial, stromal, or endothelial keratitis. Host response can
clear the virus while promoting inflammation and angiogenesis
causing tissue damage in the end. While the host proteins
activated by the infection may have pro- or antiviral roles, a
delicate balance is needed to resolve the disease. Tilting the
balance in either direction can be detrimental to corneal health
and vision. For the same reason, up-or down-regulating proteins
via gene therapy may not be a viable option to control the
disease but it is likely that dysfunctional or hyperactive proteins
can contribute significantly to disease manifestation. Recent
information on host proteins in ocular disease manifestation has
created unique opportunities for therapeutic development. It is
increasingly clear that reducing HPSE activity to normal levels
may reduce viral titers as well as inflammation. Fully functional
Optineurin, in contrast, may be needed to maintain good ocular
as well as neurological health.
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