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A B S T R A C T

Rationale and objectives: To validate skeletal muscle and adipose tissues cross sectional area (CSA) and densities
between a fully automated neural network (test program) and a semi-automated program requiring human
correction (reference program) for lumbar 1 (L1) and lumbar 2 (L2) CT scans in patients with lung cancer.
Materials and methods: Agreement between the reference and test programs was measured using Dice-similarity
coefficient (DSC) and Bland-Altman plots with limits of agreement within 1.96 standard deviation.
Results: A total of 49 L1 and 47 L2 images were analyzed from patients with lung cancer (mean age ¼ 70.51 �
9.48 years; mean BMI ¼ 27.45 � 6.06 kg/m2; 71% female, 55% self-identified as Black and 96% as non-Hispanic
ethnicity). The DSC indicates excellent overlap (>0.944) or agreement between the two measurement methods
for muscle, visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) CSA and all tissue densities at L1
and L2. The DSC was lowest for intermuscular adipose tissue (IMAT) CSA at L1 (0.889) and L2 (0.919).
Conclusion: The use of a fully automated neural network to analyze body composition at L1 and L2 in patients with
lung cancer is valid for measuring skeletal muscle and adipose tissue CSA and densities when compared to a
reference program. Further validation in a more diverse sample and in different disease and health states is
warranted to increase the generalizability of the test program at L1 and L2.
1. Introduction

Computed tomography (CT) scans are routinely used in patients
with cancer for the diagnosis, staging and progression of disease to
image tumors and their response to treatment. These scans can also be
used to detect changes in body composition [1, 2, 3]. Altered body
composition in cancer, specifically low muscle mass, is associated with
poor functional status [4], reduced survival [4, 5, 6, 7], chemotherapy
toxicity [8, 9, 10], discontinuation of chemotherapy and dose reduction
[11]. Skeletal muscle density or the infiltration of fatty tissue into
the muscle, a measure of muscle quality, has been associated with
physical function impairments and poor prognosis in cancer [12, 13,
14].
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Lumbar 3 (L3) cross sectional area (CSA) from an abdominal CT scan
has been validated as the gold standard for body composition analysis, as
skeletal muscle and adipose tissue areas in this region are highly corre-
lated with total body skeletal muscle and adipose tissue [1, 15]. While
the L3 landmark is the ideal location for estimating total body skeletal
muscle, results indicate that other lumbar and thoracic landmarks (L2,
L4, L5, L1, T12, T11, and T10, in preferential order) can be used as al-
ternatives when L3 is unavailable [13], and regional skeletal muscle at L1
and L2 are also highly correlated with total body skeletal muscle [15].
Using CT scans at the L3 landmark is not always feasible for patients with
lung cancer, as most individuals with lung cancer receive chest CT scans
initially, which do not always extend to L3 [16]. In addition, the avail-
ability of L3 from a chest CT scan can vary from 65-84%, whereas L1 is
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available in 94.5% of chest CT scans [17]. Therefore, there is a need to
utilize additional vertebral landmarks for measuring skeletal muscle in
individuals with lung cancer; based on previous studies in healthy adults
[13, 15] and individuals with lung cancer [16], L1 or L2 may be
appropriate.

Body composition analysis via CT scans is currently expensive as well
as time- and labor-intensive [18], requiring trained human research an-
alysts to obtain images at specific vertebral landmarks and complete
tagging of skeletal muscle and adipose tissue either wholly manually or
after a semi-automatic analysis by specialized software, which requires
the purchase of a software license plus a specialized module for
semi-automation. In recent years, the use of supervisedmachine learning,
a type of artificial intelligence, has increased in the field of medical im-
aging to help radiologists and researchers with automated segmentation
of skeletal muscle and adipose tissues [19]. Programs that perform fully
automated segmentation of skeletal muscle and adipose tissues have
been developed but the cost can be a barrier for use. Supervised machine
learning involves providing an algorithmwith a large number of CT scans
with marked tissues, allowing the machine to learn from the labeled
tissues, and then allowing the algorithm to perform automated seg-
mentation on a new data set. Neural networks are the most popular su-
pervised machine learning used in medical imaging [19]. Automated
Muscle and Adipose Tissue Composition Analysis (AutoMATiCA; http
s://gitlab.com/Michael_Paris/AutoMATiCA) was developed as a free,
open-source neural network to analyze skeletal muscle, intermuscular
adipose tissue (IMAT), visceral adipose tissue (VAT) and subcutaneous
adipose tissue (SAT) at L3 in a fraction of the time compared to current
manual reference methods and has been validated in diverse clinical
cohorts [18, 20]. As L3 may not always be available, particularly for
patients with lung cancer, there is a need to validate other vertebral
landmarks, specifically L1 and L2, using the fully automated body
composition analysis neural network.

1.1. Specific aim

Because the use of AutoMATiCA has not yet been validated for L1 and
L2, which are the landmarks most likely to be available from CT scans of
lung cancer patients, the primary aim of this study was to validate skel-
etal muscle and adipose tissue CSA and densities between a fully
Table 1. Demographics of subjects included in the study.

Variable Mean � SD or N (%) (N ¼ 49)

Age (years) 70.51 � 9.48

BMI (kg/m2) 27.45 � 6.06

Age Group

Middle (40–65 years) 15 (30.61)

Older (>65 years) 34 (69.39)

BMI Group

Low/Normal: <25 kg/m2 18 (36.73)

Overweight: 25–29.9 kg/m2 16 (32.65)

Obese: >30 kg/m2 15 (30.61)

Sex

Male 14 (28.57)

Female 35 (71.43)

Race

White 21 (42.86)

Black 27 (55.10)

Other 1 (2.04)

Ethnicity

Non-Hispanic 47 (95.92)

Hispanic 2 (4.08)

BMI- body mass index; kg-kilograms; m2-meters squared; SD -standard deviation;
N- number.
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automated body composition analysis neural network (test program,
AutoMATiCA) and a semi-automated program requiring human correc-
tion (reference program, SliceOmatic) for CT scans of the L1 and L2
vertebral landmarks in patients with lung cancer. In addition, this study
will provide further guidance on which landmark, L1 or L2, might be
most appropriate to use according to the performance of the test program
since including both landmarks in future body composition analysis
studies may not be warranted.

2. Materials and Methods

2.1. Data set

Clinically available CT scans of the L1 and L2 vertebral landmarks for
patients with lung cancer diagnosed between 2014 and 2016 were retro-
spectively analyzed for body composition and included in this study.
Sequential patients who were 19 years or older, diagnosed with lung
cancer, and had a diagnostic CT scan within 45 days before or after cancer
diagnosis and before the initiation of treatment were included in this pilot
from a parent study of 1251 lung cancer cases from an urban, tertiary
medical center. CT scans included were analyzed at Rush University
Medical Center in collaboration with University of Illinois Chicago.

2.2. Computed tomography body composition analysis

Conventional CT scans of the L1 and L2 vertebral landmarks were
identified by a trained radiologist from either a chest or whole-body CT
scan relative to the cancer diagnosis date. CT images were anonymized
prior to body composition analysis. Greyscale CT scans in DICOM®

(Digital Imaging and Communications in Medicine) format were
reviewed, and images with muscle cut-off were excluded from this vali-
dation study. Two methods were used for body composition analysis.
Method one (test program) consisted of using a fully automated neural
network (AutoMATiCA) as previously developed and validated for L3
[18, 20]. As described in the manual, greyscale CT scans in DICOM®

format were uploaded into AutoMATiCA’s neural network and analyzed,
yielding segmentation maps and an excel spreadsheet with body
composition parameters including skeletal muscle and adipose tissue
CSA and tissue densities in Hounsfield Units (HU). This analysis took
approximately 350 ms per CT image [18]. Segmentation of CSA for
muscle and adipose tissue was visually inspected after the analysis to
determine if any of the images were incompletely segmented (defined as
absence of or erroneous color tagging). AutoMATiCA uses HU thresholds
to segment skeletal muscles (�29 to 150 HU), VAT (�150 to -50 HU), and
IMAT/SAT (�190 to -30 HU). Method two (reference program) consisted
of using a semi-automatic reference program with human correction
using standard protocols (SliceOmatic, Tomovision, Montreal, Canada,
version 5.0) as previously described [1]. Greyscale CT images in DICOM
format were initially analyzed by the ABACS module (Voronoi Health
Analytics), followed by the manual correction of muscle and adipose
tissue tagging by a trained researcher to capture tissues missed or erro-
neously tagged in the ABACS analysis. The manual correction of images
was reviewed with the senior researcher (trained expert in CT body
composition analysis) and corrected as needed. Each image took
approximately 20 min to correct. HU thresholds are set in SliceOmatic to
aid research analysts in segmenting skeletal muscles (�29 to 150 HU),
VAT (�150 to -50 HU), and IMAT/SAT (�190 to -30 HU) using a brush
tool to tag tissues. Tissue CSA and density were calculated by the refer-
ence program.

The demographic and clinical variables collected for each patient
with lung cancer were age (years), sex (male, female), race (White, Black,
Other), ethnicity (Hispanic, Non-Hispanic), height (cm), weight (kg), and
body mass index (BMI, kg/m2). This study was approved by the Uni-
versity of Illinois Chicago (Protocol #2020-0677) and the Rush Univer-
sity Medical Center (ORA #18013002-IRB01) Institutional Review
Boards.

https://gitlab.com/Michael_Paris/AutoMATiCA
https://gitlab.com/Michael_Paris/AutoMATiCA


Table 2. Summary agreement statistics for Lumbar 1 measured by Dice-similarity coefficient and Bland-Altman summary statistics including assessment of proportional
bias using Pearson correlation coefficients.

Comparisons N DSC Bland-Altman

Test Method Reference method Bland-Altman plot
(difference between Test and Reference)

Proportional bias

Mean SD mean SD lower upper CC P-value

Muscle CSA SM 49 0.955 0.058 3.94 14.55 -24.57 32.46 0.32 0.02

VAT CSA VAT 49 0.954 0.051 2.55 9.78 -16.62 21.73 0.00 0.98

SAT CSA SAT 49 0.951 0.048 10.25 10.26 -9.87 30.36 0.39 0.006

IMAT CSA IMAT 49 0.890 0.097 -3.37 3.91 -11.04 4.29 -0.52 0.0001

Muscle HU SMHU 49 0.956 0.072 1.49 3.77 -5.90 8.89 -0.07 0.66

VAT HU VATHU 49 0.996 0.007 -0.05 1.28 -2.55 2.46 -0.34 0.02

SAT HU SATHU 49 0.992 0.009 1.12 2.16 -3.10 5.34 0.00 1.00

IMAT HU IMATHU 49 0.985 0.015 1.38 2.42 -3.37 6.13 -0.39 0.005

Test Method: AutoMATiCA (automated segmentation).
Reference Method: SliceOmatic plus ABACS and manual correction.
DSC: Dice-similarity coefficient.
CC: Pearson Correlation Coefficient.
Muscle CSA: Cross-sectional area for muscle.
VAT CSA: Cross-sectional area for visceral adipose tissue (VAT).
SAT CSA: Cross-sectional area for subcutaneous adipose tissue (SAT).
IMAT CSA: Cross-sectional area for intermuscular adipose tissue (IMAT).
Muscle HU: Mean Hounsfield Units (or density) for muscle.
VAT HU: Mean Hounsfield Units (or density) for visceral adipose tissue (VAT).
SAT HU: Mean Hounsfield Units (or density) for subcutaneous adipose tissue (SAT).
IMAT HU: Mean Hounsfield Units (or density) for intermuscular adipose tissue (IMAT). Bold values shows p<0.05.

Table 3. Summary agreement statistics for Lumbar 2 measured by Dice-similarity coefficient and Bland-Altman summary statistics including assessment of proportional
bias using Pearson correlation coefficients.

Comparisons N DSC Bland-Altman

Test Method Reference method Bland-Altman plot
(difference between Test and Reference)

Proportional bias

Mean SD mean SD lower upper CC P-value

Muscle CSA SM 47 0.973 0.057 0.24 11.61 -22.52 22.99 0.08 0.58

VAT CSA VAT 47 0.944 0.101 7.83 13.28 -18.19 33.86 0.51 0.0002

SAT CSA SAT 47 0.961 0.035 11.13 11.32 -11.05 33.31 0.35 0.02

IMAT CSA IMAT 47 0.919 0.092 -2.60 4.50 -11.42 6.21 -0.48 0.0007

Muscle HU SMHU 47 0.972 0.065 -0.68 8.43 -17.21 15.84 -0.51 0.0002

VAT HU VATHU 47 0.994 0.022 -2.95 22.44 -46.92 41.03 -0.78 <.0001

SAT HU SATHU 47 0.990 0.021 -3.23 30.28 -62.57 56.12 -0.83 <.0001

IMAT HU IMATHU 47 0.969 0.103 0.05 10.47 -20.48 20.57 -0.65 <.0001

Test Method: AutoMATiCA (automated segmentation).
Reference Method: SliceOmatic plus ABACS and manual correction.
DSC: Dice-similarity coefficient.
CC: Pearson Correlation Coefficient.
Muscle CSA: Cross-sectional area for muscle.
VAT CSA: Cross-sectional area for visceral adipose tissue (VAT).
SAT CSA: Cross-sectional area for subcutaneous adipose tissue (SAT).
IMAT CSA: Cross-sectional area for intermuscular adipose tissue (IMAT).
Muscle HU: Mean Hounsfield Units (or density) for muscle.
VAT HU: Mean Hounsfield Units (or density) for visceral adipose tissue (VAT).
SAT HU: Mean Hounsfield Units (or density) for subcutaneous adipose tissue (SAT).
IMAT HU: Mean Hounsfield Units (or density) for intermuscular adipose tissue (IMAT). Bold values shows p<0.05.
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2.3. Statistical analysis

Continuous variables are presented as mean � standard deviation,
whereas categorical variables are presented as number and frequency.
Dice similarity coefficients (DSC) were used to evaluate agreement be-
tween measurements from fully automated analysis (test method) and
the semi-automated plus human correction (reference method) for
muscle and adipose tissues. The DSC quantifies the overlap between the
two analysis programs (0¼ no overlap; 1¼ perfect overlap or agreement)
3

[18]. Excellent agreement was defined as a DSC >0.9. Mann Whitney U
and Kruskal-Wallis tests were used to determine differences in DSC by sex
and race and by BMI group, respectively. Bland Altman Plots were used to
graph the difference between the test and reference method against the
average of the two measurements and are used to determine limits of
agreement (LOA) within 1.96 standard deviations [21]. Statistical sig-
nificance was defined as p< 0.05. All statistical analyses were conducted
using SAS® Studio, SAS® OnDemand for Academics (Copyright© 2021,
SAS Institute Inc., Cary, NC, USA).



Figure 1. Bland-Altman plots of body composition parameters between test (AutoMATiCA) and reference (SliceOmatic plus ABACS and manual correction) method
for Lumbar 1. Plots show cross-sectional area (CSA) for muscle (A), visceral adipose tissue (VAT, B), subcutaneous adipose tissue (SAT, C), and intermuscular adipose
tissue (IMAT, D). Limits of agreement within 1.96 standard deviations are shown with average bias (red line) for each plot. The average bias line for muscle (A) and
SAT (C) suggests that on average, the test method values are higher than the reference method values. The average bias line for IMAT CSA (D) suggests that on average
the test method values are lower than the reference method values.
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3. Results

Forty-nine subjectswere included in this study for a total of 49 L1and47
L2 CT scans analyzed. One L2 CT scan was excluded as muscle was cut off,
and the radiologistwasnotable toobtainoneL2 image fromachestCTscan.
Seventy-one percent of subjects were female, 55% self-identified as Black,
96% self-identified as non-Hispanic ethnicity, 69%were 65 years of age or
older. ThemeanBMIwas27.45�6.06kg/m2, indicatingoverweight status.
See Table 1 for demographics of subjects included in the study.

The mean CSA for muscle (112.28 � 36.09 versus 108.34 � 31.51
cm2), VAT (90.98� 81.37 versus 88.43� 81.34 cm2) and IMAT (16.32�
11.67 versus 19.69� 13.70 cm2) were similar at L1 between the test and
reference programs. For L1, SAT CSA had the largest difference in mean
between the two measurement methods (160.46 � 93.14 cm2 in the test
program versus 150.21 � 89.15 cm2 in the reference program).

The two measurement methods produced similar mean values for
muscle (115.89� 36.94 versus 115.65� 35.99 cm2) and IMAT (19.32�
11.93 versus 21.93 � 14.05 cm2) CSA at L2, with the biggest differences
in mean for VAT and SAT CSA at L2 (105.54 � 93.21 versus 97.71 �
86.40 cm2 for VAT CSA; 196.41 � 104.56 versus 185.28 � 100.65 cm2

for SAT CSA).
Tissue density means were similar between the two measurement

methods at L1 and L2. Supplementary table 1 demonstrates that skeletal
4

muscle CSA was significantly higher in males compared to females at
both L1 (139.70 � 36.37 versus 95.79 � 18.13 cm2; p ¼ 0.0006) and L2
(152.70 � 39.78 versus 101.50 � 21.97 cm2; p ¼ 0.0005), which is
consistent with other studies that have found higher muscle mass in
males versus females [4, 16]. VAT was also significantly higher in males
at L1 (137.70 � 111.80 versus 68.71 � 56.24 cm2; p ¼ 0.04) and
approaching statistical difference at L2 (146.00� 122.00 versus 79.26�
61.03 cm2; p ¼ 0.08).

3.1. Concordance statistics

The DSC (Tables 2 and 3) indicates excellent overlap (>0.944) or
agreement between the two measurement methods for muscle, VAT and
SAT CSA and all tissue densities at both vertebral landmarks. The DSC was
lowest for IMAT CSA at L1 (0.889) and L2 (0.919). At L1 and L2, the DSC
for muscle and adipose tissues did not differ by sex or race (see supple-
mentary tables 2, 3, 5 and 6). The DSC differed significantly for IMAT CSA
and density and VAT density at L1 by BMI group, with a significantly
higher DSC for IMAT CSA and density and VAT density in the obese group,
with all DSC values indicating good (IMAT CSA in low/normal and over-
weight groups) to excellent agreement between the test and reference
program (supplementary table 4). The DSC for muscle and adipose tissues
did not differ significantly by BMI group at L2 (supplementary table 7).



Figure 2. Bland-Altman plots of body composition parameters between test (AutoMATiCA) and reference (SliceOmatic plus ABACS and manual correction) method
for Lumbar 2. Plots show cross-sectional area (CSA) for muscle (A), visceral adipose tissue (VAT, B), subcutaneous adipose tissue (SAT, C), and intermuscular adipose
tissue (IMAT, D). Limits of agreement within 1.96 standard deviations are shown with average bias (red line) for each plot. The average bias line for VAT (B) and SAT
(C) suggests that on average, the test method values are higher than the reference method values. The average bias line for IMAT CSA (D) suggests that on average, the
test method values are lower than the reference method values.
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Bland Altman Plots showed LOA of 3.94 [�24.57 and 32.46] cm2,
2.55 [�16.62 and 21.73] cm2, 10.25 [�9.87, 30.36] cm2, -3.37 [�11.04,
4.29] cm2 for muscle, VAT, SAT, IMAT CSA at L1, respectively (Table 2).
Analysis for proportional bias indicated significant proportional bias for
muscle, SAT and IMAT CSA with the fully automated neural network
producing higher values compared to the semi-automated plus human
correction reference program at L1 (Table 2 and Figure 1 A, C) and lower
values for IMAT (Figure 1, D). There was no significant proportional bias
for VAT CSA at L1 (Figure 1, B). For tissue densities at L1, there was
significant proportional bias for VAT HU and IMAT HU with the fully
automated neural network producing higher values than the reference
program for both VAT and IMAT HU (Table 2).

For L2, Bland Altman Plots showed LOA of 0.24 [�22.52, 22.99] cm2,
7.83 [�18.19, 33.86] cm2, 11.13 [�11.05, 33.31] cm2, -2.60 [�11.42,
6.21] cm2 for muscle, VAT, SAT, IMAT CSA (Table 3). There was sig-
nificant proportional bias for VAT, SAT and IMAT CSAwith higher values
for VAT and SAT Figure 2, B and C) and lower values for IMAT (Figure 2,
D) by the fully automated neural network (Table 3 and Figure 2). There
was no proportional bias for muscle CSA at L2 (Figure 2, A). For tissue
densities at L2, there was significant proportional bias for muscle HU,
VAT HU, SATHU, and IMATHUwith the fully automated neural network
producing values slightly lower than the reference program (Table 3).
5

4. Discussion

To the best of our knowledge, the validation of the test program
(AutoMATiCA) has only been tested in two previous studies utilizing L3
in various clinical populations not including lung cancer [18, 20]; this is
the first study to validate the use of the test program at L1 and L2 in
patients with lung cancer.

The test program AutoMATiCA, a fully automated neural network for
the analysis of skeletal muscle and adipose tissues, is valid for L1 and L2
when compared to measurements derived from a semi-automated plus
human correction reference program (SliceOmatic). The test program
produced measurements that are in excellent agreement when compared
to the reference program for muscle, VAT, and SAT CSA per DSC values at
L1 and L2. The test program also produced measurements for IMAT CSA
that were in good to excellent agreement (DSC 0.889 and 0.919 for IMAT
CSA at L1 and L2, respectively) with the reference program. DSC values
produced by this study for muscle CSA (0.955 and 0.973), VAT CSA
(0.954 and 0.944), SAT CSA (0.951 and 0.961) and IMAT CSA (0.890 and
0.919) at L1 and L2 are similar to the DSC values produced by Paris et al.
(muscle 0.983; VAT 0.979; SAT 0.979; IMAT 0.900) [18], and
Gomez-Perez et al. [20] (muscle 0.97; VAT 0.92; SAT 0.93; IMAT 0.83) in
the validation of AutoMATiCA for L3 in diverse clinical cohorts. In



Figure 3. Examples of Raw CT scans and Analyzed Images by the Test program (AutoMATiCA) versus the Reference program (SliceOmatic plus ABACS and manual
correction) at Lumbar 1 and Lumbar 2. Example of erroneous tagging of the liver as skeletal muscle (image B); poor-quality image resulting in tagging of organs as
skeletal muscle and unsuccessful tagging of obliques (image E) and segmentation by AutoMATiCA at L2 (images H and K).
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addition, the DSC values produced for muscle CSA at L1 and L2 in this
study are higher compared to ones produced by Burns et al. in a study
that compared manual segmentation of lateral wall, paraspinous, psoas,
quadratus, and rectus muscles CSA to a computer system with fully
automated segmentation of truncal musculature at L1-L5 [22]. In the
study by Burns et al., the average DSC for all muscle groups at L1 was
0.879 � 0.099, and at L2, the average DSC was 0.917 � 0.055 [22]
compared to 0.955 � 0.058 and 0.973 � 0.057 for L1 and L2, respec-
tively, in our study. The higher DSC values at L1 and L2 in our study
indicate stronger agreement between the test and reference methods for
skeletal muscle CSA in our study compared to the study by Burns et al. In
addition, the agreement for tissue densities at L1 (DSC 0.956–0.996) and
L2 (DSC 0.969–0.994) indicate excellent agreement for muscle and adi-
pose tissue densities between the two methods. Based on a recent review
of the use of artificial intelligence in the imaging of sarcopenia, DSC is the
most frequently used metric to evaluate the effectiveness of artificial
intelligence, including neural networks, against a reference method in
6

measuring muscle [19]. Therefore, the DSC for muscle and adipose tissue
CSA and tissue densities from our study can be used to compare effec-
tiveness of the test method (AutoMATiCA) against other fully automated
segmentation methods. In addition, the most frequently investigated
regional vertebral landmark in artificial intelligence studies is L3 [19]
with only one study investigating L1 and L2 [22]. Our results thus
contribute to extending the use of this neural network (AutoMATiCA) to
other vertebral landmarks for body composition analysis, particularly in
lung cancer patients where L3 may not always be available.

Finally, Bland Altman Plots indicated significant proportional bias for
muscle, SAT and IMAT CSA at L1 and for VAT, SAT and IMAT CSA at L2,
with the test program on average producing higher results for muscle, SAT,
and VAT and lower results for IMAT compared to the reference program.
These results are different than those produced by Paris et al. in which
AutoMATiCA produced no significant proportional bias compared to the
reference program at L3 [18]. In addition, Gomez-Perez et al. indicated no
significant proportional bias for VAT and SAT CSA at L3 [20]. This
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difference in results in our study may be due to the complexity of muscle at
the chest wall and ribs at L1, where Burns et al. also found the lowest level
of performance of their algorithm compared to the reference program [22].
In addition, because the fully automated test program was trained to tag
skeletal muscle and adipose tissues at L3, proportional bias may occur at
other vertebral levels. In manually reviewing the images at L1 with the
greatest difference in skeletal muscle measurements, the proportional bias
stems from erroneous tagging of liver as skeletal muscle (Figure 3, A-C),
resulting in higher muscle mass measurements, and from pixilated or
low-quality images resulting in lower muscle measurements from Auto-
MATiCA (Figure 3, D-F). At L2, there were two images with the liver
erroneously tagged as skeletal muscle, but to a lower extent than at L1.
Figure 3, G-I and J-L, are examples of segmentation by AutoMATiCA at L2,
which closely resemble the segmentation by SliceOmatic. There was no
proportional bias for skeletal muscle at L2, which may be due to closer
anatomical similarities between images at L2 and L3. Poor quality images
and artifacts contributed to proportional bias for VAT and SAT at L2.
Further investigation with a variety of CT images at L1 and L2 are needed
to determine the types of images that result in inaccuracies when analyzed
in AutoMATiCA and may be contributing to proportional bias.

4.2. Limitations

We experienced delays in the ability to analyze the images via the fully
automated neural network due to corruption of DICOM images upon initial
extraction, making them unreadable with AutoMATiCA. Once the images
were re-extracted using a different imaging software, the automated
analysis via the fully automated neural network was quick and accurate.
While we used conventional CT scans for body composition analysis, the
use of low-dose chest CT scans before cancer diagnosis cannot be ruled out
completely and may have contributed to lower performance by the auto-
mated neural network. In addition, the images were manually inspected
following the fully automated analysis, however, the images cannot be
manually corrected using the test program as is done with the reference
program. While this study helps to validate the use of a fully automated
neural network to analyze L1 and L2 landmarks in lung cancer patients, a
larger and more diverse sample, including different races and ethnicities
and a higher proportion of males in different disease and health states is
needed to confirm validation of the fully automated neural network at L1
and L2 to increase its generalizability to other populations. Finally, L3
images from patients with lung cancer were not included in this study since
L3 images from various cancer and non-cancer populations have already
been evaluated using the test program [18, 20]. However, including L3
images in this study may have helped to further validate the utility and
capabilities of this fully automated neural network at L3.

5. Conclusion

The use of a fully automated neural network to analyze body
composition at L1 and L2 in patients with lung cancer is valid for
measuring skeletal muscle and adipose tissue CSA and densities when
compared to a reference program. In subsequent body composition
analysis studies for patients with lung cancer, either the L1 or L2 verte-
bral landmark can be analyzed using the fully automated neural network
and does not require the analysis of both vertebral landmarks. Further
validation in a more diverse sample and in different disease and health
states is warranted to increase the generalizability of the test program to
analyze body composition at L1 and L2.
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