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Abstract

In most brain computer interface (BCI) systems, some target users have significant difficulty in using BCI systems. Such
target users are called ‘BCI-illiterate’. This phenomenon has been poorly investigated, and a clear understanding of the BCI-
illiteracy mechanism or a solution to this problem has not been reported to date. In this study, we sought to demonstrate
the neurophysiological differences between two groups (literate, illiterate) with a total of 52 subjects. We investigated
recordings under non-task related state (NTS) which is collected during subject is relaxed with eyes open. We found that
high theta and low alpha waves were noticeable in the BCI-illiterate relative to the BCI-literate people. Furthermore, these
high theta and low alpha wave patterns were preserved across different mental states, such as NTS, resting before motor
imagery (MI), and MI states, even though the spatial distribution of both BCI-illiterate and BCI-literate groups did not differ.
From these findings, an effective strategy for pre-screening subjects for BCI illiteracy has been determined, and a
performance factor that reflects potential user performance has been proposed using a simple combination of band
powers. Our proposed performance factor gave an r = 0.59 (r2 = 0.34) in a correlation analysis with BCI performance and
yielded as much as r = 0.70 (r2 = 0.50) when seven outliers were rejected during the evaluation of whole data (N = 61),
including BCI competition datasets (N = 9). These findings may be directly applicable to online BCI systems.

Citation: Ahn M, Cho H, Ahn S, Jun SC (2013) High Theta and Low Alpha Powers May Be Indicative of BCI-Illiteracy in Motor Imagery. PLoS ONE 8(11): e80886.
doi:10.1371/journal.pone.0080886

Editor: Dewen Hu, College of Mechatronics and Automation, National University of Defense Technology, China

Received May 28, 2013; Accepted October 8, 2013; Published

Copyright: � 2013 Ahn et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. 2010-0006135) and
the Korea Research Council of Fundamental Science and Technology (KRCF) through the Basic Research Project managed by KRISS. The funders had no role in
study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: scjun@gist.ac.kr

Introduction

Brain Computer Interface (BCI) technology provides a potential

communication tool between the brain and a machine/computer,

which would permit people carry out their daily lives with more

convenience. However, there are certain hurdles to resolve before

this technology can be offered on the public market. Depending on

the control paradigm used, about 10-30% of BCI users reportedly

do not modulate the brain signals that are required to run the BCI

system. For example, 6.7% of subjects showed poor performance,

with less than 59% accuracy in two-class motor imagery (MI) BCI

[1]. In P300 BCI, 27.2% of subjects were unable to use the BCI

system in a row/column paradigm and about 45% of subjects

failed to achieve 100% accuracy in a single character speller test

[2]. In a study that employed steady-state visual evoked potential

(SSVEP) BCI with 37 subjects [3], approximately 14% failed to

complete spelling tasks within the allotted time. Because this type

of paradigm is widely used in BCI systems [4], BCI-illiteracy may

be an obstacle to the practical application of this technology.

So far, there are several studies that compare BCI-illiteracy to

BCI-literacy [5–10]. These studies reported that some neurophys-

iological differences exist between these two groups. Blankertz et

al. [5] proposed an impressive sensory motor rhythm (SMR)

predictor with a short resting state that can be applied prior to a

time-consuming BCI experiment in order to evaluate a user’s

potential performance. For MI-based BCI, the power decrease/

increase at a specific frequency that is referred to as event-related

(de)synchronization (ERD/ERS) has been employed for practical

ends, which uses the fundamental characteristic of MI. This ERD/

ERS phenomenon is explained in more detail by Pfurtscheller et

al. [11]. The ERD usually occurs at alpha or beta bands, while

ERS is visible at alpha or beta bands at a certain time or in a

specific area of the cortex. Recently, the gamma band demon-

strated more gain because Grosse-Wentrup et al. [12] reported the

causal influence of the gamma band on SMR. Therefore, the

gamma band is believed to affect both the subject and session

variability, which are the primary areas of concern within the BCI

community.

To the best of our knowledge, the theta band has not been

adequately studied as part of the BCI-illiteracy phenomenon. The

role of the theta band is known to be related to memory formation,

information processing [13], working memory [14–16] and

sensorimotor integration [17]. Moreover, the frontal lobe theta

band was reported to reflect mental activity, personality traits and

attention/arousal [18]. Therefore, there is good reason to further

investigate the theta band in order to understand exactly how

different the BCI-illiterate and BCI-literate users are, and whether

or not any neurophysiological differences exist.

For this study, we investigated a mental state during a person is

not involved in a certain task. This state is commonly used in the

analysis of the default mode network (DMN) which is a kind of

brain network [19–21]. Here, we introduced this state and named
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as NTS (non-task related state) throughout this study. Here, we

introduced the NTS while subjects had their eyes open, as in

Blankertz et al. [5]. We explain the experimental procedure, EEG

acquisition and the methods that were used to evaluate BCI

performance. Group divisions and mental state types are defined

for further study. Then we investigate the difference between two

groups in terms of NTS and spatial pattern changes over different

mental states. We discuss how these investigations and their

associated interpretations can be applied to quantify BCI-illiteracy

potential, which may be of great use for pre-screening purposes

before long BCI experiment is conducted. In addition, a concise

BCI performance predictor is proposed here. The efficacy of these

classifiers and predictors in determining BCI ability is verified by

BCI competition 2008 datasets. Finally, other interpretations of

the results are discussed.

Materials and Methods

Subjects
Fifty two healthy subjects (26 males, 26 females; mean age: 24.8

6 3.86 years) were participated in this study. The experiment was

approved by the Institutional Review Board of Gwangju Institute

of Science and Technology. We informed all participants of the

experimental purpose and process, and collected written consent

letters.

Experiment and EEG datasets
Hand movement motor imagery experiment was conducted

with every subject. For every experiment, BCI2000 software [22]

and the Biosemi Active 2 system (64 active electrodes, 512 Hz

sampling rate) were used to acquire EEG data. For our purpose,

two kinds of datasets were acquired as follows:

N Non-task related state. EEG data were first acquired

under the eyes-open condition for investigation of totally

relaxed mental state. In the eyes-open condition, subjects do

not conduct a task; instead, they let their minds wander or

think about nothing. Therefore, throughout this paper this

mental state is named as non-task related state and is

abbreviated as NTS.

N REST and MI states. Next, five or six runs of a motor

imagery experiment were conducted per subject. In this

experiment, a conventional two-class motor imagery paradigm

was applied; it required the imagination of left or right hand

movements according to instructions that were presented on a

monitor screen. For the first 2 seconds, subjects stared at the

screen and imagined left/right hand movement when the

instructions (cue) appeared on the screen for 3 seconds. This

motor imagery step continued for a total of 5 seconds,

including 2 seconds after the screen went blank. Figure 1

illustrates one trial of this motor imagery experiment. Subjects

were given 20 trials for each condition (left or right motor

imagery) per run. Thus, a total of 100 or 120 trials were

collected for each MI condition. We divided each MI task into

two phases: resting state (REST) before onset and MI state

(marked in Figure 1). Since REST is closer to a task-involved

state than NTS, we expected that NTS and REST might be

different, so these two states were separated for comparative

study.

BCI offline performance and group categorization
Optimal or suboptimal frequency and temporal information for

BCI data were varied by subject; that is, they were subject-specific.

Some special methods may be applied to make these frequency

determinations. In keeping with the simplicity of this work, we

used an 8–30 Hz frequency band as an informative spectral

interval. This spectral interval includes both alpha and beta bands,

which have been reported to show motor imagery-related power

increases or decreases [11]. We band-pass filtered each motor

imagery dataset at 8 Hz to 30 Hz and then extracted time series

data from 0.4 to 2.4 seconds after the onset, during which the

ERD/ERS occurs at the time of motor imagery [11,23]. The

offline accuracy of the trials was estimated with the common

spatial pattern (CSP) and Fisher linear discriminant analysis

(FLDA) [23]. In general, cross-validation was introduced in order

to yield a statistically reasonable BCI performance. In this work, a

10-fold cross-validation was applied as follows: every trial was

grouped into ten sets; these ten sets were separated into 7 training

and 3 testing sets. The number of possible separation is 120 cases.

The BCI performance was estimated using 120 total types of

separated testing and training sets. Finally, a mean accuracy of 120

estimates was assigned to each subject as his/her BCI perfor-

mance.

With these estimated BCI performances, we attempted to

identify BCI-illiterate subjects. Usually, these subjects perform at

near-chance levels. Here, we set 60% of offline accuracy as a

threshold because it is considered to be a roughly random

performance with respect to the number of trials that were

collected [24]. A minimum threshold for accuracy was needed for

comparison. Some investigators might have chosen to use 60%

again; however, we observed that the subjects who performed

slightly better than 60% were yielding different information from

those with very high performances. Therefore, we increased the

minimum threshold for the high performance group to 70%.

Finally, we assigned every subject to one of three groups:

N Group ‘A’ had 70% accuracy or above

N Group ‘B’ had 60% to 70% accuracy

N Group ‘C’ had lower than 60% accuracy

This study especially focused on Groups ‘A’ and ‘C’ to pinpoint

the differences between subjects who were rated as BCI-illiterate

and those rated as BCI-literate. Group ‘B’ was rated as in-

between. In Figure 2, the performances of the subjects in each

group are noted with their standard deviations.

Preprocessing for spectral analysis
This data allowed us to compare two categorized subject

groups: group A (BCI-literate) and group C (BCI-illiterate). We

wanted to find if there were any substantial neurophysiological

differences between the two groups. For this purpose, we

considered three different mental states: NTS, REST and MI

Figure 1. Procedure for one trial in an MI experiment.
doi:10.1371/journal.pone.0080886.g001

BCI-Illiteracy in Motor Imagery
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states. For each mental state, the notable neurophysiological

characteristics of the two subject groups were thoroughly

investigated.

For the first step, we preprocessed EEG datasets as follows: to

remove noise coming from the electric power, the EEG datasets

were notch-filtered at 60 Hz and re-referenced using a common

average reference, but no noise rejection procedure was applied.

Depending on the source of information, the designated frequency

bands of interest are, in general, moderately varied. Therefore, we

decided to use frequency ranges from theta (4–8 Hz), alpha (8–

13 Hz), beta (13–30 Hz) and gamma (30–70 Hz) frequencies for

spectral power analysis. Here, the delta band at around 1–4 Hz

has been excluded because it is contaminated relatively easily by

artifacts such as eyeball movement, blinking, jaw movements and

a certain degree of electromyogram noise. On the other bands, the

spectral powers were estimated by using a fast Fourier transform

on the time series for each channel with an EEGLAB library [25].

However, the powers in each band were very different across the

subjects, thereby making it difficult to see a pattern at the group

level. To minimize this problem, we normalized the band powers

by using the total power, which was obtained by summing all

powers from 4–70 Hz. Comparative analysis across subjects was

facilitated by using this method, and throughout this study, this

resulting value is called the relative power level (RPL).

The REST and MI states were preprocessed in the same

manner, and RPLs were computed for analysis. These RPLs were

used to find statistical differences between the BCI-literate (group

A) and BCI-illiterate (group C) groups.

Results

Characteristics of NTS between BCI-literate and BCI-
illiterate groups

To examine the statistical differences between the BCI-literate

and BCI-illiterate groups, the distributions of mean RPL values

over all channels for each categorized group were presented in a

box plot; some outliers based on whisker length of 1.5 were

denoted by a red ‘+’ as shown in Figure 3. Wilcoxon rank-sum test

[26,27] was conducted to investigate whether or not a pair of

distributions are statistically different, that is, whether or not null

hypothesis (two distributions are statistically the same) is rejected.

As a result, we observed that two group pairs AB and AC are

significantly different (significance level p , 0.05) in both theta

and alpha band powers. However, group pair BC in theta/alpha

band powers and all group pairs in beta/gamma band powers did

not show statistical significance.

The overall difference between subject groups was not that

significant for beta and gamma. However, the tendency for theta

waves to increase and alpha waves to decrease was noticeable in

the RPL distribution, which could be observed when comparing

group A and group C. The spatial distributions of RPL

magnitudes for NTS over the subjects and frequency bands are

presented for groups A and C in Figure 4. The overall distribution

of the four frequency bands was similar for all subject groups. The

theta level was relatively high in the prefrontal and central areas

near Cz. The alpha levels were high in the occipital lobe and

decreased from the occipital to the prefrontal area. High levels of

beta and gamma were observed near frontal-temporal channels.

However, some differences can be observed easily when compar-

ing the different groups. Interestingly, the theta power level was

lower and the alpha power level was higher in group A than those

in group C. Beta levels were slightly higher for group A than group

C, except in the occipital lobe, while group C showed slightly

higher gamma levels. The third row in Figure 4 marks the

difference between the first and second rows, and the fourth row is

spatial distribution of p-value. Here Wilcoxon rank-sum test was

applied (False Discovery Rate (FDR) corrected with q = 0.05)

[28,29].

From the different topographical images in the third row in

Figure 4, it becomes clear that group C has a higher theta power

and lower alpha power than group A, with statistically significant

differences between the frontal and posterior-parietal cortex for

theta waves, roughly across entire area for alpha waves. However,

the beta and gamma powers did not have a spatially significant

difference. These observations are briefly summarized in Table 1.

Characteristics of REST and MI
We have compared the following three different states: the

NTS, REST and the MI state. Figure 5 shows the results of RPL

for three different states. In the previous section, we observed

relatively higher theta and lower alpha bands in group C than in

group A. Here, this behavior was still sustained, but the pattern

changed according to the mental states. First, the RPL for the

theta band decreased from NTS to REST, while the RPL for the

Figure 2. Estimated performance by CSP and FLDA. Subjects are assigned to groups ‘A’, ‘B’ or ‘C’ according to the accuracy of their
performance.
doi:10.1371/journal.pone.0080886.g002

BCI-Illiteracy in Motor Imagery

PLOS ONE | www.plosone.org 3 ember 2013 | Volume 8 | Issue 11 | e80886Nov



alpha band increased in the mid-frontal and lateral-occipital areas.

However, this phenomenon was not noticeably observed in MI.

Conversely, the RPL for the theta band in MI showed a new

pattern (different from REST) in which high RPL appeared from

the pre-frontal area to the mid-central area. Looking at the beta

and gamma bands, overall patterns were similar for all three

mental states, but we observed a slight RPL magnitude increase

when NTS moved to REST and MI. Our findings may be

summarized as follows:

N In group C, the pattern of relatively high theta and low alpha

bands was sustained over all three different states (NTS,

REST, and MI).

N In both groups A and C,

N For both REST and MI states, there was no substantial

difference between the left and right hand movements.

N The theta power decreased when moving from NTS to

REST, while the alpha power increased with a focus on the

mid-central and lateral-occipital areas.

N When moving from REST to MI, the high theta RPL

seemingly moved from the pre-frontal area to the mid-

central area, but the high alpha RPL disappeared.

N The RPLs for beta and gamma bands slightly increased from

NTS to REST and MI.

From these findings, we believe that the three states (NTS,

REST, MI) are mentally different, even though both groups A and

C showed similar patterns when the three states were propagated

(from NTS to REST to MI). We noted that these findings were

similar to those observed in the ERD/ERS analysis (not shown

here). Further interpretation is discussed later.

Relationship between BCI performance and spectral
band power

We have observed differences in the RPL distribution over three

mental states between the BCI-literate and BCI-illiterate groups.

In this section, we investigated how much each spectral band is

related to the BCI classification performance. These results may

motivate us to examine the spatial and spectral correlation

distributions with BCI performance more thoroughly for motor

imagery data. The Pearson correlation coefficients [26] which

measure linear correlation between RPL (over channels and

spectral bands) and BCI performance were computed. Figure 6

shows the spatial distributions of the Pearson correlations and

corresponding p-values (FDR corrected with q = 0.05) between the

RPL for each band and the BCI performance. The theta band

power had an overall negative correlation with BCI classification

accuracy in the region, while the alpha band power was positively

correlated and seemed far more strongly correlated around C3

and C4. High alpha power near sensory-motor rhythm was

reported in Blankertz et al. [5], which was used as a performance

predictor in MI BCI. In addition, the beta and gamma powers

were relatively less correlated with BCI performance and its

significant level is very lower showing the high p-value. Although

the statistical test does not result significance, the gamma power

had a weakly negative correlation in the centro-parietal area; this

data is relevant to the finding about the causality of gamma on

SMR [12]. These authors also demonstrated that the gamma band

reflects the attention process, and so it may be shifted from the

centro-parietal to the frontal and occipital areas. Therefore, this

process can influence the MI step.

From these observations, we can infer that the theta and alpha

bands may offer more information than the beta and gamma

bands to explain the user’s MI ability. From Figure 6, the

correlations for theta and alpha increased up to |r| = 0.50, while

Figure 3. The mean distribution of RPL over all channels for each band and each group. This result is obtained from the NTS signal and
whisker length [52], which is set to 1.5. The outliers (red crosses) are categorized on the basis of the whisker lengths. For results from statistical test,
please see the section ‘Characteristics of NTS between BCI-literate and BCI-illiterate groups’.
doi:10.1371/journal.pone.0080886.g003
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those from the beta and gamma bands were less than |r| = 0.40

(maximum correlations: |r| = 0.26 for beta and |r| = 0.37 for

gamma). The statistical significance levels by p-value in theta and

alpha are high enough to conclude. In short, theta and gamma

were negatively correlated, while alpha and beta were positively

correlated with BCI performance.

Applicability of high theta and low alpha patterns
So far, we have observed that relatively higher theta and lower

alpha power patterns are typical in BCI-illiterate subjects in

comparison to BCI-literate subjects. This finding may be broadly

applicable. One intuitive application is to generate a strategy to

discriminate between specific users with high BCI-illiterate

potential. In a similar manner, it is also possible to model various

performance predictors that incorporate high theta and low alpha

patterns. These applications should be highly beneficial in that

they provide a solid pre-screening methodology (depending on the

investigator’s use) and even a rough performance prediction for

each user before time-consuming experiment is conducted. In

general, there is substantial subject-to-subject and even trial-to-

trial mental state variations, which makes it difficult to develop a

robust BCI system. With these patterns it is now possible to

determine whether or not a current mental state is good enough

for developing a BCI control. According to such mental state

decoding, users can do a reasonably good job of using a BCI

system. In this section, we propose an effective pre-screening

Figure 4. Spatial distributions of RPL for NTS over various frequency bands. The comparison of NTS (1st and 2nd rows), their differences
(the 3rd row was calculated by subtracting group C from group A), and the result of a Wilcoxon rank-sum test (FDR corrected) between the 1st and 2nd

rows (4th row)
doi:10.1371/journal.pone.0080886.g004

Table 1. Summary of comparison between groups A and B.

Theta Alpha Beta Gamma

Group A Low High A little higher in frontal and
central

Group C High Low A little higher in the temporal
and posterior-parietal areas

Wilcoxon rank-sum test Frontal, Posterior-parietal Roughly across entire area

doi:10.1371/journal.pone.0080886.t001

BCI-Illiteracy in Motor Imagery
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strategy and a performance predictor from our existing datasets.

BCI Competition 2008 datasets 2b, which are commonly used in

the BCI community, were used for verification purposes.

BCI Competition 2008 datasets. For our purposes, we

introduced additional datasets from BCI competition 2008. These

datasets are EEG data from 9 subjects in MI experiments (left/

right hand movement imagination). Every subject conducted three

training sessions and two feedback sessions. Only three channels

(C3, Cz and C4) were available with a sampling rate of 250 Hz.

The signals were analog band pass filtered (0.5–100 Hz) and notch

filtered at 50 Hz. The goal of this competition was to classify a

user’s intention (for example, left or right hand) during two

feedback sessions. For more details, please refer to [30]. It was

reported that the first place winner’s mean kappa coefficient was

0.57. This kappa coefficient (k) was obtained as follows:

k~
P0{Pe

1{Pe

ð1Þ

Figure 5. Spatial patterns (group averaged) of RPL over three different mental states (NTS, REST and MI).
doi:10.1371/journal.pone.0080886.g005

BCI-Illiteracy in Motor Imagery
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The P0 is the classification accuracy for BCI performance and

Pe denotes the hypothetical probability of chance agreement. We

used this winner’s kappa coefficient as an online performance

measure for each subject. We noted that 7 out of 9 subjects showed

reasonable good performances and the remaining 2 subjects were

regarded as low performance or BCI-illiterate persons. Although

Leeb et al. [30] reported offline BCI performances, the kappa

values of the BCI competition winner showed a high correlation

(r = 0.92) with the online motor imagery BCI performance test that

was conducted in an immersive virtual environment (iVE).

Notably, the competition winner’s performance was slightly higher

than that of the online iVE BCI; thus we simply used it as an

achievable maximum BCI performance. In this work, the RPL

analysis was applied to the resting state signal under the eyes-open

condition from the 5th session (last feedback session).

Screening of BCI-illiterate subjects. In this section, we

attempted to apply our findings to discriminate between subjects

with high BCI-illiterate potential from any given subject pool,

which is of great use in the BCI research community. Prior to

conducting a time-consuming BCI experiment, a brief acquired

resting state can be used as a pre-screening strategy to infer how

probable it is that a subject is BCI-illiterate. For this purpose, the

RPLs of theta and alpha frequencies were extracted from each

subject as a two-dimensional feature point and used to generate a

classifier from these feature points that separate the high

performance group (group A) from the low performance group

(group C). For pre-processing, the outliers (subjects s6, s37 in

group A) who showed unreasonably high theta RPLs were

discarded according to statistical behavior (whisker length), as

illustrated in Figure 3; these two subjects were marked with a red

cross in Figure 3.

The FLDA was again applied here. The estimated discriminant

line and the distribution of feature point are depicted on the left in

Figure 7. The classification accuracy was 82.35% (or 72.22%

when two outliers were not excluded). For the verification of our

classifier, the BCI competition datasets that were explained in the

previous section were used to extract features in the same manner

as in our datasets. Figure 7 (top right) shows the distribution of

feature points for nine subjects. Each feature point was labeled as a

kappa coefficient, which is an indicator of BCI performance,

implying that a low/high kappa coefficient represents low/high

BCI performance. For example, when k= 0.21 or k= 0.22 in

Figure 7 (top right), this low value represents a low performance.

In estimating the kappa coefficients by formula (1), we used

Pe = 0.50 (as a statistical chance level in a two-class problem) since

the exact Pe from a confusion matrix is absent.

The performance group (BCI-illiterate or BCI-literate) classifier

that was generated from our offline dataset seemed to classify BCI

competition data reasonably well, as shown in Figure 7 (top right).

Among nine subjects, eight were classified as BCI-literate, while

one was placed in the BCI-illiterate group. According to the results

from the winner of the BCI Competition, seven out of nine

subjects showed moderately good BCI performances. Two subjects

with low kappa were likely to be BCI-illiterate. We tabulated the

confusion matrix for this classification in Figure 7. In classifying

BCI-illiterate subjects, it is better to be more conservative in order

to reduce false positive cases (falsely categorizing a BCI-literate

subject as BCI-illiterate). Even our classification results for the BCI

competition data gave zero false positives. At the user’s discretion,

more conservative classifiers were used to reduce false positives,

moving the original discriminant line up slightly in a perpendicular

direction to the original line; this trend is depicted as a dotted line

in Figure 7. We observed that the classifier that was generated by

52 subjects (without exclusion of two outliers) resulted in the same

difference.

Prediction of potential performance. In this section, we

propose a simple BCI performance predictor as an additional

application of our findings; typically, BCI-illiterate subjects tend to

have relatively high theta, low alpha, low beta, and high gamma

frequencies. As a result, by simply taking the relationships into

account in one formula as follows, we may use proportional or

inverse proportional relationships for RPLs with BCI perfor-

mance, as we concluded in the section ‘Relationship between BCI

performance and spectral band power’:

PPfactor~
w1azw2b

w3hzw4c
ð2Þ

We refer to this relationship as a performance potential factor

(PPfactor). It includes the RPLs for each of four spectral bands

(alpha, beta, gamma, and theta) and corresponding control

parameters (wi), which may be heuristically determined. To test

this PPfactor, the RPLs from the C3 and C4 channels were used

for every dataset (our offline and online data from the BCI

competition). We observed the distributions of RPLs over average

powers on C3 and C4 channels (for alpha, beta, gamma and theta

bands) for 52 subjects. Seven subjects (s12, s22, s33, s35, s37, s39

and s45) showing unreasonably high RPLs (determined by whisker

Figure 6. The result of correlation analysis between spectral band power and performance. Upper row represents correlation coefficient
and lower image shows corresponding p-value (FDR corrected) for four bands.
doi:10.1371/journal.pone.0080886.g006

BCI-Illiteracy in Motor Imagery
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length of 1.5) were considered as outliers. The following analysis

would be done for two cases (with outliers and without outliers).

We set all the control parameters to wi = 1 for the sake of

simplicity. The relationship between the PPfactor and BCI

performance are presented in Figure 8. The filled and blank

squares denote our 52 subjects (offline dataset); these yielded a

correlation of r = 0.48 (r2 = 0.23, p,5.0e-4) with BCI classification

accuracy. The red crosses represent the online dataset from BCI

competition data, which yielded a higher correlation of r = 0.69

(r2 = 0.48, p,0.05). For online BCI competition data, the

classification accuracy was calculated by (1) and addressed in the

previous section (assuming Pe = 0.50). The correlation value

showed that r = 0.59 (r2 = 0.34, p,1.0e-6) for all datasets

(N = 61, which consists of 52 our offline datasets and 9 BCI

competition’s online datasets). If the rejection of seven outliers

(unfilled circles in Figure 8) was applied, the correlation values

were increased up to r = 0.64 (r2 = 0.41, p,5.0e-6) for offline

datasets (N = 45) and r = 0.70 (r2 = 0.50, p , 5.0e-9) for the whole

datasets (N = 54).

In addition, a regression model was generated to evaluate the

predictability of BCI classification accuracy for the given PPfactor.

For this purposed, a linear regression model was determined as a

reasonable one after various regression models were tested. This

regression model was cross-validated by leave-one-subject-out

(LOO) method for 52 offline subjects. For each iteration, one

subject was used as a test data and the remaining (51 subjects) was

used to generate a linear regression model. The difference (root

mean square error (RMSE)) between predicted performance by

the regression model and actual BCI performance was calculated.

A total of 52 iterations were done and it resulted in RMSE of

0.086 (RMSE = 0.096 with outliers) for train data and 0.090

Figure 7. A group classification between BCI-literate (blue square) and BCI-illiterate (red circle) groups (Top left). It is shown with the
discriminant line that was obtained by FLDA. The group classification line was applied to the BCI competition dataset in the top right figure. These
numbers indicate the kappa coefficients for each subject and the confusion matrices are noted on the bottom line.
doi:10.1371/journal.pone.0080886.g007

Figure 8. The relationship between the proposed PPfactor and
BCI accuracy. The whole data points (N = 61) give a correlation value
(PPfactor and BCI accuracy) of r = 0.59 (r2 = 0.35, P,1.0e-6). The
association reaches up to r = 0.7 (r2 = 0.49, P,5.0e-9) when the rejection
of seven outliers are applied. The regression line calculated from offline
data excluding seven outliers is overlaid.
doi:10.1371/journal.pone.0080886.g008
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(RMSE = 0.100 with outliers) for test data, respectively. Then,

this linear regression model was applied to online data (BCI

competition data). The prediction error (RMSE) was 0.101

(RMSE = 0.120, tested by regression line generated from our

data with outliers), which is slightly higher than RMSE for offline

data. Figure 8 depicted the linear regression model estimated by all

45 offline subjects (without outliers) along with all offline and

online data. This shows that our concise linear regression model

reasonably well fits even online data and may be applicable to the

prediction of BCI performance.

From these results, it is clear that even this simple PPfactor (as

estimated from C3 and C4 only) could moderately predict a user’s

potential performance. This method uses four kinds of band

powers, which makes it easy to implement and apply. The

combination of the PPfactor with other existing factors or more

channels will facilitate better BCI performance prediction.

Discussion

Theta and alpha waves for motor imagery
During motor imagery, the power decrease (ERD) in alpha and

beta bands is well known and is considered a promising feature of

most MI-based BCI systems. The role of ERD in the alpha band is

interpreted as a reflection of target motor cortex activation [11].

Therefore, potential decreases from the resting state could be used

to understand a user’s performance on an MI-based BCI system

[5]. Similarly, there have been some reports of theta band

increases in motor imagery [14,17] and working memory tasks

[15]. Therefore, it is plausible that potential increases in the theta

band reflect a user’s performance just as in the alpha band power.

Our results were consistent with this reasoning and showed a

positive correlation between offline accuracy in the alpha band

power and a negative correlation in the theta band power. It was

reported that the theta wave plays a role in such tasks as motor

imagery, sensory-motor integration and memory load in rodents as

well as humans [31]. Thus, the theta and alpha waves can be

considered to reflect a user’s suitability for a MI-based BCI system.

The influence of attention
We observed that the spatial pattern changed over the three

mental states under study, that is, NTS, REST and MI. The theta

band decreased in RPL during REST and MI, while the power

level of beta and gamma bands increased. This simultaneous

increase and decrease phenomenon may be relevant to the

attention process. Whatever the mental state, either REST or MI,

a certain degree of attention is required; therefore, a subject tries

to prepare for the incoming instruction message in REST and

imagine movement in MI. By doing so, the increases and decreases

described above occur, reflecting the subject’s attention process.

This hypothesis is strongly supported by several articles. In studies

on attention deficit hyperactivity disorder (ADHD) [32,33], theta

suppression and beta enhancement were introduced for biofeed-

back. High frequency oscillations such as gamma have been

associated with the attention process [34–37]. Thus, we expect

that theta power may have a negative correlation with attention,

while high oscillation bands may have positive correlations with a

user’s attention level, as presented in our results.

Alpha power increases during preparation
As shown in the section ‘Characteristics of RET and MI’, a

visible change occurred in the alpha band during REST; it was

focused in the mid-central and lateral-occipital areas. This mid-

central area is near the pre-motor cortex, which area is related to

motor planning [38,39]. During REST, a subject was preparing

for incoming instructions and was about to imagine his or her

hand movement. Thus, the alpha power increase may be

associated with the subject’s preparation for motor initiation.

In addition, another visible area of alpha power increase is in

the occipital lobe; this area is separated into the left/right

hemispheres. The alpha power increase in the occipital area is

clearly related to the action of subjects, who were staring at the

monitor and waiting for the instructions to appear on the screen.

The alpha power might be increased by visual processing;

however, it is separated into two parts. This may be understood

as the attention process for the left and right hemispheres. There

are some studies in which covert visuo-spatial attention shows

spatially different alpha oscillations in the occipital lobe [40–42].

To perceive the direction in which to move the hand, the subject

must integrate the direction from visual stimuli and execute the

imagination of hand movement and the ready state may affect this

alpha power increase in the lateral-occipital area. However, this

phenomenon should be investigated further.

BCI performance Prediction Factors
A user’s BCI performance is affected by various factors, such as

the user’s ability to operate the BCI system successfully, his or her

mental state, the classifier, feature extractor, and hardware issues.

In this study, we focused on a user’s ability to use BCI; therefore, it

may not predict a user’s potential performance perfectly, even

when an ideal neurophysiological factor is constructed. An SMR

predictor was proposed by Blankertz et al. [5] that reported an

r = 0.53 (r2 = 0.28) correlation with BCI performance, while our

method yielded slightly higher correlation values of r = 0.59

(r2 = 0.34) for all datasets (N = 61). The SMR predictor was

designed with mainly m (10–14 Hz) band information; however,

our proposed PPfactor was designed with more frequency bands,

including the m. With our proposed method, it is still possible to

show improvement by tuning the weighting of the channels or

band powers, or even by introducing estimated powers in shorter

frequency intervals. These weights and frequency intervals may be

selected in an optimized manner and with more datasets that are

acquired from many subjects. Our proposed potential factor in the

section ‘Prediction of potential performance’ includes four simple

kinds of band power factors that show negative or positive

correlations, which may influence subject variability or even

session variability performance. It is expected that this simple

approach may be used to reduce the variability across both

sessions and subjects, which is currently under investigation.

In addition to our findings so far (RPLs of alpha and theta), we

found that calmness, ease of motor imagery and the subject’s

expected performance were substantially statistically significant for

BCI performance (not shown here) from questionnaires on the

subject’s mental states before/after the experiment. This finding

indicates that subject self-assessment may, to some extent, be

helpful in predicting the subject’s performance.

Cause and solution
Some may question why BCI-illiteracy occurs and what

influences this phenomenon. These issues must be understood,

as low performance is a fatal problem for BCI as it currently exists.

With respect to the cause of BCI-illiteracy, Blankertz et al. [43]

reported that the EEG is very sensitive to noise and is unable to

detect sources in cortical folds. Therefore, a sensor cannot read the

informative modulation of interesting sources, thereby resulting in

a poor signal-to-noise ratio in some paradigms. Also, it was

reported that the BCI-illiterate group demonstrates a higher noise

than the BCI-literate group [8]. From this anatomical viewpoint,

individual inter-hemispheric connectivity traits were also reported
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as one of the influences on the MI ability in a study of corpus

callosum white matter [44]. On the other hand, there are also

studies of psychological factors; a study on locus of control (LOC)

showed that the LOC resulted in a correlation coefficient of

r = 0.59 with respect to the technology and hit-rate [7]. The

performance level, which was considered to be evidence of the

degree of concentration, was identified as being significant [9].

Apart from these anatomical and psychological factors, another

possible reason for BCI-illiteracy is that a user who does not show

the suitable modulation may have an inadequately-trained

neuronal network. For the MI paradigm, the questionnaire used

to assess the subject’s ability in kinesthetic and visual imagery

showed that the ability to produce imagery was relevant to

estimating BCI performance [6]. Lastly, Halder et al. [10] insisted

that the number of activated voxels in the brain might be fewer in

the illiterate than in the literate group.

Another compelling issue is how to overcome the problem of

BCI-illiteracy. Other existing paradigms than MI-based BCI can

be used if the main cause for BCI-illiteracy is the anatomical

structure or something that makes it difficult for a user to generate

the detectable modulation. Thus, using different BCI control

paradigms may be a possible solution as a BCI wizard to find a

user-specific paradigm that can be used for better performance

[45]. On the other hand, hybrid approaches may be introduced,

since these methods facilitate the use of information from more

than two paradigms [46–48]. In addition, other adaptive

algorithms [49] or training-based approaches could be used to

overcome low performance if the main reason is psychological

factors or inadequately-trained brain networks [14,50]. Biofeed-

back before using a BCI system is another solution, as biofeedback

may shift the user’s mental state to one that is suitable for the BCI

system. For example, gamma oscillation, which has a causal

influence on SMR, was used to enhance the resting-state SMR by

intentional attenuation of fronto-parietal gamma power during

biofeedback [51].

In this section, we have reviewed reports about the possible

reasons for the BCI-illiteracy phenomenon in addition to proposed

solutions. However, a crucial cause, a promising solution, or even

a treatment has not yet been proposed. Until BCI-illiteracy is fully

understood, a special diagnosis for a user’s ability to run a control

paradigm or pre-screening for BCI-illiterate users would obviously

be beneficial to the BCI community. This information would

probably help us to understand a user’s state and find a user-

specific solution. There may be various factors that are helpful in

predicting a user’s state, for example, when a user can perform

well (and how well) or whether or not system environment/settings

are reasonably good, etc. In this sense, the classification and simple

PPfactor that is proposed in the section ‘Applicability of high theta

and low alpha patterns’ could be used effectively along with other

factors such as the psychological [7,9], neurophysiological [5],

system-relevant [45] or other self-assessed user factors [6].

Conclusions

In existing BCI systems, 15–30% of target users (called ‘BCI-

illiterates’) are known to show far poorer performances than

others. BCI-illiteracy is an issue that needs to be understood in

order for BCI systems to be useful in the future. In this study, we

investigated the difference between BCI-literate and BCI-illiterate

groups in terms of spectral band powers by comparing NTS

during the eyes-open state, resting but ready state before motor

imagery and motor imagery. With the motor imagery EEG

datasets from 52 subjects, we found that the BCI-illiterate group

showed high theta and low alpha power levels in comparison to

the BCI-literate group. Statistically significant areas were distin-

guished as frontal and posterior-parietal regions for the theta band

and the whole brain area for the alpha band. This high theta and

low alpha pattern was sustained during other mental states such as

resting before onset and motor imagery. However, this spatial

pattern for each frequency band changed over varying mental

states. These changes are considered to represent attention, motor-

related memory load processes, and preparation for incoming

instructions for the motor imagery phase. These spatial pattern

changes were observed to be similar in both groups. By using the

theta and alpha RPL from user resting state data, an effective

strategy to discriminate between users with high BCI-illiterate

potential (or high BCI-literate potential) was proposed. In

addition, a simple performance predictor was proposed that used

these neurophysiological findings and gave higher Pearson

correlation coefficient values than the SMR predictor [5].

In conclusion, a pattern of high theta power and low alpha

power may reflect BCI-illiteracy during the NTS. This finding

could be used as the physiological factor, together with other

possible factors, to understand a user’s potential ability to use a

BCI system.
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