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Purpose: Reliable classification of referable and vision threatening diabetic retinopa-
thy (DR) is essential for patients with diabetes to prevent blindness. Optical coherence
tomography (OCT) and its angiography (OCTA) have several advantages over fundus
photographs. We evaluated a deep-learning-aided DR classification framework using
volumetric OCT and OCTA.

Methods: Four hundred fifty-six OCT and OCTA volumes were scanned from eyes of 50
healthy participants and 305 patients with diabetes. Retina specialists labeled the eyes
as non-referable (nrDR), referable (rDR), or vision threateningDR (vtDR). Each eye under-
went a 3 × 3-mm scan using a commercial 70 kHz spectral-domain OCT system. We
developed a DR classification framework and trained it using volumetric OCT and OCTA
to classify eyes into rDR and vtDR. For the scans identified as rDR or vtDR, 3D class activa-
tionmapsweregenerated tohighlight the subregionswhichwere considered important
by the framework for DR classification.

Results: For rDR classification, the framework achieved a 0.96 ± 0.01 area under the
receiver operating characteristic curve (AUC) and0.83±0.04quadratic-weightedkappa.
For vtDR classification, the framework achieved a 0.92 ± 0.02 AUC and 0.73 ± 0.04
quadratic-weighted kappa. In addition, the multiple DR classification (non-rDR, rDR but
non-vtDR, or vtDR) achieved a 0.83 ± 0.03 quadratic-weighted kappa.

Conclusions: A deep learning framework only based on OCT and OCTA can provide
specialist-level DR classification using only a single imaging modality.

Translational Relevance: The proposed framework can be used to develop clinically
valuable automated DR diagnosis system because of the specialist-level performance
showed in this study.

Introduction

Diabetic retinopathy (DR) is a leading cause of
preventable blindness globally.1 Currently, DR classi-
fication uses fundus photographs or clinical exami-
nation to identify referable DR (rDR) and vision-
threatening DR (vtDR). Eyes with worse than mild
nonproliferative DR (NPDR) on the International
Diabetic Retinopathy Severity Scale are considered
rDR, and eyes with severe NPDR, proliferative DR

(PDR), or those with diabetic macular edema (DME)
are considered vtDR.2 An efficient and reliable classi-
fication system is essential in identifying patients who
can benefit from treatment without an undue burden
to the clinic. Eyes with rDR but without vtDR can be
observed closely without referral to an ophthalmolo-
gist, helping preserve scarce resources for patients that
require treatment. To do this safely requires an accurate
stratification of patients into these categories.3,4

Deep learning has enabled multiple reliable
automated systems that classify DR from fundus
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photographs.5–8 However, fundus photographs have
a low sensitivity (60–73%) and specificity (67–79%)
for detecting diabetic macular edema (DME), which
accounts for the majority of vision loss in DR.9,10
This means that even when a network performs very
well against a ground truth generated from fundus
photographs, patients with DME may still frequently
be misdiagnosed. Supplementing fundus photography
with optical coherence tomography (OCT), which
is the current gold standard for diagnosing macular
edema, can avoid this problem.11–20 However, reliance
on multiple imaging modalities is undesirable as it
increases logistic challenges and cost.

Our group and others have demonstrated that
OCT angiography (OCTA) can be used to stage DR
according to fundus photography-derived DR sever-
ity scales using various biomarkers linked to capillary
changes in DR.21–28 Because OCTA can be simulta-
neously acquired with structural OCT scans used for
DME diagnosis, an automated system based on OCTA
volume scans can potentially use a single imaging
modality to accurately classify DR while avoiding low
DME detection sensitivities and associated misdiag-
noses that occur in systems based on just fundus
photographs.

Despite this advantage, OCTA-based analyses
require improvements. Previous methods for classi-
fying DR using OCTA relied on accurate retinal
layer segmentation and en face visualization of the
3D volume to visualize or measure biomarkers.29–34
However, with advanced pathology, retinal layer
segmentation can become unreliable. This lowers
OCTA yield rate, and may also lead to misclassi-
fication through segmentation errors. In addition,
quantifying only specific biomarkers fails to make use
of the information in the latent feature space of the
OCT/OCTA volumes, which may be helpful for DR
classification.35

In this study, we propose an automated convolu-
tional neural network (CNN)36 that uses the volumetric
OCT/OCTA to directly classify eyes as either non-rDR
(nrDR) or rDR, and as either vtDR or eyes with refer-
able but not vision-threatening DR (nvtDR). We also
include a multiclass classification that classifies eyes as
nrDR, rDR/nvtDR, or vtDR. To demonstrate which
features the framework relies on to make the classifi-
cation, the network also generates 3D class activation
maps (CAMs).37 Visualizations such as these are essen-
tial features of direct classification systems, because
they allow graders to verify algorithm outputs. To the
best of our knowledge, this is the first study to propose
an automated multiclass DR severity-level classifica-
tion framework based directly on OCT and OCTA
volumes.

Methods

Data Acquisition

We recruited and examined 50 healthy partici-
pants and 305 patients with diabetes at the Casey
Eye Institute, Oregon Health & Science University
in the United States (50 healthy participants and
234 patients); Shanxi Eye Hospital in China (60
patients); and the Department of Ophthalmology,
Aichi Medical University in Japan (11 patients). We
included patients with diabetes with the full spectrum
of disease from no clinically evident retinopathy to
PDR. One or both eyes of each participant underwent
7-field color fundus photography and an OCTA scan
using a commercial 70-kHz spectral-domainOCT (SD-
OCT) system (RTVue-XR Avanti; Optovue Inc.) with
840-nm central wavelength. The scan depth was 1.6
mm in a 3.0 × 3.0 mm region (640 × 304 × 304
pixels) centered on the fovea. Two repeated B-frames
were captured at each line-scan location. The structural
images were obtained by averaging the two repeated
and registered B-frames. Blood flowwas detected using
the split-spectrum amplitude-decorrelation angiogra-
phy (SSADA) algorithm.23,38 For each volumetric
OCT/OCTA, two continuously acquired volumetric
raster scans (one x-fast scan and one y-fast scan)
were registered and merged through an orthogonal
registration algorithm to reduce motion artifacts.39 In
addition, the projection-resolved OCTA algorithmwas
applied to all OCTA scans to remove flow projection
artifacts in the deeper layers.40,41 Scans with a signal
strength index (SSI) lower than 50 were excluded. The
data characteristics are shown below (Table 1). When
the classes in our data set were not balanced, class
weights were adjusted to prevent performance loss.
Based on the data distribution showed in Table 1, the
class weights for nrDR, r/nvtDR and vtDR were 0.76,
1.87, and 0.87, respectively.

A masked trained retina specialist (author T.S.H.)
graded seven-field color fundus photographs based
on Early Treatment of Diabetic Retinopathy Study
(ETDRS) scale.42,43 The presence of DME was deter-
mined using the central subfield thickness from struc-
tural OCT based on the Diabetic Retinopathy Clinical
Research Network (DRCR.net) standard.3 We defined
nrDR as ETDRS level better than 35 and without
DME (we also included healthy eyes); referrable DR
as ETDRS level 35 or worse, or any DR with DME;
r/nvtDR as ETDRS levels 35 to 47 without DME;
and vtDR as ETDRS level 53 or worse, or any stage
of DR with DME.2 The participants were enrolled
after signing an informed consent in accordance with
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Table 1. Data for DR Classification

Characteristics rDR Classification vtDR Classification Multiclass DR Classification

Severity nrDR rDR nvtDR vtDR nrDR r/nvtDR vtDR
Number of eyes/scans 199 257 280 176 199 81 176
Age, mean (SD), y 48.8 (14.6) 58.4 (12.1) 52.2 (14.7) 57.5 (12.3) 48.8 (14.6) 60.4 (14.7) 57.5 (12.3)
Female, % 50.8 49.0 50.0 49.4 50.8 48.2 49.4
No DR, % 83.4 1.6 59.3 2.2 83.4 0.0 2.2
Mild NPDR, % 16.6 0.0 11.8 0.0 16.6 0.0 0.0
Moderate NPDR, % 0.0 44.4 28.9 18.8 0.0 100.0 18.8
Severe NPDR, % 0.0 19.8 0.0 29.0 0.0 0.0 29.0
PDR, % 0.0 34.2 0.0 50.0 0.0 0.0 50.0
DME, % 0.0 32.3 0.0 47.2 0.0 0.0 47.2

DR, diabetic retinopathy; rDR, referable diabetic retinopathy; vtDR,= vision threateningdiabetic retinopathy; r/nvtDR, refer-
able but not vision threatening diabetic retinopathy; NPDR, nonproliferative diabetic retinopathy; PDR, proliferative diabetic
retinopathy; DME, diabetic macular edema.

Figure 1. Automated DR classification framework using volumetric OCT and OCTA data as inputs. Inputs are first resized to 160 × 224 ×
224× 2 pixels (two channels 3D input with a 160× 224× 224 structural and a 160× 224× 224 angiographic volume). These inputs are fed
into a DR screening framework based on a 3D CNN architecture. The network produces two outputs: a non-referable DR (nrDR) or referable
DR (rDR) classification, and a non-vision-threatening (nvtDR) or vision threatening (vtDR) DR classification. The multiclass DR classification
result is defined based on the rDR and vtDR classification results. Class activation maps (CAMs) are also output for each classification result.

an Institutional Review Board approved protocol. The
study complied with the Declaration of Helsinki and
the Health Insurance Portability and Accountability
Act.

Data Inputs

OCT and OCTA generate detailed depth-resolved
structural and microvascular information from the
fundus (Fig. 1). Extracting DR-related features using
neural networks can, however, be more challenging
and time-consuming from 3D volumes such as those
produced by OCTA than from 2D sources like fundus
photography. To improve the computational and space
efficiency of the framework, each volumetric OCT and
OCTA were resized to 160 × 224 × 224 voxels and

normalized to voxel values between 0 and 1. The input
was the combination of each pair of resized volumes,
giving final input dimensions of 160 × 224 × 224 × 2
pixels (see Fig. 1).

DR Classification Framework

A novel 3D CNN architecture (see Fig. 1) with 16
convolutional layers was designed and used as the core
classifier in the DR classification framework (Supple-
mentary Fig. S1). Five convolutional layers with stride
two were used to downsample the input data. To
avoid losing small but important DR-related features,
diminishing convolutional kernel sizes were used in the
five downsampling layers. We used batch normaliza-
tion44 after each 3D convolutional layer to increase
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convergence speed. In order to improve the computa-
tional efficiency while ensuring the resolution of the
features, most of the 3D convolutional layers were used
with the middle size inputs (after the first downsam-
pling, but before the last). A global average pooling
layer was used after the last 3D convolutional layer to
generate the 1D input for the output layers.

One subtlety in our approach for multiclass classi-
fication is the need to correctly identify rDR/nvtDR
eyes. Familiar frameworks for image classification like
those used to diagnose medical conditions rely on
the positive identification features associated with the
malady. In our framework, rDR and vtDR classifi-
cation works similarly by using rectified linear unit
(ReLU) activations in the last convolutional layer and
weight parameters of all the fully connected layers to
guarantee positive-definite prediction values (Supple-
mentary Fig. S2).45,46 However, the identification of
r/nvtDR does not depend on just the presence of rDR
associated features, but also the absence of vtDR-
associated features. To solve this issue, two parallel
output layers were respectively used to detect rDR
and vtDR at the same time (see Fig. 1). Each output
layer was constructed by a fully connected layer with
a softmax function (see Supplementary Fig. S2). The
inputs data can be then classified as nrDR, r/nvtDR, or
vtDR based on rDR and vtDR classification outputs.

Evaluation and Statistical Analysis

Overall accuracy, quadratic-weighted Cohen’s
kappa,47 and area under the receiver operating charac-
teristic curve (AUC) were used to evaluate the DR
classification performance of our framework. Among
these evaluation metrics, the AUCs were used as the
primary metrics for rDR and vtDR classifications.
For the multiclass DR classification, the quadratic-
weighted kappa was used as the primary metric.
Five-fold cross-validation was used in each case to
explore robustness. From the whole data set, 60%,
20%, and 20% of the data were split for training,
validation, and testing, respectively. Care was taken
to ensure data from the same patients were only
included in one of the training, validation, or testing
data sets. The parameters and hyperparameters in our
framework were trained and optimized only using the
training and validation data set. In addition, adaptive
label smoothing was used during training to reduce the
overfitting.34

ComparisonWith a 2D Input Approach

In contrast to the method proposed in this work,
most OCT/OCTA-based DR classification algorithms

operate on 2D en face images.32–34,48 En face projec-
tions are popular input choices because (1) they corre-
spond to the data representation most familiar to
graders and (2) they typically reduce the size of the
input data set relative to the full OCT/OCTA data
volume by more than an order of magnitude, which
simplifies network training. The trade-off with this
data reduction is that networks analyzing en face
images cannot learn all of the features latent in the
full data volume, because many of these features will
be removed during the step of slab projection for
generating 2D maps. Furthermore, en face images are
vulnerable to segmentation artifacts, which require a
time-consuming review to correct.49 For these reasons,
models capable of analyzing OCT/OCTA volumes are
desirable, but to be useful such models should reach
performance parity with approaches using 2D inputs.
To investigate, we compared our model with our previ-
ous 2D approach, which was a CNN designed around
dense and continuous connection with adaptive rate
dropout (DcardNet).34 This 2D model was trained,
validated, and evaluated based on the same data sets
of our 3D model.

3D Class Activation Maps and Evaluation

For the detected rDR and vtDR cases, the 3D
CAMs were generated by projecting the weight param-
eters from corresponding output layer back to the
feature maps of the last 3D convolutional layer
before global average pooling (see Supplementary
Fig. S2). To assess whether or not the framework can
correctly identify pathological regions, 3D CAMs were
overlaid on en face or cross-sectional OCT and OCTA
images. In order to generate the en face projections, an
automated algorithm (commercial software provided
by Optovue Inc.) segmented the following retinal layers
(Supplementary Fig. S3): inner limiting membrane
(ILM), nerve fiber layer (NFL), ganglion cell
layer (GCL), inner plexiform layer (IPL), inner
nuclear layer (INL), outer plexiform layer (OPL),
outer nuclear layer (ONL), ellipsoid zone (EZ), retinal
pigment epithelium (RPE), and Bruch’s membrane
(BM). For the cases with severe pathologies, trained
graders manually corrected the layer segmentation
when necessary, using our custom designed COOL-
ART grading software.50 From OCT volumes, we
generated the inner retinal (the slab between the Vitre-
ous/ILM and OPL/ONL) thickness map, en face
mean projection of OCT reflectance, and EZ en face
mean projection (ONL/EZ to EZ/RPE). From OCTA
volumes, we generated the superficial vascular complex
(SVC), intermediate capillary plexus (ICP), and deep
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capillary plexus (DCP) angiograms.26,51,52 The SVC
was defined as the inner 80% of the ganglion cell
complex (GCC), which included all structures between
the ILM and IPL/INL border. The ICP was defined
as the outer 20% of the GCC and the inner 50%
of the INL. The DCP was defined as the remaining
slab internal to the outer boundary of the OPL. The
segmentation step and projection maps were just for
evaluating the usefulness of 3D CAMs, not as input to
the classification framework.

Results

Model performance was the best for rDR classifica-
tion, followed by vtDR, then multi-level DR classifica-
tion (Table 2, Fig. 2). For the multiclass DR classifica-
tion, which classifies each case as nrDR, r/nvtDR, or

vtDR, we achieved a quadratic-weighted kappa 0.83,
which is on par with the performance of ophthal-
mologists and retinal specialists (0.80 to 0.91).53 The
network was notably better at classifying rDR and
vtDR compared to r/nvtDR (see Table 2). Most false
positive r/nvtDR eyes were classified as vtDR (66.67%)
instead of nrDR (33.33%).

The 3D model performed slightly better for rDR
classification, and slightly worse for vtDR classifica-
tion than our previous 2D model (Table 3). These
mixed results indicate that our current model using
volumetric data as input was able to train success-
fully enough to achieve parity with a 2D-image-based
approach.

To demonstrate the deep-learning performance
more explicitly, we compared the stratified ground
truth with the network prediction with confu-
sion matrices using the overall values from 5-fold
cross-validation (Fig. 3). In the three confusion

Table 2. Automated DR Classification Performances

Metric rDR Classification vtDR Classification Multiclass DR Classification

Overall accuracy 91.52% ± 1.87% 87.39% ± 2.02% 81.52% ± 1.19%
Sensitivity 90.77% ± 4.28% 82.22% ± 2.83%
Specificity 92.50% ± 3.16% 90.71% ± 3.46%
AUC (mean ± SD) 0.96 ± 0.01 0.92 ± 0.02
Quadratic-weighted kappa 0.83 ± 0.04 0.73 ± 0.04 0.83 ± 0.03

DR, diabetic retinopathy; rDR, referable diabetic retinopathy; vtDR, vision threatening diabetic retinopathy; AUC, area under
the receiver operating characteristic curve.

Figure 2. The mean receiver operating characteristic (ROC) curve derived from the five-fold cross-validation for rDR (left) and vtDR (right)
classifications based on our DR classification framework. The models achieve an AUC of 0.96± 0.01 on rDR classification and AUC of 0.92 ±
0.02 on vtDR classification.
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Table 3. Comparison Between Our 3D Model and Previous 2D Model

rDR Classification vtDR Classification

Models Overall Accuracy AUC Overall Accuracy AUC

2Dmodel 89.67% ± 2.50% 0.95 ± 0.02 88.99% ± 0.84% 0.94 ± 0.02
3Dmodel 91.52% ± 1.87% 0.96 ± 0.01 87.39% ± 2.02% 0.92 ± 0.02

Figure 3. Three confusionmatrices for referable DR (rDR) classification, vision threateningDR (vtDR) classification, andmulticlass DR classi-
fication based on the overall five-fold cross-validation results. The vtDRwas split as non-DME (nDME) and DME in thematrices. The correctly
and incorrectly classified cases are shaded blue and orange, respectively.

matrices, the vtDR cases were separated into non-
DME (nDME) and DME to investigate whether the
presence of DME can affect rDR and vtDR classi-
fication accuracy. In the rDR classification task, we
found the classification accuracies of vtDR/nDME
and vtDR/DME to be similar (87/95 and 81/85). For
vtDR classification, the network identified cases with
DME (77/85) with a greater accuracy than nDME
cases (71/95), which may imply DME features were
likely influential for decision making. In the multi-
level classification, the network misclassified 16 of
95 vtDR/nDME cases as r/nvtDR. In addition, most
of the r/nvtDR cases with false-positive results were
classified as vtDR. Only two nrDR cases were misiden-
tified as vtDR.

To better understand network decision making, we
produced CAMs for some example cases. The CAM
output of an r/nvtDR case points to dilated vessels
in the DCP and a perifoveal area of decreased vessel

density (Fig. 4). Meanwhile, in a vtDR case without
DME, the CAMs have a larger area of high atten-
tion (Fig. 5), indicating that the DR pathology is
more pervasive throughout the volume. In addition
to pointing to areas of decreased vessel density, the
CAM overlaid on a structural OCT B-scan points to
an area with abnormal curvature of the retinal layers.
Finally, for a vtDR case with DME, the CAM pointed
to areas with intraretinal cysts and abnormal curva-
ture of the retinal layers on structural OCT, as well
as decreased vessel density and abnormally dilated
vessels on OCTA (Fig. 6). This is clearly an improve-
ment over our previous 2D CAM output (Fig. 7),34
which identified changes in the perifoveal region, but
missed other pathologies, such as intraretinal cysts and
abnormally dilated vessels. Based on the distribution
of the highlighted regions from all the 3D CAMs, we
found the non-perfusion areas near fovea and most
fluids were preferentially selected by our framework for
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Figure4. Class activationmaps (CAMs) basedon the referableDR (rDR) output layer of our framework for data fromaneyewith rDRwithout
vision threateningDR (vtDR). Six en face projections coveredwith the corresponding projections of the 3D CAMs are shown. Extracted CAMs
for an OCT and OCTA B-scans (red line in the inner retina en face projection) are also shown. The deep capillary plexus (DCP) angiogram
without a CAM is shown so that the pathology highlighted by the corresponding CAM can be more easily identified. The green arrows
indicate an abnormal vessel in the DCP. For descriptions of the regions projected over to produce the en face images, see the caption for
Supplementary Figure S3.

decisionmaking. In addition, the nonperfusion areas at
the boundary of the inputs were barely selected by our
framework.

Discussion

In this study, we proposed a CNN-based automated
DR classification framework that operates directly on
volumetric OCT/OCTA data without requiring retinal
layer segmentation. This framework classified cases
into clinically actionable categories (nrDR, r/nvtDR,
and vtDR) using a single imaging modality. For multi-
class DR classification, the framework achieved a
quadratic-weighted kappa of 0.83 ± 0.03, which is on
par with the performance of human ophthalmologists
and retinal specialists (0.80 to 0.91).53 The network also

demonstrated robust performance on both rDR and
vtDR classification (AUC = 0.96 ± 0.01 and 0.92 ±
0.02, respectively).

The framework used feature-rich structural OCT
and OCTA volumes as inputs and a deep-learning
model as the core classifier to achieve a high level
of performance. The majority of DR classifica-
tion algorithms to date have been based on fundus
photographs.5–8 However, fundus photographs detect
DMEwith only about a 70% accuracy relative to struc-
tural OCT, whereas DME accounts for the majority of
vision loss in DR.9,10 Our method, on the other hand,
actually performs better in the presence of DME (see
Fig. 3).

Our image labels appealed to structural OCT to
detect DME, and so did not adhere exactly to
the ETDRS scale (the current gold standard for
DR grading), which uses only seven field fundus
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Figure 5. Class activationmaps (CAMs) based on the vision threatening DR (vtDR) output layer of our framework for data from an eye with
vtDR but without DME. Six en face projections covered with corresponding projections of the 3D CAMs are shown. Extracted CAMs for an
OCT andOCTA B-scan (red line in the inner retina en face projection) are also shown. An SVC angiogramwithout a CAM is also shown to help
identify pathological features for comparison. The SVC CAM indicates that the framework learned to identify non-perfusion areas, which
are known biomarkers for DR diagnosis. For descriptions of the regions projected over to produce the en face images, see the caption for
Supplementary Figure S3.

photographs. This prevented our model from learn-
ing to misdiagnose eyes based on the presence of
DME not detected by fundus photography. However,
at the same time, OCTA may not recapitulate every
feature in fundus photography used for staging DR
on the ETDRS scale. For example, OCTA does not
detect intraretinal hemorrhages and may not detect
all microaneurysms.23 Achieving comparable perfor-
mance to fundus photograph-based automated classi-
fication frameworks indicates that these disadvantages
were surmounted by our approach.

Another important feature in our framework design
is the use of a deep-learning model for the classifier.
Compared to previously published OCT/OCTA-based
DR classification algorithms, the proposed framework
has several innovations. One advantage is the use of
the volumetric OCT/OCTA, instead of preselected
features from segmented en face images. This means

that correlations or structures within the data volume
that may be difficult for a human to identify can still
be incorporated into the decision making in our frame-
work. Two dimensional approaches may miss impor-
tant features without access to cross-sectional infor-
mation, as happens with color fundus photography
and DME.33 As a corollary, our framework may then
also have a greater capacity to improve with more
training data because no data are removed by projec-
tion. Moreover, accurate retinal layer segmentation is
required to generate the en face images. In severely
diseased eyes, automated layer segmentations often
fail. Mis-segmented layers can introduce artifacts into
en face images unless they are manually corrected, a
labor-intensive task that may not be clinically practical.
By using volumetric data, our framework avoids this
issue entirely. Another advantage built into our frame-
work is the ability to detect both rDR and vtDR. This
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Figure 6. Class activation maps (CAMs) based on vision threatening DR (vtDR) output layer of our framework for data from an eye with
vtDR and DME. Six en face projections covered with the corresponding projections of 3D CAMs are shown. Extracted CAMs for an OCT and
OCTA B-scan (red line in the inner retina en face projection) are also shown. The SVC angiogram without a CAM is shown to more readily
observe pathology. The green arrow in the SVC CAM shows an abnormal vessel, which can also be seen in the angiogram. Central macular
fluid is marked by green circle on the OCT B-scan. The CAM allocated high weights to both of these regions. For descriptions of the regions
projected over to produce the en face images, see the caption for Supplementary Figure S3.

higher level of granularity makes a more efficient use
of resources possible compared to solutions that only
identify rDR.5,7,29–33

A final significant advantage in our framework is
the inclusion of 3D CAMs. While independent of
model performance, generating CAMs allow clinicians
to interpret the classification results and ensure model
outputs are correct. This is important because, outside
of visualizations such asCAMs, users cannot in general
ascertain how deep learning algorithms arrive at a
classification decision. However, in medical imaging,
it is essential to be able to verify and understand
these classification decisions because doing so could
prevent misdiagnosis. Black-box algorithms, such as
deep learning algorithms, may hide important biases
that could prove to be disadvantageous for certain
groups. This risk can be lowered when the results
are interpretable. With our framework this is possi-

ble. The CAMs in this work were generated volumet-
rically. Compared to 2D CAMs, the current frame-
work using 3D OCT/OCTA as inputs can identify
and learn relevant features (see Fig. 6, Fig. 7). The
resulting CAMs consistently highlighted macular fluid
(see Fig. 6), demonstrating that the model did indeed
learn relevant features because central macular fluid is
the most important biomarker for detecting DME.35
We also found our 3D CAMs pointed to other key
features, such as lower vessel density and dilated capil-
laries (see Fig. 4, Fig. 5). Although the 3D CAM did
not identify all DR features (e.g. certain regions with
lower vessel density were ignored), it found many key
features, indicating that our framework has success-
fully learned relevant features and that 3D CAMs
could be useful in clinical review. In addition, the
purpose of generating 3D CAMs is not necessarily
to find all DR biomarkers, but simply to highlight
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Figure 7. Two-dimensional class activation maps (CAMs) generated by our previous study for data from an eye with vtDR and DME. Six
en face projections (see Supplementary Fig. S3 for details) covered with the same 2D CAMs are shown. The abnormal vessels and central
macular fluid, which were highlighted regions in the 3D CAMs in Figure 6, were not weighted highly by the 2D CAM algorithm (red circles in
the inner, EZ, and SVC CAMs).

the features used by the network to make decisions.
That the network ignored some known DR-associated
features is interesting, because it implies that these
features were not critical for diagnosing DR at a given
severity.

There are aspects of our framework that could be
improved in future work. The sensitivity for r/nvtDR
classification (55.00% ± 15.51%) was lower than the
other two grades (92.50% ± 3.16% for nrDR and
81.11%± 2.08% for vtDR). Larger data sets with more
r/nvtDR cases could help mitigate this performance
gap, and it is worth noting thatmost r/nvtDRmisclassi-
fications resulted in vtDR classifications. Although this
is obviously not optimal, this outcome at least spares
patients with referable DR from failing to receive
needed clinical attention. In addition, the r/nvtDR is a
middle DR severity which also makes the classification
more challenge than the other two grades. The classi-

fication performance for rDR (AUC = 0.96 ± 0.01)
also outperforms vtDR (AUC = 0.92 ± 0.02). Our
model relied on a small scan region (3.0 × 3.0 mm)
at the central macula.25,27,54 However, a larger scan
area with appropriate sampling density (e.g. not lower
than 10 um/pixel) could still improve the DR classi-
fication performance, as there are key DR features,
such as neovascularization and venous beading, that
are typically outside the 3× 3mm region. Because these
features are associated with more advanced stages of
DR, exploring models that use larger fields of view
may preferentially improve vtDR diagnosis. Therefore,
in the future, we hope to improve DR classification
performance with larger data sets and scans with larger
field of view. In addition, to improve the reliability
of our evaluation results, we also hope to test our
framework on an external data set based on federated
learning.



Diabetic Retinopathy Classification Framework TVST | July 2022 | Vol. 11 | No. 7 | Article 10 | 11

Conclusion

We proposed a fully automated DR classification
framework using 3D OCT and OCTA as inputs. Our
framework achieved reliable performance onmulticlass
DR classification (nrDR, rDR/nvtDR, and vtDR), and
produces 3D CAMs that can be used to interpret the
model’s decision making. By using our framework, the
number of imaging modalities required for DR classifi-
cationwas reduced from fundus photographs andOCT
to an OCTA procedure alone. This accuracy of the
model output in this study also suggests the combina-
tion of OCT/OCTA and deep learning could perform
well in a clinical setting.
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