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Positron emission tomography (PET) provides images of metabolic activity in the body, and it is used in the research, monitoring,
and diagnosis of several diseases. However, the raw data produced by the scanner are severely corrupted by noise, causing
a degraded quality in the reconstructed images. In this paper, we proposed a reconstruction algorithm to improve the image
reconstruction process, addressing the problem from a variational geometric perspective. We proposed using the weighted
Gaussian curvature (WGC) as a regularization term to better deal with noise and preserve the original geometry of the image, such
as the lesion structure. In other contexts, the WGC term has been found to have excellent capabilities for preserving borders and
structures of low gradient magnitude, such as ramp-like structures; at the same time, it effectively removes noise in the image. We
presented several experiments aimed at evaluating contrast and lesion detectability in the reconstructed images. -e results for
simulated images and real data showed that our proposed algorithm effectively preserves lesions and removes noise.

1. Introduction

Positron emission tomography (PET) is a technique used for
medical imaging, providing images that represent the evo-
lution of various biochemical and physiological processes in
different tissues. In addition, PETimaging complements other
clinical imaging modalities, such as computed tomography
(CT) and magnetic resonance (MR), providing additional
metabolic data to support the anatomic information [1, 2].

PET is used extensively as a clinical tool in oncology for
noninvasively monitoring and grading tumors, as well as
determining tumor recurrence; it is also employed to observe
the effects of therapeutic treatment. To acquire the image, the
patient is injected with a radioactive substance, or a radio-
tracer, which is designed to target the body tissues of interest.
-e radiotracer emits positrons that subsequently produce
a pair of gamma rays, which are detected by the PET system;
finally, the image is produced via the counts of the emitted
gamma rays. However, because the radiotracer’s permitted
doses are small, image reconstruction from low-count PET

is difficult, which is considered an inverse ill-posedness
problem; in addition to the low count issue, other factors,
such as scattering, random events, and the sensors’ death
time, contribute to generating noisy images [3]. To improve
the quality of the reconstructed image and account for the ill-
posedness problem, a regularization term is incorporated.

Regularization in PET has been addressed in several
works. In [1], it was suggested that the total variation (TV)
could be included to preserve the edges and boundary sur-
faces; these researchers developed a GPU-based imple-
mentation. In [4], TV regularization was used on both the
image and projection spaces, via a formulation of the vari-
ational problem that considered the TV penalty terms on both
the image and sinogram, the researchers showed that their
scheme performed better on reconstructing images with thin
structures. In [5], a method combining expectation maxi-
mization (EM) and TV regularization, called EM + TV, was
proposed. -ese researchers proved that the method can
reconstruct better images using fewer views. -e authors in
[6] proposed nonlocal regularization; their regularizer was
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designed to selectively consider and use anatomical in-
formation from other sources, such as CT, only when the
information was reliable. In this way, they made the regu-
larization term more robust to the signal mismatch problem
caused by the indirect relationship between the PET image
and the anatomical images from other sources. In [7], an
anisotropic diffusion term was introduced; in combination
with a median filter, this was designed to preserve the edges
effectively. -e authors reported that this solution suppressed
noise and preserved the structure of the image’s edges.

Recently, geometry-driven image diffusion techniques
have been proposed to solve and regularize ill-posedness
problems; such techniques use the local geometric proper-
ties of the image surface, such as the curvature and mean
curvature (MC). Gaussian curvature (GC) was proposed
recently in [8]; it was used as a diffusion equation for noise
removal, demonstrating advantages for edge and small
feature preservation. Moreover, the authors in [9] proposed
regularization combined with Bayesian reconstruction.-ey
used an a priori method based on MC and GC, and the
experimental results showed that curvature regularizers are
suitable for reducing noise while preserving edges.

Given the good results obtained using curvature-based
terms, we propose the use of weighted Gaussian curvature
(WGC) applied to the problem of reconstructing PET data.
WGC was proposed for denoising and cartoon/texture
decomposition in [10]; we show that WGC performs bet-
ter than GC does, while exhibiting rapid convergence and
good adaptability.

-e rest of the paper is organized as follows: in Section 2,
the observational model for PETreconstruction is explained,
the GC framework is revised, and the proposed algorithm is
presented. Section 3 details the results of the experiments.
Finally, conclusions are provided in Section 4.

2. Materials and Methods

2.1. PET Geometry. After injecting the patient with the
radiotracer, the acquisition process for collecting the data for
a PET scan begins with the radioactive substance emitting
positrons. When an emitted positron encounters an elec-
tron, a pair of gamma rays is produced by the annihilation of
the electron-positron. -e gamma rays are sent out in op-
posite directions, and subsequently, they are sensed by the
PET scanner (Figure 1). -e counts of all these pairs at
different angles or projections are used to build the PET
image, which resembles the distribution of the radiotracer in
the body.

PET reconstruction algorithms aim at obtaining an image
of the patient, given the radiotracer distribution in the body.
For this purpose, the PET scanner has rings with sensor el-
ements that detect and count the high-energy photons gen-
erated by the annihilation of positrons.-e counts acquired at
different angles form a projection, Pθ(r), of the radiotracer’s
distribution. -is is visualized as a histogram using the angle,
θ, and distance, r, from the scanner center; then, each pro-
jection is stacked as a set of sinograms (Figure 2).

-e sinogram is a common radon transform represen-
tation; in this case, it represents the radon transform of the

object scanned. When a large amount of radiotracer is
available, it is possible to accurately reconstruct the object
from its projections by finding its inverse radon transform.
However, because of the size of the scanner sensors and
regulations on the radiotracer dose that can be administered to
patients, among other things, the acquired data from the
scanner usually contain a high level of noise and a limited
number of counts. -is makes direct radon transform in-
feasible; thus, alternative reconstructionmethods are required.

Detector 1 Ring of
detectors

Object

Radiotracer

Annihilation
point

Photon path

Detector 2

Positron path

Figure 1: Ring of a positron emission tomography (PET) scanner.
-e object under study is injected with a radiotracer; this emits
a positron that is eventually annihilated by an electron after
traveling a short distance in the object (positron path). -e an-
nihilation produces two high-energy photons traveling in opposite
directions, which are detected by the scanner sensors (detectors).

Object

θ
r

rP θ

Figure 2: Projections. Events counted along the dotted line
contribute to the histogram of the projection at angle θ and radius r
from the center of the scanner; the histogram is completed by
iterating along different r values. -e process is repeated for each
angle, and the total numbers of angles and projections are de-
termined by the san geometry.
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-e reconstruction problem can be posed as a system of
linear equations as

Au � b, (1)

where u is a size, N � N1N2 vector representing the object, b
is the sinogram ordered as a vector of sizeM, and A is the so-
called system matrix or radon transform matrix. Due to
several factors, such as noise and a low event count, the
inverse problem (1) is considered an ill-posedness problem;
thus, it is necessary to regularize it to enforce stability [10].

An inverse problem to reconstruct the intensity of an
object u, given a number of projections, b, can be formulated
as

min
u

‖Au− b‖
2

+ λΦ(u), (2)

where Φ(·) is a suitable regularization term. -is is added
because the inverse problem is typically ill-posed, and thus,
some type of regularization is needed to produce a reasonable
reconstruction and emphasize a priori information about the
characteristics of the class of image to be reconstructed. In
addition, the parameter λ is a scalar regularization coefficient.
It should be noted that Equation (2) does not consider that the
noise on sinogram data b is Poisson distributed. -is is be-
cause the counting process of the positron emissions occurs
following a spatial Poisson point process [3].

In this paper, for the regularization of the ill-posedness
problem, we consider a term Φ(·) corresponding to the
WGC, as described in [10].

2.2. Gaussian Curvature. -e Gaussian curvature is calcu-
lated as the product of the principal curvatures; thus, at points
where any of the principal curvatures is zero, GC is also zero,
in contrast to theMC, which averages the principal curvatures
and is not necessarily zero at these points. -is allows GC to
better preserve structures thanMC can; for example, the edges
of the image generally have a large maximum principal
curvature value across the edge, while the minimum principal
curvature along the edge is nearly zero [8]. In addition,
structures that are not preserved by gradient-based methods
because of their low gradient magnitudes can be preserved
under the GC scheme. -is is true in the case of ramp-like
structures, which generally have zero GC [8]. In addition,
structures created by noise usually have high GC values, and
thus, the noise is effectively removed.

-e Gaussian curvature for a continuous surface, u, can
also be determined from the ratio of the determinants of the
second and first fundamental forms, defined as [10]

G(u) �
uxxuyy − u2

xy

1 + u2
x + u2

y 
2, (3)

where x and y are coordinates of a point in the image and udc

is the second derivative with respect to c and d.
-e GC method proposed in [8] includes a Gaussian

curvature-dependent regularization term

∇ · (ϕ(G(u))∇u), (4)

where ϕ(·) is a nonnegative monotonically increasing
function, ∇· is the divergence operator, and ∇ the gradient
operator. In [6], the term (4) is used in a geometry-driven
diffusion algorithm that takes into account the curvature of
the surface represented by the image, and the curvature
controls the amount of diffusion in each region. In [10],
model with a weighted GC term, W(u)G(u), such a model is
not based on anisotropic diffusion; in this work, we develop
a method based on this scheme.

2.3. 0e Proposed Method. In this section, we provide the
details of the proposed methodology. -e variational tech-
niques have already been used for reconstruction; examples of
regularization terms include the TV and L1 norms [5, 7].

To adapt model (1) to the reconstruction problem to deal
with Poisson noise, we formulate the problem using a dis-
crete Bayesian framework and define the likelihood distri-
bution, P(b ∣ u), of the data, b, given the image, and u, as
a Poisson distributed

P(b ∣ u) � 
M

i�1

e−(Au)i (Au)i( 
bi

bi!
, (5)

where (·)i refers to the ith element of the vector. For the a priori
probability, in this paper, we explore the WGC, since it is
known to be efficient for computation and generating satis-
factory results when used in image smoothing for sharpening,
denoising, and cartoon/texture decomposition [10]. -us, we
define the a priori probability as a Gibbs distribution:

P(u) � e
−λΦ(u)

, (6)

where λ is a regularization parameter of the model and

Φ(u) � 

N1

i�1


N2

j�1
W ui,j  Gui,j , (7)

where W(ui,j) is a weight function defined as W(ui,j) ≔
(1 + d2

x + d2
y)2, with dx and dy corresponding to the discrete

first derivative of uij along the j and i components,
respectively.

-e image estimation is found through the posterior
distribution

P(u ∣ b) �
P(b ∣ u)p(u)

P(b)
. (8)

To establish an estimate of the image u, we use the
maximum a posteriori (MAP) estimation procedure. We
employ a–log function on P(u ∣ b) to dispense with the
exponentials and turn the problem into a minimization;
thus, we obtain

argmin
u



M

i�1
(Au)i − bi log(Au)i(  + λ

N1

i�1


N2

j�1
W ui,j G ui,j .

(9)

For the weights, the components of the regularization
term are given by
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W ui,j G ui,j  � ui,j 
xx

ui,j 
yy
− ui,j 

2
xy

 , (10)

where (ui,j)xx and (ui,j)yy correspond to the second discrete
derivative of uij along the j and i components, respectively,
and (ui,j)xy correspond to the mixed derivative. -e regu-
larization term in (9) can then be expressed in a matrix form
as follows [10]:



N1

i�1


N2

j�1
W ui,j G ui,j  � u

T
Du, (11)

where D is a matrix defined as

D � C
T
xxCyy −C

T
xyCxy, (12)

where Cxx, Cyy, and Cxy are matrices representing the
central differences of the second derivatives of ui,jwith re-
spect to i, j, and in both directions. Consequently, the
proposed corresponding functional can be stated as

J(u) � 
M

i�1
(Au)i − bi log (Au)i( (  +

1
2
λu

T
Du. (13)

-e reconstructed image u is found as the minimum of

u � argmin
u



M

i�1
(Au)i − bi log (Au)i( (  +

1
2
λu

T
Du. (14)

Furthermore, the Euler–Lagrange equations are given by

J′(u) � λ D
T

+ D u + 
M

i�1
ai 1−

bi

(Au)i

   � 0. (15)

To solve the minimization problem, we use an iterative
semi-implicit finite-difference scheme. By employing (14)
and (15), we followed a simple iterative scheme using the
evolution equation

ztu � −J′(u), (16)

which corresponds to the gradient descent of (13). -e it-
erative scheme, with step size τ, used to solve the problem of
reconstruction is presented in Algorithm 1.

For the experiments, we determined the λ and step size τ
parameters using grid search evaluating the peak signal to
noise ratio (PSNR); we choose the combination of values
giving higher PSNR, λ � 2.5 and τ � 0.0005.

In this paper, the weighting scheme used was the same as
[10], where weight function W is proportional to a small
surface area element, and is mainly chosen to simplify the final
solution. Here, we can relate to PET as an element of areas of
surfaces of interest such as organs with activity concentrations.
-e W can also be chosen as the nonlocal mean weights for
each pixel or as an edge indicator function in order to enforce
the edges between regions of different levels of activity in the
pet image while in homogenous areas reduce the noise.

2.4. Experiments. We conducted several experiments to
evaluate different aspects of the reconstruction method. -e
first experiment was designed for evaluating the resolution
that can be achieved with the proposed method with

reconstructed images from low-count data. To accomplish
this, we used the phantom employed in [11], consisting of
a 16mm cylinder filled with water. Inside the cylinder are four
rows of small cylinders of 2, 3, 4, and 5mm in diameter; they
are filled with activity equivalent to an 18F-fluorodeoxyglucose
concentration of 1 : 8 in relation to the background. Figure 3
shows the phantom. For the reconstruction of this phantom,
a system matrix of size 16,768 × 8,100 was used. From the
reconstructed images using the different methods, we ob-
tained line profiles along each row and graphics showing the
performance of each method to follow the profile of the
original phantom. Also, measures of the PSNR and structural
similarity index (SSIM) are provided.

In a second experiment aimed at quantitatively evalu-
ating the reconstruction quality under the context of lesion
detectability, we used the MOBY phantom, which provides
a detailed structure of the anatomy of a mouse, as described
in [12]. Inside the phantom, we simulated a lesion in the lung
by adding a small sphere of 1mm in radius; we also sim-
ulated activity equivalent to an 18F-fluorodeoxyglucose ra-
diotracer, with a relative lesion-to-background radioactivity
ratio of 4 :1. Figure 4 shows a section of theMOBY phantom,
with the lesion indicated by an arrow. To quantitatively
evaluate lesion detectability, we used a channelizedHotelling
observer [13], and as a figure of merit for this study, the area
under the curve (AUC) was calculated.

Mathematical model observers are used as predictors of
human lesion detection performance with PET images [14].
Specifically, the channelized Hotelling observer has become
a widely used approach for the assessment of PET medical
image quality, as it accurately models human observers and
is used frequently for the early assessment and optimization
of imaging devices and algorithms [15].

-e task given to the model observer was to try to detect
a lesion with a known location on a two set of images, one
with and the other without lesions. -is is known as the
signal-known-exactly task.

-e images presented to the observer were simulated
from a set of 15 realizations of the MOBY mouse phantom
with a lesion, as well as a set of 15 realizations without
lesions. -e two sets of images were processed with each
method; following this, the results were fed to the observer.
From the observer output, a receiver operating characteristic
(ROC) curve was constructed, and its AUC was calculated.
Our goal was to objectively quantify the improvement in
lesion detectability after processing with each method.

Input: set of data acquired, b
System matrix, A

Result: reconstructed image, u
(1) Initialize u(0)

(2) for n � 0 to IterMax do
(3) Find J’(u) using (15)
(4) u(n+1) � u(n) − τJ′(u(n))

(5) End
u � u(n+1)

ALGORITHM 1: Weighted curvature reconstruction.

4 Journal of Healthcare Engineering



PET scans of both phantoms—the cylinders and
MOBY—were simulated using the Simulation System for
Emission Tomography (SimSET) software [16]. SimSETuses
Monte Carlo techniques for modeling the physical processes
and instrumentation of a PET scanner.

In the final study, we evaluated the performance with the
measured data.We used data from a subject who was scanned
on a CTI ECAT PET scanner the raw sinograms, where
acquired at 160 radial samples and 192 angular samples; data
were precorrected for delayed coincidences. Data are available
at http://web.eecs.umich.edu/∼fessler/ [17].

3. Results and Discussion

In this section, we present the results obtained with the
proposed method. Moreover, we provide a comparison with
the curvature diffusion method [9], which we refer to as
“curvature,” and reconstruction with total variation regu-
larization (TV). -e TV-based reconstruction was imple-
mented using 30 iterations of gradient descend.

-e reconstruction of the phantom in Figure 3 is shown
in Figure 5 for the different methods. It is evident that all

methods provide a good reconstruction for the cylinders of
a radius of 4mm or more. However, the proposed method
preserves the rods of 2mm better; these small cylinders are
the most affected by the diffusion procedure of the curvature
method and TV method, and this does not occur in the
proposed method using weighted curvature.

We also show graphs of the profiles for each cylinder in
Figure 6. -e graphs quantitatively confirm the better
preservation of the cylinders reconstructed using the pro-
posed method.

Additionally, Table 1 presents measures of PSNR and
SSIM between the GTand the methods evaluated. -e SSIM
measures seem to reflect that all methods do not alter sig-
nificantly the base structure of the GT image; however, the
PSNR indicates that there is less error in the proposed
method.

-e reconstructions of the MOBY phantom with lesions
are presented in Figure 7. -e data obtained were volu-
metric, but only the slices containing the simulated lesion are
shown.

Figure 8 depicts the results of the ROC analysis. -e
graphs show the calculated ROC for each method and

(a) (b)

Figure 3: (a) Phantom holes consisting of four rows of cylinders of 2, 3, 4, and 5mm. (b) Lines indicating where the profiles were taken.

Figure 4: -e MOBY phantom [12], with a lesion in the liver indicated by the arrow.

(a) (b) (c) (d)

Figure 5: Reconstruction of the phantom with a row of holes: (a) ground truth, (b) curvature method, (c) TV, and (d) proposed method.
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obtained AUC. In this case, the proposed method out-
performed the curvature and TV methods, as the proposed
method preserved most of the lesion and was most easily
detected. -is contrasted with the curvature method, which
uses a diffusion scheme to regularize the problem.

For the study with measured data, we present the re-
sults for each reconstruction; these are shown in Figure 9.
We also show zoomed-in images of a selected region in
Figure 9(e) filtered back projection (FBP), Figure 9(f ) for
the curvature, Figure 9(g) for TV, and Figure 9(h) for the
proposed method. In these images, it is clear that the TV

and proposed method provided more definition of the
image structure, which appeared more blurred when
curvature diffusion was used, while the TV method have
good contrast; there exist some artefacts that could be
caused by the stair case effect.

In Table 2, it is shown the results of applying the contrast
resolution metric [18] to the data using the regions “a” and
“b” depicted in Figure 9.

From Table 2, it can be observed that the proposed
method achieves better results than the other methods.
Although contrast in the TV image is visually good, the
amount of noise or artefacts decreases the metric of contrast
resolution with respect to the curvature and proposed
method. One drawback of the proposed method is that, in
some areas, especially those with high counts, the proposed
method has more diffusion than TV and curvature methods;
these effects can be seen in the lesion of Figure 7 and the
lower central region of Figure 9.
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Figure 6: Graphs of the profiles for each cylinder. -e solid rectangle shows the ground truth (GT) taken for each method: (a) 5mm,
(b) 4mm (c) 3mm, and (d) 2mm.

Table 1: Results of evaluating PSNR and SSIM.

Method PSNR SSIM
Curvature 7.89 0.979
TV 6.63 0.972
Proposed 8.25 0.980
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(a) (b) (c)

Figure 7: Reconstruction of the Moby phantom: (a) curvature diffusion method, (b) TV, and (c) proposed method.
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Figure 8: Receiver operating characteristic (ROC) curves obtained from the channelized Hotelling observer, with the signal-known-exactly
task. -e signal shows a lesion in the liver.

(a) (b) (c) (d)

(e) (f ) (g) (h)

Figure 9: Reconstruction with (a) FBP, (b) curvature diffusion, (c) TV, and (d) proposed method.-e square “a” is the zoomed-in region in
(e) FBP, (f ) curvature diffusion, (g) TV, and (h) the proposed method.
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4. Conclusions

In this paper, we presented a new algorithm for the re-
construction of PET images. -e inverse problem was posed
as a variational problem, and the use of WGC was proposed.
When this term was used as a regularization term, it helped
in preserving important structures in the image, such as the
borders. It was also capable of preserving structures of low
gradient magnitude, such as ramp-like structures, and re-
moving noise present in the image. -ese are all desirable
properties for a reconstruction scheme.

We performed several experiments, which confirmed the
above properties when the scheme was applied to lesion
detection and contrast preservation. We compared our
proposed method with a state-of-the-art method that uses
GC without spatial weighting and TV. -e obtained results
showed that our algorithm performed better than TV and
GC without spatial weighting. In future work, we intend to
modify the weights of the regularized scheme to provide
better adaptation to the PET image.

Data Availability

Phantom data used in the experiments available from https://
web.eecs.umich.edu/∼fessler/result/et/ -e MOBY is no
available, the phantom is Licensed by Segars, William Paul,
https://www.ideaconnection.com/patents/6082-4D-Digital-
Mouse-Whole-Body-MOBY-Phantom.html.
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Table 2: Contrast resolution.

Method Contrast resolution
Curvature 0.407
TV 0.224
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