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Abstract. It is essential to examine the longevity of the defensive immune response engendered by severe acute
respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. We examined the SARS-CoV-2-specific antibody
responses and ex vivo memory B-cell subsets in seven groups of individuals with COVID-19 classified based on days
since reverse-transcription polymerase chain reaction confirmation of SARS-CoV-2 infection. Our data showed that the
levels of IgG and neutralizing antibodies started increasing from days 15 to 30 to days 61 to 90, and plateaued thereafter.
The frequencies of naive B cells and atypical memory B cells decreased from days 15 to 30 to days 61 to 90, and pla-
teaued thereafter. In contrast, the frequencies of immature B cells, classical memory B cells, activated memory B cells,
and plasma cells increased from days 15 to 30 to days 61 to 90, and plateaued thereafter. Patients with severe COVID-
19 exhibited increased frequencies of naive cells, atypical memory B cells, and activated memory B cells, and lower
frequencies of immature B cells, central memory B cells, and plasma cells when compared with patients with mild
COVID-19. Therefore, our data suggest modifications in memory B-cell subset frequencies and persistence of humoral
immunity in convalescent individuals with COVID-19.

INTRODUCTION

Severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) infection is a cause of COVID-19.1 Recent studies
reported that individuals with COVID-19 could experience
various symptoms, including fever, myalgia, fatigue, fibrotic
lung disease, and pulmonary vascular disease2,3 and the
spectrum of disease varies from asymptomatic disease or
mild symptoms to severe pneumonia, acute respiratory dis-
tress syndrome (ARDS) and death.4

Humoral and cellular immune responses have a vital role in
controlling viral infections.5,6 The human memory B-cell
response is believed to be long-standing in viral infections.7

In short-term studies of COVID-19, data suggest that sero-
conversion occurs at approximately 2 to 3 weeks after the
onset of disease,8 and IgM titers start declining considerably
before the IgG titers.9 Numerous reports stated that after
SARS-CoV-2 infection, SARS-CoV-2 antigen-specific res-
ponses could persist for several months.10–12 In contrast,
memory responses to respiratory syncytial virus decrease
over the course of this timeframe.13,14 The memory B-cell
response to SARS-CoV-2 progresses for 1.3 months and 6.2
months after infection in a manner that is consistent with anti-
gen persistence.15 It has been shown that SARS-CoV-2-
specific IgA serum concentration declined 1 month after the
onset of symptoms; however, neutralizing IgA persists from
days 49 to 73 after symptoms.16 The persistence of memory
B-cell subsets has been reported by different studies, but the
data are still not completely clear.11 In the present study, we
studied humoral immune responses using a cross-sectional
study of seven groups of individuals with COVID-19 classified
based on the number of days since reverse-transcription

polymerase chain reaction (RT-PCR) confirmation of SARS-
CoV-2 infection. Our data provide evidence of dynamic alter-
ations in memory B-cell subsets and long-term persistence
of antibodies in COVID-19.

MATERIALS AND METHODS

Ethics statement. The study was approved by the Ethics
Committees of ICMR-NIRT (NIRT-I no: 2020047) and ICMR-
NIE (NIE/IHEC/202008-01). Informed written consent was
obtained from all participants. All methods were performed
in accordance with the relevant institutional ethical commit-
tee guidelines.

Study population. Individuals with acute COVID-19
(15–30 days from RT-PCR confirmation, N546) and conva-
lescent individuals with COVID-19 (classified by days after
infection as follows: 31–60, N533; 61–90, N538; 91–120,
N534; 121–150, N5 32; 151–180, N537; and . 180,
N540) residing in Chennai and Tiruvallur were enrolled in
the study between November 2020 and December 2020
after providing informed consent from the enrolled study
individuals. Those with active COVID-19 infection undergo-
ing home isolation and recovered COVID-19 patients within
0 to 15 days of RT-PCR confirmation were excluded from
the study. The patients age ranged between 18 and 75
years. COVID-19 was confirmed by RT-PCR in government-
approved laboratories. In brief, nasopharyngeal swabs and
oropharyngeal (throat) swabs from individuals suspected of
having COVID-19 were obtained by the healthcare provider.
RNA isolated and purified from specimens was reverse-
transcribed to cDNA and amplified. Thermocycling condi-
tions comprised 30min at 48�C for RT, 10min at 95�C for
activation of the DNA polymerase, and 45 cycles of 15 s at
95�C and 1min at 60�C. Fluorescence measurements were
performed and the threshold cycle (Ct) value for each sam-
ple was estimated by determining the point at which fluores-
cence surpassed a threshold limit set at the mean plus 10
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standard deviations beyond the baseline. A test result was
calculated as positive if two or more of the SARS genomic
targets exhibited positive results (Ct,45 cycles) and all pos-
itive and negative control reactions were in the accepted
range. Those individuals who did not experience any symp-
toms during the entire course of illness were considered
asymptomatic, and those who required supplemental oxy-
gen support therapy or those who were admitted to the ICU
for oxygen support were considered severely ill. The others
were classified as having mild illness.

Hematology and ex vivo phenotyping. Hematology was
performed for all individuals using the Act-5 Diff hematology
analyzer (Beckman Coulter, Brea, CA). Demographic details
and other clinical parameters are shown in Table 1. All anti-
bodies used in the study were from BD Biosciences (San
Jose, CA), BD Pharmingen (San Diego, CA), eBiosciences
(San Diego, CA), or R&D Systems (Minneapolis, MN). Whole
blood was used for ex vivo phenotyping, which was per-
formed for all individuals. Briefly, a cocktail of monoclonal
antibodies specific for various immune cell types was added
to 250-mL aliquots of whole blood. B-cell phenotyping was
performed using antibodies directed against CD45-PerCP,
CD19-Pacific Blue, CD27-APC-Cy7, CD21-FITC, CD20-PE,
and CD10-APC. Naive B cells were classified as CD451

CD191 CD211 CD272; classical memory B cells were classi-
fied as CD451 CD191 CD211 CD271; activated memory B
cells were classified as CD451 CD191 CD21- CD271; atypi-
cal memory B cells were classified as CD451 CD191

CD212CD272; immature B cells were classified as CD451

CD191 CD211 CD101; and plasma cells were classified as
CD451 CD191 CD212 CD20217. After 30min of incubation
at room temperature, erythrocytes were lysed using 2mL of
FACS lysing solution (BD Biosciences Pharmingen), and cells
were washed twice with 2mL of 1X phosphate-buffered
saline and suspended in 200mL of phosphate-buffered saline

(Lonza, Walkersville, MD). Eight-color flow cytometry was
performed on a FACS Canto II flow cytometer with FACS-
DIVA software (version 6; Becton Dickinson). The gating was
set by forward and side scatter, and 100,000 gated events
were acquired. Data were collected and analyzed using
FLOW JO software (TreeStar, Ashland, OR). Leukocytes were
gated using CD45 expression versus side scatter. We used
isotype controls to gate all subsets.

Measurements of SARS-CoV-2 IgA, IgM, and IgG. The
SARS-CoV-2 serology was measured by an iFLASH 1800
chemiluminescent immunoassay from Shenzhen YHLO Bio-
tech, which measures IgM and IgG assays against both
SARS-CoV-2 S proteins and N proteins. The tests were per-
formed according to the manufacturer’s protocol (Shenzhen
YHLO Biotech Co., Ltd.) The results were determined by
chemiluminescent reaction as relative light units. IgM and
IgG concentrations were obtained using the iFLASH 1800
assay; $ 10 AU/mL was defined as positive and,10.00 AU/
mL was considered nonreactive. Nucleocapsid-specific IgA
levels were detected using COVID-19 human IgA ELISA kit
(Ray Biotech) based on the manufacturer’s protocol.

Measurement of circulating neutralizing antibodies.
The circulating neutralizing antibody levels in plasma sam-
ples were measured using SARS-CoV2 Surrogate Virus
Neutralization Test Kit according to the manufacturer’s (Gen-
Script) instructions. The cut-off value for SARS-CoV2 neu-
tralizing antibody detection, according to the manufacturer,
was neutralization $ 20%. Values, 20% were considered
nonreactive.

Statistical analysis. Data analyses were performed using
GraphPad PRISM.9 (GraphPad Software, Inc., San Diego,
CA). A cross-sectional analysis of the frequency of memory
cell subsets and a hematology analysis was performed using
the polynomial model for best fit curve (either first-order or
second-order model). Geometric means (GM) were used for

TABLE 1
Demographics and clinical parameters of the study population

Days after RT-PCR confirmation of disease 15–30 days 31–60 days 61–90 days 91–120 days 121–150 days 151–180 days More than 180 days

Subjects enrolled N5 46 N5 33 N538 N5 34 N5 32 N537 N540
Median age (range) 41.5 (18–70) 36 (25–68) 45 (19–59) 45 (21–69) 45.5 (27–59) 42 (23–58) 38.5 (21–78)
Sex (male/female) 27/19 17/18 22/15 22/12 14/18 23/16 26/14
Fever, n (%) 29 (67) 22 (65) 28 (74) 23 (74) 25 (83) 23 (72) 17 (47)
Chills, n (%) 9 (21) 5 (15) 2 (5) 7 (22) 4 (13) 1 (3) 3 (8)
Cough, n (%) 21 (49) 20 (59) 14 (37) 15 (48) 14 (47) 17 (53) 12 (33)
Sore throat, n (%) 21 (49) 12 (35) 11 (29) 12 (38) 10 (33) 16 (50) 13 (36)
Runny nose, n (%) 7 (16) 6 (18) 5 (13) 0 3 (10) 6 (19) 5 (14)
Taste loss, n (%) 24 (55) 14 (41) 17 (44) 12 (39) 11 (37) 20 (63) 12 (33)
Smell loss, n (%) 21 (49) 14 (41) 21 (55) 9 (29) 11 (37) 16 (50) 10 (28)
Muscle aches, n (%) 23 (53) 20 (59) 29 (76) 15 (48) 18 (60) 21 (66) 13 (36)
Joint pain, n (%) 21 (49) 18 (53) 20 (53) 10 (32) 18 (60) 14 (44) 9 (25)
Abdominal pain, n (%) 3 (7) 3 (9) 4 (11) 2 (6.5) 3 (10) 2 (7) 3 (8)
Vomit, n (%) 3 (7) 4 (12) 5 (13) 4 (13) 3 (10) 5 (16) 3 (8)
Diarrhea, n (%) 10 (23) 5 (15) 4 (11) 4 (13) 6 (30) 5 (16) 2 (6)
Seizures, n (%) 0 1 (3) 0 0 0 0 0
Hypertension, n (%) 11 (26) 7 (21) 7 (18) 7 (23) 9 (30) 9 (28) 8 (22)
Diabetes, n (%) 8 (19) 7 (21) 11 (30) 9 (29) 11 (37) 8 (25) 7 (19)
Asthma, n (%) 2 (5) 2 (6) 1 (3) 1 (3) 0 1 (3) 0
Chronic kidney disease, n (%) 0 0 0 0 1 (3) 0 1 (3)
Neurological symptoms, n (%) 0 0 2 (5) 0 0 0 0
Heart symptoms, n (%) 1 (6) 2 (3) 1 (3) 0 0 1 (3) 0
Rheumatic fever, n (%) 0 0 1 (3) 0 0 1 (3) 0
Corticosteroids, n (%) 4 (9) 3 (9) 2 (5) 3 (10) 1 (3) 1 (3) 0
Antiviral drugs, n (%) 4 (9) 5 (15) 2 (5) 4 (13) 0 0 0

RT-PCR5 reverse-transcription polymerase chain reaction.
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measurements of central tendency. Statistically significant
differences were analyzed using the nonparametric Mann-
Whitney U test to compare mild and severe cases.

RESULTS

Study population characteristics. The study population
demographics and clinical characteristics are provided in
Table 1. No significant differences in age or sex were
observed between the study groups.

Expansion of IgG and neutralizing capacity and
decreasing IgA frequencies in convalescent COVID-19
individuals over time. To estimate the humoral immunity in
individuals with acute COVID-19 and convalescent individu-
als with COVID-19 over time, we examined the plasma levels
of SARS-CoV2-specific IgM, IgG, IgA, and neutralizing anti-
bodies in seven groups of individuals with COVID-19. As
illustrated in Figure 1, the cross-sectional analysis showed
that the IgM levels decreased from days 31 to 60, and then
steadily thereafter (first-order model polynomial model fit
curve, R50.27 by Akaike’s information criterion [AIC]). After
121 days of infection, the IgM levels plateaued. In contrast,
the IgG levels (first-order model polynomial model fit curve,
R50.29 by AIC), IgG levels (second-order model polynomial
model fit curve, R50.41 by AIC), and neutralizing capacity
(first-order model polynomial model fit curve, R50.37 by
AIC) increased from days 15 to 30 until days 91 to 120 days.
After 151 days, all the subsets plateaued. The IgA levels did
not show any changes during that time period in convales-
cent COVID-19 individuals. Therefore, humoral immune
response antibody levels are enhanced over time after
COVID-19 infection.

Alterations in frequencies of B-cell subsets in conva-
lescent COVID-19 patients over time. To examine the
B-cell phenotype response in acute COVID-19 patients and
convalescent COVID-19 patients over time, we assessed the
ex vivo frequencies of B-cell subsets (naive cells, immature
B cells, classical memory B cells, activated memory B cells,
atypical memory B cells, and plasma cells) of seven groups
of COVID-19 patients. The gating approach is presented in
Supplemental Figure 1. As shown in Figure 2, the cross-
sectional analysis showed that the frequencies of naive B
cells decreased from days 31 to 60, and steadily thereafter
(first-order model polynomial model fit curve, R50.077 by
AIC). After 121 days of infection, the frequencies of naive B
cells plateaued. Similarly, atypical memory B cells started
declining from days 31 to 60 (first-order model polynomial

model fit curve, R50.20 by AIC); then, they plateaued after
days 121 to 150. In contrast, the frequencies of immature B
cells (first-order model polynomial model fit curve, R50.41
by AIC), classical memory B cells (second-order model poly-
nomial model fit curve, R50.33 by AIC), activated memory
B cells (first-order model polynomial model fit curve,
R5 0.13 by AIC), and plasma cells (first-order model polyno-
mial model fit curve, R50.89 by AIC) increased from days
15 to 30 until days 91 to 120. After 151 days, all the subsets
plateaued. Therefore, B-cell subsets frequencies are altered
over time after COVID-19 infection.

Severe COVID-19 disease is associated with altered
frequencies of B-cell subsets. To examine the relationship
between B-cell subsets and disease severity, we examined
the B-cell subsets of individuals with mild and severe
COVID-19. As shown in Figure 3, the frequencies of naive
cells (GM561.62% for mild; GM574.27% for severe;
P50.0005), atypical memory B cells (GM54.19% for mild;
GM55.33% for severe; P50.0228), and activated memory
B cells (GM54.6% for mild; GM57.7% for severe;
P50.0003) were significantly elevated in severe COVID-19
patients compared with mild COVID-19 patients. In contrast,
the frequencies of classical memory cells (GM55.9% for
mild; GM52.2% for severe; P,0.0001) and plasma cells
(GM56.4% for mild; GM53.1% for severe; P,0.0001)
were significantly lower in severe COVID-19 patients than in
mild COVID-19 patients. Therefore, severe COVID-19 dis-
ease is linked to altered frequencies of B-cell subsets.

DISCUSSION

It is crucial to examine the persistence of the defensive
immune response induced by SARS-CoV-2- infection. In the
present study, we determined both binding and neutralizing
antibody levels and performed phenotyping of memory
B-cell subsets. It is necessary and important to comprehend
the kinetics of SARS-CoV-2-specific antibodies because the
results could indicate if the host has generated an efficient
humoral immune response. Generally, measurable and high
levels of IgM are an indicator of recent infection, whereas IgG
levels can be used to identify the incidence of previous infec-
tion.18 Neutralizing activity has been shown to be linked with
defense against reinfection by previous coronaviruses.19,20 A
previous study determined that the IgM titers peaked at the
time of the acute or initial convalescent phase and then
decreased with IgM waning at the end of week 12.21 One
previous study indicated that SARS-CoV-2-specific IgM
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levels increased from day 15 after the onset of symptoms
and then declined after 35 days after symptom onset.22 One
recent study reported that the IgM titer decreased at 6 to 7
weeks after symptom onset,23 and that IgG antibodies per-
sisted at a high level and could still increase at more than 6
months after symptom onset.24 The IgG and neutralization
antibody levels were detected at day 14 after infection and
showed no decrease in the levels at 3 to 4 months after
infection. Another study showed the rapid decrease of
SARS-CoV-2-specific antibodies of IgA, IgM, and IgG in con-
valescent patients at 4 to 14 weeks after discharge.25 In
agreement with previous studies, the levels of IgM started to
decrease from days 31 to 60, and then decreased steadily

thereafter. In contrast, IgG and neutralization antibody levels
were increased from days 31 to 60 to days 151 to 180 days,
and they did not show significant decreases, even at more
than 180 days after infection. This is similar to the results
of our previously published, larger study that showed the
kinetics of IgG and neutralization antibody levels in
convalescent individuals.26 Collectively, our data indicate
that SARS-CoV-2-specific IgG and neutralization antibody
responses persist at least until days 151 to 180 after infec-
tion, which could have significant importance in terms of
reinfection. To our knowledge, our study is one of the first to
examine the persistence of IgA antibodies at 6 months after
infection.
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Memory B cells are important for long-lasting humoral
immunity. B-cell subsets can be defined based on CD21 and
CD27 marker expressions.27 Classical memory B cells, also
known as resting memory B cells, last for months to years
and can proliferate and differentiate into antibody-producing
cells. Activated memory B cells are primed to develop into
antibody-secreting plasma cells.28 Various studies have
shown that chronic viral infections such as hepatitis B, hepa-
titis C, and HIV exhibit altered circulating frequencies of
B-cell subsets.29–31 One recent study indicated that the
B-cell memory17 compartment is long-standing for at least 6
months in convalescent individuals with COVID-19.32 It has
been shown that the frequencies of atypical memory B cells
significantly decrease and the frequencies of classical mem-
ory B cells significantly expand in convalescent individuals.33

Recent longitudinal data regarding B-cell sampling after
COVID-19 infection demonstrated that B-cell frequencies
are stable or increase over time.10,11 Similarly, our data dem-
onstrated that memory B-cell subsets were altered, and that
most of the subsets showed an increase at days 15 to 30,
and then plateaued after days 151 to 180 after infection. This
suggests that B-cell subsets persist after days 151 to 180 of
infection. Interestingly, individuals with severe SARS-CoV-2
infection exhibited higher frequencies of atypical memory B
cells than individuals with mild SARS-CoV-2 infection.
We also examined the memory B-cell subset distribution

in individuals who had mild disease compared with those
with severe disease in samples collected during the first 2
months of infection. Activated memory B cells were signifi-
cantly more abundant in participants with severe infection
compared with those with mild infection.33 It has been
shown that patients with severe COVID-19 exhibit significant
heterogeneity in both effector and immature populations. In
critically ill COVID-19 patients, extrafollicular activation was
strongly associated with the expansion of atypical memory
B cells; this expansion was associated with the robust for-
mation of antibody-secreting cells, increased disease activ-
ity, and poorer outcomes.34 Patients with severe COVID-19
had strong activation of effector B cells than patients with
mild disease.34 Similarly, our data showed that severe
SARS-CoV-2 infection resulted in higher frequencies of atyp-
ical memory B cells and activated memory B cells. It is
uncertain whether these cells are also functionally impaired
in COVID-19.33 Augmented frequencies of activated memory
B cells could be caused by enhanced immune activation and
extrafollicular activation in the severe infection group com-
pared to the mild infection groups.33 Our study was limited
because we did not study the functional characteristics of
these alterations in cellular subsets. Furthermore, we did not
explore the persistence of antigen-specific B-cell responses.
Finally, the sample collection was cross-sectional and not
longitudinal.
In summary, we demonstrated the persistence of humoral

immune responses, including both binding and neutralizing
antibodies as well as dynamic alterations of B-cell subsets in
seven groups of COVID-19 patients. Our data showed that
the antibody levels of IgG and neutralizing capacity gradually
increased from days 15 to 30 to days 151 to 180 after infec-
tion. The alteration of B-cell subsets persists from days 15
to 30 to days 151 to 180 after infection. Our study also
offers novel insight into the importance of changes in anti-
body responses over time and the alteration of B-cell

subpopulations over time in COVID-19 patients. These
results might aid in the comprehension of B-cell subset
dynamics and the identification of more specific concerns
related to their clinical effects.
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