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DNA-binding proteins are fundamentally important in understanding cellular processes. Thus, the identification of DNA-binding
proteins has the particularly important practical application in various fields, such as drug design. We have proposed a novel
approach method for predicting DNA-binding proteins using only sequence information. The prediction model developed in this
study is constructed by support vector machine-sequential minimal optimization (SVM-SMO) algorithm in conjunction with a
hybrid feature. The hybrid feature is incorporating evolutionary information feature, physicochemical property feature, and two
novel attributes.These two attributes useDNA-binding residues and nonbinding residues in a query protein to obtainDNA-binding
propensity and nonbinding propensity. The results demonstrate that our SVM-SMO model achieves 0.67 Matthew’s correlation
coefficient (MCC) and 89.6% overall accuracy with 88.4% sensitivity and 90.8% specificity, respectively. Performance comparisons
on various features indicate that two novel attributes contribute to the performance improvement. In addition, our SVM-SMO
model achieves the best performance than state-of-the-art methods on independent test dataset.

1. Introduction

DNA-protein interaction has diverse functions in the cell, and
it plays an important role in a variety of biological processes,
such as gene regulation, DNA replication, and repair. Identi-
fication of DNA-binding proteins is the theoretical basis on
many commonly used medicinal techniques. For instance, it
is considered as selecting activators and inhibitors in rational
drug design [1–3]. It also plays an essential role in discovering
potential therapeutics for genetic diseases and proteome
function annotation.Therefore, recognition of DNA-binding
proteins becomes one of the most important questions in the
annotation of protein functions.

In recent years, DNA-binding proteins can be annotated
by several experimental techniques such as filter binding
assays, X-ray crystallography, and NMR. However, experi-
mental approaches to identify DNA-binding proteins remain
time-consuming and expensive. Hence, the computational
prediction of DNA-binding proteins is important. Most stud-
ies on computational prediction of DNA-binding proteins

were based on structures of a query proteins [4–9]. But the
problem of consuming time and money, arisen by procuring
structure of protein, exist still yet. Therefore, it is important
to develop computational methods for identifying DNA-
binding proteins directly from amino acid sequence instead
of structure information.

Machine learning technique is an effective tool which
is widely used to distinguish DNA-binding proteins from
nonbinding ones. Cai and Lin developed support vector
machine (SVM) and the pseudoamino acid composition,
a collection of nonlinear features extractable from protein
sequence, to constructDNA-binding proteins prediction [10].
Yu et al. proposed the binary classifications for rRNA-, RNA-,
andDNA-binding proteins using SVM and sequence features
associated physicochemical properties [11]. A web-server
DNAbinder (http://www.imtech.res.in/raghava/dnabinder/)
has been developed for identifying DNA-binding proteins
and domains from query amino acid sequences. It was
constructed by SVM using amino acid composition and
PSSM profiles [12]. Shao et al. constructed two classifiers to
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differentiate DNA/RNA-binding proteins from nonnucleic-
acid-binding proteins by using SVM and a conjoint triad
feature which extract information directly from amino acids
sequence of protein [13]. Patel et al. used an artificial neural
network to identify DNA-binding proteins using a set of 62
sequence features [14]. Kumar et al. reported a random forest
method, DNA-Prot, to identify DNA-binding proteins from
protein sequence [15]. Lin et al. proposed a new predictor,
called iDNA-Prot, for predicting uncharacterized proteins as
DNA-binding proteins or non-DNA-binding proteins based
on their amino acid sequences information alone [16].

In this study, we attempt to predict DNA-binding pro-
teins directly from amino acid sequences. We propose a
novel method for predicting DNA-binding proteins using
a support vector machine-sequential minimal optimization
(SVM-SMO) algorithm in conjunction with a hybrid feature.
The hybrid feature is incorporating evolutionary information
feature, physicochemical feature, and two novel attributes
which represented DNA-binding propensity and nonbinding
propensity.Those novel attributes were constructed by DNA-
binding residues and nonbinding residues predicted by our
previous workDNABR [17], respectively. Ourmodel achieves
0.67 Matthew’s correlation coefficient (MCC) and 89.6%
overall accuracy with 88.4% sensitivity and 90.8% specificity,
respectively by 5-fold cross-validation. In addition, the results
demonstrate that the two novel attributes we propose in
the research are discriminative to distinguish between DNA-
binding proteins from nonbinding proteins.

2. Materials and Methods

2.1. Data. We collected DNA-binding proteins and nonbind-
ing proteins from release “2013 02” of UniProtKB/Swiss-Prot
database (http://www.uniprot.org/) [18]. To make sure of the
reliability of data, we only selected manually annotated and
reviewed proteins.

“DNA binding” was used as a keyword to search the
UniProtKB/Swiss-Prot database. Then 29866 DNA-binding
proteins were retrieved and designated as rough “Positive”
dataset.

A “Contrast” dataset was obtained by the similar proce-
dure which was proposed by Cai and Lin [10]. 158121 proteins
in “Contrast” dataset were retrieved from UniProtKB/Swiss-
Prot database by searching with a list of keywords which
possibly imply RNA/DNA-binding functionality using the
“or” logic.

Then the proteins in “contrast” dataset were removed
from UniProtKB/Swiss-Prot database, and 158121 proteins
were obtained to form rough “Negative” dataset.

As indicated by previous research [13, 19], the protein
sequences with the length range from 50 to 6000 amino
acids are retained. Proteins including irregular amino acid
characters such as “𝑥” and “𝑧” were removed. Moreover, the
redundancy among the sequences in “positive” and “negative”
datasets was removed by using BLASTpackage available from
NCBI with a threshold of 40% identification. The longest
amino acid sequence within each cluster was retained for
reaching nonredundant dataset. Finally, 6653 and 60548 pro-
teins were produced in nonredundant “Positive” dataset and

Table 1: The distribution of proteins in main dataset, training
dataset, and independent test dataset.

Dataset Number of
binding proteins

Number of
nonbinding
proteins

Total number
of proteins

Main dataset 6653 6653 13306
Training dataset
(TrD 10642) 5321 5321 10642

Independent test
dataset (TeD 2664) 1332 1332 2664

“Negative” dataset, respectively. To deal with the imbalance
problembetween positive data andnegative data, we created a
“Negative subset” dataset by randomly selecting from “Nega-
tive” dataset which has the equal size to the “Positive” dataset.
Therefore 13306 proteins contained in “Positive” dataset and
“Negative subset” dataset consisted of the main dataset.

To evaluate the performance of our method against
previous works [15, 16], an independent test dataset was
used. 1332 DNA-binding proteins from “Positive” dataset
and 1332 nonbinding proteins from “Negative subset” dataset
were randomly selected to build independent test dataset.
We made sure that the proteins in test dataset were not
used in previous works [15, 16]. Those remaining proteins
in “Positive” dataset and “Negative subset” dataset were
designated as the training dataset. Therefore, the training
dataset (TrD 10642) obtained 10642 proteins and test dataset
(TeD 2664) obtained 2664 proteins (more details can be seen
fromTable 1 and see SupplementaryMaterial available online
at http://dx.doi.org/10.1155/2013/524502).

2.2. Feature Vector

2.2.1. Binding Propensity and Nonbinding Propensity (BP
and NBP). It is well known that DNA-binding residues
should exist in DNA-binding protein and tend to appear
on the surface of DNA-binding proteins. DNA-binding
proteins have much more binding residues than nonbind-
ing proteins and tend to gather together spatially. There-
fore, these two characters of DNA-binding residues would
be applied to identify binding proteins. We already had
built a DNA-binding residue prediction model DNABR
[17] (http://www.cbi.seu.edu.cn/DNABR/). The performance
comparisons with other approaches showed that DNABR has
an excellent prediction performance for detecting binding
residues in putative DNA-binding protein. Consequently,
we proposed binding propensity measures and nonbinding
propensity measures which were made based on the pre-
diction results of DNA-binding residues and nonbinding
residues, respectively.

According to two characters of DNA-binding residues
mentioned above, two binding propensity measures were
defined for as follows:

BP (1) =
∑
𝑛

𝑖=1
RI (𝑖)
10𝑁

, (1)
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where𝑁 is the number of amino acids in this protein, 𝑛 is the
number of DNA-binding residues, and RI(𝑖) is the predicted
reliability index of DNA-binding residue 𝑖 obtained from
DNABR.The reliability index is a positive integer range from
0 to 10:

BP (2) =
∑
𝑁−1

𝑖=1
2
−𝑖+1

∑
𝑛(𝑖)

𝑘=1
RI (𝑘)

10 (𝑁 − 1)

, (2)

where𝑁 is the number of amino acids in this protein, 𝑛(𝑖) is
the number of two DNA-binding residues with the distance
𝑖, and RI(𝑘) is the mean of reliability index for DNA-binding
residue 𝑘 and binding residue 𝑘 + 𝑖.

For a query protein, BP(1) and BP(2) describe the infor-
mation of the appearance and correlation of DNA-binding
residues in the amino acid sequence, respectively. Due to
the usage of predicted DNA-binding residue in this paper,
reliability index is applied in BP(1) and BP(2) formula. BP(1)
represents the frequency of DNA-binding residues. BP(2)
represents the relevance of the two DNA-binding residues
with different gaps from 1 to 𝑁 − 1 amino acids. The BP(2)
formula takes into account the fact that the correlation value
between two DNA-binding residues is smaller when the
distance 𝑘 is larger.

Meanwhile, nonbinding proteins have two similar char-
acters on nonbinding residues. Therefore, the definition of
NBP(1) and NBP(2) is similar to that of BP(1) and BP(2):

NBP (1) =
∑
𝑡

𝑖=1
RI (𝑖)
10𝑁

, (3)

where 𝑁 is the number of amino acids in this protein, 𝑡 is
the number of nonbinding residues, and RI(𝑖) is the reliability
index of prediction on nonbinding residue 𝑖 by DNABR:

NBP (2) =
∑
𝑁−1

𝑖=1
2
−𝑖+1

∑
𝑡(𝑖)

𝑘=1
RI (𝑘)

10 (𝑁 − 1)

, (4)

where 𝑁 is the number of amino acids in this protein, 𝑡(𝑖)
is the number of two nonbinding residues with the distance
𝑖, and RI(𝑘) is the mean of reliability index for nonbinding
residue 𝑘 and nonbinding residue 𝑘 + 𝑖.

The vector size for BP features and NBP feature is 4-
dimensional.

2.2.2. Physicochemical Property (PP). Physicochemical prop-
erty feature was usually used in the prediction of DNA/RNA-
binding protein [5, 10, 11, 19, 20], identification of protein-
protein interaction [21], protein fold recognition [22], and
protein family classification [23]. This feature was con-
structed from amino acid composition and six biological
properties of each amino acid including hydrophobicity,
polarity, polarizability, secondary structure, solvent accessi-
bility, and normalized Van der Waals volume.

Theglobal composition of each physicochemical property
was described by three descriptors, composition index, tran-
sition index, and distribution index. Composition index is
the percent of amino acid of a particular property. Transition
index is the percent frequency of which amino acid of a

particular property is followed by amino acid of a different
property. Distribution index measures the percent of length
of a query protein within which the first 25%, 50%, 75%,
and 100% of the amino acid of a particular property are
located respectively. Detail information of physicochemical
property feature can be found in previous studies of proteins
[5, 10, 11, 19, 20]. The vector dimensional of physicochemical
property feature is 132.

2.2.3. Evolutionary Information (EI). Position-specific scor-
ing matrix (PSSM) which represents evolutionary infor-
mation of amino acid sequences was used mostly in the
prediction of DNA-binding residues [24–29] and plays an
important role in distinguishing DNA-binding residues from
nonbinding residues in those researches. Therefore, we con-
sidered to apply PSSM to identify DNA-binding protein in
this research. PSSM scores are generated by PSI-BLAST [30]
to search against the nonredundant dataset of amino acid
sequences in NCBI, and 20 values are obtained for each
sequence position. If the protein has 𝑁 amino acids, the
feature vector of PSSM is 20 ∗𝑁. However, different proteins
may have different number of amino acids. PSSM could not
directly be used as a feature in the prediction work based on
machine learningmethod. In order to convert variable feature
vector into fixed vector, we improved PSSM in following step.

First, we normalized the values of PSSM using formula as
follows:

𝑝 (𝑥) =

1

1 + exp (−𝑥)
. (5)

Second, we pooled all rows which belong to the same
amino acid in this PSSM and together to form a new matrix.
Then we obtained 20 new matrices with the size 𝑁𝑎 ∗ 20,
where𝑁𝑎 is the number of amino acids of type 𝑎.

Third, we converted each new matrix to a vector. We
added all values in each column in new matrices. For each
new matrix, we produced a 20-dimensional vector. Then we
obtained 20 ∗ 20 = 400 dimension vector which represents
feature of evolutionary information in this work.

2.3. Algorithms for Classification. Five machine learning
algorithms were used in our study to select a best-
performance algorithm to identify DNA-binding proteins:
support vector machine-sequential minimal optimization
(SVM-SMO) [31], simple logistic regression [32], random
forest [33], naive Bayes [34], and decision tree [35].

Support vector machine (SVM) [36] is a supervise
machine learning algorithm and widely applied in clas-
sification researches. The principle of SVM is to find a
hyperplane as a segmentation of two classes to minimize the
classified error. Sequentialminimal optimization (SMO) is an
algorithm for training support vector machine to efficiently
solve the optimization problem. Simple logistic regression
is a statistical model suitable for probabilistic binary clas-
sification. Random forest is a classification algorithm that
uses an ensemble of tree-structured classifiers. Naive Bayes
classifier technique is a simple probabilistic classifier based on
applying Bayesian theorem independence assumptions and
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is particularly suited when the dimensionality of the inputs
is high. Decision tree classifier generates tree-like graph or
model of decisions for classification. It is developed using the
classification and regression trees method.

These machine learning algorithms are implemented by
WEKA software (http://www.cs.waikato.ac.nz/∼ml/weka/)
[37] which provides a collection of machine learning algo-
rithms for data mining tasks.

2.4. Model Evaluation Procedure. To obtain a reliable result
with low mean square error, 𝑘-fold cross validation was
always used in empirical works [7, 8]. In this study, 5-fold
cross validation method was used to access the performance
of each classifier on the main dataset. The main dataset
was randomly divided into 5 equal parts. Each run of cross
validation is comprised of one part as the independent test
dataset and remaining 4 parts as the training dataset. For each
classification, performance evaluations of 5 repetitions of 5-
fold cross validation were averaged and calculated.

The following performance evaluations were calculated:
accuracy, sensitivity, specificity, and Matthew correlation
coefficient (MCC) [4]. Equations of the performance evalu-
ations were represented as follows:

Accuary = TP + TN
TP + FP + TN + FN

,

Sensitivity = TP
TP + FN

,

Specificity = TN
TN + FP

,

MCC = TP × TN − FP × FN
√(TP + FP) (TN + FN) (TP + FN) (TN + FP)

.

(6)

ROC curve is widely accepted and effective method
to compare the overall prediction performance of different
classifier method. An ROC curve is constructed by plotting
the sensitivity versus 1-specificity for varying cutoff values.
The area under the curve (AUC) is the evaluation criteria for
the classifier. Therefore, we used AUC values to compare our
work with previous studies [15, 16].

3. Result and Discussion

3.1. Performance of Various Machine Learning Algorithms.
The performance is shown in Table 2 for predicting DNA-
binding proteins based on support vectormachine-sequential
minimal optimization (SVM-SMO), simple logistic regres-
sion, random forest, naive Bayes, and decision tree with 5-
fold cross validation on main dataset. As shown in Table 2,
the results demonstrate that SVM-SMOclassifier achieves the
best performance. The combination of all features achieves
the best performance with accuracy, sensitivity, specificity,
Matthew correlation coefficient, and AUC equal to 89.6%,
88.4%, 90.8%, 0.67, and 0.90, respectively. The performance
of simple logistic regression classifier is slightly worse than
that of SVM-SMO classifier but much better than other

three classifiers with 88.3% accuracy, 86.7% sensitivity, 90.2%
specificity, 0.66 Matthew correlation coefficient, and 0.88
AUC. Naive Bayes classifier achieves the worst performance
which predicted DNA-binding proteins at 84.3% accuracy
with Matthew’s correlation coefficient of 0.59, and with a
sensitivity of 82.6% and a specificity of 86.0%. The perfor-
mance of random forest classifier is better than decision tree
classifier. Considering the performance, we chose SVM-SMO
classifier to identify DNA-binding proteins in our research.

3.2. Importance of Novel Attributes: Binding Propensity
and Nonbinding Propensity. The novel attributes: binding
propensity (BP) and nonbinding propensity (NBP), were
firstly proposed in this research. Those two features were
constructed by prediction results from our earlier developed
prediction model DNABR which has excellent prediction
performance in DNA-binding residues. In order to know the
importance of those two features, BP and NB were combined
with evolutionary information feature (EI) and physicochem-
ical property feature (PP) to construct DNA-binding proteins
prediction model using SVM-SMO algorithm, respectively.
Seen from Table 2, when BP and NBP were combined with
PP, the value of accuracy significantly increased and achieved
85.6%. The similar result were appeared when BP and NBP
were combined with EI, and the value of accuracy increased
considerably to 87.3% with MCC 0.66. Those results which
were evaluated by 5-fold cross validation proved that BP and
NBP play a significant role in distinguishing binding proteins
from nonbinding proteins.

Figures 1(a) and 1(b) present that binding and nonbinding
proteins show contrasting behavior in terms of two compo-
nents of BP feature. Figures 2(a) and 2(b) also show significant
difference between binding and nonbinding proteins in terms
of two components of NBP feature. We also calculated the
𝑃 values of two BP components and two NBP components
to measure the ability to separate the binding proteins from
the nonbinding ones. Each of them was less than 0.00005.
These results also proved that BP and NBP play a vital role
in achieving excellent performance in our study.

The character of DNA-binding proteins and nonbinding
proteins can illuminate the importance of BP and NBP
features. (1) It is obvious that each DNA-binding protein
has several residues which bind to DNA. DNA-binding
residues should be much more in DNA-binding proteins
in comparison to nonbinding proteins. The structural dis-
tribution of DNA-binding residues also has some regular
pattern, such as DNA-binding residues which tend to gather
together spatially on the surface of DNA-binding protein
[38]. Two components of BP feature revealed the character
of DNA-binding proteins for sequence level and spatial level,
respectively. (2) On the contrary, proportion of nonbinding
residues should be much higher for nonbinding proteins in
comparison to DNA-binding proteins. Hence it is rational
to propose NBP feature. Therefore, we predicted DNA-
binding residues and nonbinding residues in a query protein
by DNABR model which achieved the best performance
in comparison to previous similar works. It was observed
that using information of binding and nonbinding residues

http://www.cs.waikato.ac.nz/~ml/weka/
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Table 2: The performance of different kinds of feature descriptors with various machine learning algorithms based on main dataset using
5-fold cross-validation.

Machine learning algorithm Feature descriptor
PP EI BP + NBP + PP BP + NBP + EI PP + EI BP + NBP + PP + EI

Accuracy (%)
SVM-SMO 83.2 85.7 85.6 87.3 87.3 89.6
Simple logistic regression 81.8 84.2 84.2 87.0 85.7 88.3
Random forest 81.3 84.3 83.5 86.7 85.9 88.1
Naive bayes 78.6 77.2 82.8 82.3 82.6 84.3
Decision tree 80.2 82.5 82.6 84.4 84.1 86.2

Sensitivity (%)
SVM-SMO 82.4 84.9 84.4 86.5 85.8 88.4
Simple logistic regression 80.7 83.1 82.3 84.4 85.6 86.7
Random forest 81.1 83.6 82.8 86.0 85.3 86.2
Naive bayes 76.9 76.1 79.4 80.8 81.1 82.6
Decision tree 78.6 80.4 81.7 82.7 82.5 84.7

Specificity (%)
SVM-SMO 84.6 86.3 86.7 88.2 88.6 90.8
Simple logistic regression 82.9 85.5 86.0 88.8 85.9 90.2
Random forest 81.6 85.2 84.1 87.5 86.3 90.0
Naive bayes 80.2 78.5 85.6 83.8 84.7 86.0
Decision tree 81.8 84.7 83.5 86.2 85.7 87.7

Matthew correlation coefficient
SVM-SMO 0.55 0.58 0.62 0.66 0.66 0.67
Simple logistic regression 0.56 0.55 0.64 0.62 0.64 0.66
Random forest 0.55 0.56 0.60 0.62 0.63 0.66
Naive bayes 0.52 0.49 0.56 0.53 0.54 0.59
Decision tree 0.53 0.55 0.61 0.63 0.62 0.64

AUC
SVM-SMO 0.83 0.86 0.86 0.88 0.87 0.90
Simple logistic regression 0.83 0.84 0.85 0.86 0.85 0.88
Random forest 0.81 0.84 0.84 0.86 0.85 0.87
Naive bayes 0.78 0.76 0.80 0.79 0.80 0.82
Decision tree 0.80 0.82 0.83 0.84 0.84 0.86
BP: binding propensity feature; NBP: nonbinding propensity feature; PP: physicochemical property feature; EI: evolutionary information feature.

worked well as we expected. BP and NBP can successfully
discriminate betweenDNA-binding proteins andnonbinding
proteins.

3.3. Performance Comparison with Other Methods. iDNA-
Prot (http://www.jci-bioinfo.cn/iDNA-Prot) [16] predicts
a query protein as a DNA-binding protein or a non-
DNA- binding protein only based on its amino acid
sequence information. The iDNA-Prot was constructed by
incorporating the features into the general form of pseudo
amino acid composition that was extracted from protein
sequences via the “grey model” and by adopting the random
forest model. The overall success rate by iDNA-Prot was
83.96%. Kumar et al. proposed a random forest method,

DNA-Prot, to identify DNA-binding proteins from protein
sequence [15]. DNA-Prot was proposed to encode each
protein sequence with 116 features by incorporating various
physicochemical properties of amino acids. Using the
dataset in research [15] DNA-Prot could identify DNA-
binding proteins from non-DNA-binding proteins with
more than 80% accuracy. As mentioned in Section 2, to
evaluate the performance of our method against the state-
of-the-art algorithms, that is, iDNA-Prot and DNA-Prot, an
independent test dataset TeD 2664 was obtained by selecting
1332 DNA-binding proteins and 1332 nonbinding proteins
randomly from “Positive” dataset and “Negative subset”
dataset, respectively. The iDNA-Prot prediction results of
2664 proteins in TeD 2664 dataset were obtained by web-
server (http://www.jci-bioinfo.cn/iDNA-Prot). TeD 2664

http://www.jci-bioinfo.cn/iDNA-Prot
http://www.jci-bioinfo.cn/iDNA-Prot
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Figure 1: Box plots of the two components of BP feature for binding and nonbinding proteins. (a) BP(1); (b) BP(2).
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Figure 2: Box plots of the two components of NBP feature for binding and nonbinding proteins. (a) NBP(1); (b) NBP(2).

dataset used to test DNA-Prot and the prediction results can
be obtained from its standalone version (http://www3.ntu
.edu.sg/home/EPNSugan/index files/dnaprot.htm). Here we
also trained another SVM-SMO model on training dataset
TrD 10642 using the same strategy as original SVM-SMO
model with all features and the model used to identify
DNA-binding proteins in the TeD 2664 dataset. As shown in
Figure 3, the accuracy is 74.88%, 54.06%, and 47.30% for our
SVM-SMO model, iDNA-Prot, and DNA-Prot, respectively.
The SVM-SMO model attained 72.22% sensitivity, 77.55%
specificity, and 0.4981 MCC. The results show that the
SVM-SMOmodel achieves the best performance.

4. Conclusions

In this paper, we present a novel approach based on support
vector machine-sequential minimal optimization (SVM-
SMO) and a hybrid feature for the prediction ofDNA-binding
proteins using only the primary sequence of a protein.
Two novel attributes, denoting DNA-binding propensity and
nonbinding propensity, were constructed by DNA-binding
residues information and nonbinding residues information.
The results prove that these two attributes markedly improve
the prediction performance. The SVM-SMO model with the
hybrid feature that includes twonovel attributes, evolutionary

http://www3.ntu.edu.sg/home/EPNSugan/index_files/dnaprot.htm
http://www3.ntu.edu.sg/home/EPNSugan/index_files/dnaprot.htm
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Figure 3: Three classifiers were tested on the same testing dataset
TeD 2264. The predictors have the following accuracy value: our
SVM-SMO 74.88%, iDNA-Prot 54.06%, andDNA-Prot 47.30%; sen-
sitivity: our SVM-SMO 72.22%, iDNA-Prot 50.22%, and DNA-Prot
45.72%; specificity: our SVM-SMO 77.55%, iDNA-Prot 57.88%, and
DNA-Prot 48.87%; MCC: our SVM-SMO 0.4981, iDNA-Prot0.0814,
and DNA-Prot −0.0541.

information feature, and physicochemical property feature
has a prediction accuracy of 89.6% with MCC of 0.67. We
believe that our SVM-SMO method is currently the most
effective method for predicting DNA-binding proteins using
only sequence information.
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