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T
ype 1 diabetes—or, more accurately, type 1A
diabetes—is thought to arise from selective im-
munologically mediated destruction of the insu-
lin-producing �-cells in the pancreatic islets of

Langerhans with consequent insulin deficiency (1). This
occurs in individuals in whom genetic susceptibility out-
weighs genetic protection and is probably initiated by
environmental factors not yet clearly defined. The disease
arises via a cellular-mediated immune process, presum-
ably a specific reaction to one or more �-cell proteins
(autoantigens). There is consequent progressive impair-
ment of �-cell function and apparent decline in �-cell
mass. A secondary humoral immune response is charac-
terized by the appearance of autoantibodies that serve as
markers of the immune damage to �-cells. This insidious
type 1 diabetes disease process generally evolves over a
variable period of years (Fig. 1). The decline in �-cell
function—and presumably in mass—is evidenced meta-
bolically by loss of first-phase insulin response to an
intravenous glucose challenge and later by the appearance
of impairment in glycemic regulation, which is manifested
as dysglycemia either as impaired glucose tolerance, im-
paired fasting glucose, or “indeterminate” glucose levels
(values �200 mg/dl [11.1 mmol/l] at 30, 60, or 90 min
during an oral glucose tolerance test). Ultimately, the
clinical syndrome of type 1 diabetes becomes evident
when the majority of �-cell function has been lost and
presumably most �-cells have been destroyed; at this
juncture, frank hyperglycemia supervenes. Although that
broad sequence can be articulated, there are still gaps in
many of the details. Further understanding of the nature of
the disease process will facilitate the design of interven-
tion strategies aimed at abrogating �-cell destruction and
ultimately at prophylaxis of type 1 diabetes.

It should be evident from the above sequence of events
that if type 1 diabetes is to be conquered, it is necessary 1)
to stop immune destruction of �-cells, 2) to replace or
regenerate �-cells, and 3) to preserve �-cell function and
mass. In regards to all three of these, much has been
accomplished in animal models of type 1 diabetes. Yet in
human beings, success has been elusive. That is not to say
that progress has not been made, for indeed it has. In this
Perspectives in Diabetes article, written in honor of the
40th anniversary of the Juvenile Diabetes Research Foun-

dation (JDRF), we review the progress that has been
made, indicate the challenges that have confronted inves-
tigators in these efforts, and propose a vision for how such
research efforts might unfold in the future. We also note
that several important consortia are addressing various
aspects of this sequence, and these are listed in Table 1.
These consortia have been supported by several institutes
of the National Institutes of Health (NIH), JDRF, and the
American Diabetes Association (ADA).
Stopping immune destruction of �-cells. Much inves-
tigation has been directed at interrupting the type 1
diabetes disease process both during the stage of evolu-
tion of the disease and at the time of disease onset.

The goal of intervention before clinical disease onset is
to arrest the immune destruction and thus delay or prevent
clinical disease. To effectively accomplish this requires
identification of individuals at risk of type 1 diabetes (14).
Therefore, a significant amount of attention has been given
to identify potential risk markers and to quantify risk
projection—with considerable success among relatives of
individuals with type 1 diabetes (15,16) and some success
based on the screening of newborns for genetic markers
(17). Such prediction of the development of type 1 diabe-
tes is based on risk assessment, which is accomplished
using genetic, immunologic, and metabolic parameters.
Yet, the majority of individuals who present with type 1
diabetes do not have a known relative who had the
disease, and newborn screening programs for genetic risk
markers are not yet universal. If there were an available
clinical prevention strategy with demonstrated effective-
ness, the case could be made that such newborn screening
be mandatory. At some point, that clearly will be the case.
This approach would identify most (over 95%) of those
destined to develop type 1 diabetes, but it would also
identify a larger number of people who will not develop
the disease. This would facilitate the introduction of
interventions designed to prevent autoimmunity as op-
posed to interventions in individuals with autoimmune
markers in whom the goal is to prevent clinical type 1
diabetes. Yet, because of the fact that many newborns
identified as having genetic risk will not ultimately develop
type 1 diabetes, any intervention imposed at such time
must be very safe.

The ability to predict type 1 diabetes on the basis of
immunologic, genetic, and metabolic markers has led to
several large studies designed to determine whether type 1
diabetes can be prevented by intervening in individuals
with identified autoimmunity (Fig. 2). Unfortunately, to
date, such studies have been without clear success (18). In
part, this can be attributed to the selection of interventions
that impose minimal risk to the subjects participating in
the trials. However, it also may be that once autoimmunity
is established, the immune process progressively expands,
involving more and more components of the immune
system and directed at an increasing number of islet
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autoantigens. The consequence is that therapies targeted
at one specific component of the immune system, or at one
specific autoantigen, may be inadequate to arrest the type
1 diabetes disease process. Nonetheless, any therapeutic
strategy that has proven safe in new-onset type 1 diabetes,
even if only with minor or transient efficacy, may be worth
considering for prevention. We recognize that safety must
be paramount for any study involving individuals who do
not yet have disease. On the other hand, one must be
cautious to not equate unpleasant but transient side ef-
fects, such as those associated with an infusion, as an
obstacle for consideration of agents that are devoid of
serious sustained adverse effects.

Studies of immune intervention begun at or shortly after
diagnosis of clinical type 1 diabetes have the advantage
that research subjects have an unambiguous diagnosis, but
they have the disadvantage that such individuals have
fewer �-cells to preserve. The goal of such studies is the
preservation of residual �-cell function, thus allowing for
easier glycemic management while also decreasing the
likelihood of both hypoglycemia and long-term complica-
tions. �-Cell function is assessed by measuring C-peptide
response to a provocative stimulus (19). A whole variety of
interventions have been explored at this stage (20). Some
interventions have shown potential benefit but were lim-
ited by toxicity or by the benefit being of limited magni-
tude and/or short duration of benefit. A number of agents
showed promising preliminary effects but were not studied
further. Others have failed to show efficacy. Some have
shown mixed results. Others have only been evaluated in
pilot studies that were too small to draw firm conclusions.
Yet some approaches have shown promise in recent-onset
type 1 diabetes, including two different anti-CD3 monoclo-
nal antibodies (teplizumab [21] and otelixizumab [22]), the

anti-CD20 monoclonal antibody rituximab (23), a GAD
vaccine (24), and a somewhat extreme approach involving
profound immunoablation with cyclophosphamide and
anti-thymocyte globulin followed by rescue with autolo-
gous bone marrow transplantation to prevent the theoret-
ical risk of aplastic anemia that could, in theory, develop
after the cytoreductive-induction treatment (25). However,
this risk should be virtually absent since the induction is
not fully cytoablative. Additional strategies continue to be
explored including cellular approaches such as the use of
immature autologous dendritic cells (26).

Yet careful examination even of the approaches that
have shown promise in recent-onset type 1 diabetes re-
veals that the effects seen are transient in nature (Fig. 3).
As noted above, this could be due to progressive expan-
sion of the immune process to involve more of the immune
system and/or expansion of the number of islet autoanti-
gens involved. One insight into the complicated and ag-
gressive nature of the autoimmune response in type 1
diabetes is the observation that in individuals who have
received combined kidney and pancreas transplants, there
is often recurrent autoimmunity in the face of significant
immunosuppression and absent the signs of organ rejec-
tion (27). This suggests that the immune pathways leading
to autoimmunity are different than those leading to al-
lorejection, and it implies that different approaches may be
needed if both are to be controlled. Yet in organ transplan-
tation, combinations of multiple immunologic modulators
or suppressants are routinely used. Moreover, in animal
models of type 1 diabetes, some of the best successes are
seen with combination therapies. Thus it may very well be
that combination therapy is needed if we are to success-
fully abrogate the immune processes leading to �-cell
destruction (28). In Fig. 4, one example of a theoretical

CELLULAR (T- CELL) AUTOIMMUNITY

LOSS OF FIRST-PHASE 
INSULIN RESPONSE

(IVGTT)
GLUCOSE INTOLERANCE

(OGTT)

PUTATIVE
ENVIRONMENTAL

TRIGGER

CLINICAL
ONSET

TIME

B
ET

A
-C

EL
L 

M
A

SS

HUMORAL AUTOANTIBODIES
(ICA, IAA, Anti-GAD65, IA2Ab, ZnT8, etc.) 

DIABETES 

“PRE”-
DIABETES 

GENETIC 
PREDISPOSITION 

INSULITIS 
BETA-CELL INJURY  
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approach to combination therapy for interdicting the type
1 diabetes disease process is schematically depicted. This
potential approach involves the use of a number of agents,
including 1) an anti-inflammatory agent, such as an anti–
interleukin-1� or an anti-tumor necrosis factor, since
considerable evidence exists that pancreatic islets are
engulfed by an inflammatory response in both type 1 and
type 2 diabetes (29); 2) transient use of a potent immuno-
modulator such as an anti-CD3 (21,22), or an anti-CD20
monoclonal antibody (23), or a co-stimulation blocker; 3)

provision of an antigen-specific therapy such as GAD
vaccine (24), and/or oral insulin (30), or another antigen-
specific approach, perhaps continued indefinitely; 4) en-
hancement of the protective immune response, perhaps by
stimulation with granulocyte colony stimulation factor
(31) or the infusion of regulatory T-lymphocytes (T-regs)
(32); and 5) the addition of agents that may enhance �-cell
function and potentially stimulate repair, regeneration, or
neogenesis of �-cells, such as glucagon-like peptide 1 (33),
exenatide (34), islet neogenesis–associated peptide, or

TABLE 1
Consortia studying type 1 diabetes

Consortium Full name of consortium Consortium activities Consortium website

T1DGC Type 1 Diabetes Genetics
Consortium

T1DGC was established with the primary goal of
organizing international efforts to identify genes that
determine an individual’s risk of type 1 diabetes (2).

www.t1dgc.org

TEDDY The Environmental
Determinants of
Diabetes in the Young

The primary objective(s) of TEDDY is the identification of
infectious agents, dietary factors, or other
environmental exposures that are associated with
increased risk of autoimmunity and type 1 diabetes (3).

teddy.epi.usf.edu

nPOD Network for Pancreatic
Organ donors with
Diabetes

The mission of nPOD is to characterize pancreata and
related tissues from organ donors with type 1 diabetes
or who are islet autoantibody positive and utilize the
tissues to address key immunological, histological, viral,
and metabolic questions related to how type 1 diabetes
develops (4).

www.jdrfnpod.org

SEARCH Search for Diabetes in
Youth

SEARCH identifies cases of diabetes in children/youth
�20 years of age in six geographically dispersed
populations that encompass the ethnic diversity of the
United States (5).

www.searchfordiabetes.org

TrialNet Type 1 Diabetes TrialNet TrialNet is an international network conducting studies
that will improve the understanding of type 1 diabetes
disease development and test interventions to interdict
the type 1 diabetes disease process, particularly
strategies for type 1 diabetes prevention (6).

www.diabetestrialnet.org

ITN Immune Tolerance
Network

ITN is an international consortium dedicated to the
clinical evaluation of novel tolerogenic approaches for
the treatment of autoimmune diseases (including type 1
diabetes), asthma, and allergic diseases, and the
prevention of graft rejection (7).

www.immunetolerance.org

TRIGR Trial to Reduce IDDM in
the Genetically at Risk

TRIGR is testing whether weaning to a casein hydrolysate
formula during the first 6–8 months of life—in place of
cow’s milk-based formula—reduces the incidence of
autoimmunity and type 1 diabetes in genetically
susceptible newborn infants (8).

trigr.epi.usf.edu/

ICRs Islet Cell Resource
Centers

ICRs’ goals are: 1) to provide high-quality islets for use in
transplantation; 2) to optimize characterization of
quality and effectiveness of islets transplanted into
patients; and 3) to provide islets for basic science
studies (9).

icr.coh.org/

CITR Collaborative Islet
Transplant Registry

CITR is expediting progress and promoting safety in islet
transplantation through the collection, analysis, and
communication of comprehensive and current data on
all such transplants performed in North America (10).

www.citregistry.org

CIT Clinical Islet
Transplantation
Consortium

This consortium is implementing a program of clinical
studies, accompanied by mechanistic studies, in islet
transplantation with or without accompanying kidney
transplantation, for the treatment of type 1
diabetes (11).

www.isletstudy.org

DirecNet Diabetes Research in
Children Network

DirecNet is investigating the potential use of glucose
monitoring technology and its impact on the
management of type 1 diabetes in children (12).

public.direc.net/

EDIC Epidemiology of Diabetes
Interventions and
Complications

EDIC is studying the clinical course and risk factors
associated with long-term complications of type 1
diabetes in the Diabetes Control and Complications
Trial (DCCT) cohort (13).

www.bsc.gwu.edu/bsc/
studies/edic.html
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human proislet peptide-2B (35). Such a combination ap-
proach involves many challenges, including projecting the
timing and duration of use of each of the components,

concerns over additive toxicities, regulatory hurdles, and
ethical considerations. Nonetheless, similar combination
approaches have been required both for the prevention of
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organ rejection and for the treatment of many malignan-
cies. Even in type 1 diabetes, the longest term beneficial
effect has been seen with an aggressive combination
approach, as noted above (25). Nonetheless, the accept-
able cost-to-benefit ratio in type 1 diabetes currently is
different from that in organ rejection and malignancy; thus,
more caution may be warranted.

It is interesting that intervention studies, particularly
those that show beneficial effects, have challenged prevail-
ing views regarding the pathogenesis of type 1 diabetes.
An example is the finding that B-lymphocyte depletion
with rituximab results in slowing of the decline of �-cell
function (23). This suggests that �-cell destruction might
also depend on B-lymphocyte antigen capture and presen-
tation, which is associated with determinant spreading. If
that is the case, early intervention with a B-lymphocyte–
depleting strategy may delay the evolution of type 1
diabetes.
Replacement or regeneration of �-cells. Pancreatic
transplantation, usually in the context of renal transplan-
tation with the obligatory immunosuppression needed for
the latter, has been applied successfully in patients with
type 1 diabetes for over two decades. Indeed, when
patients with type 1 diabetes develop end-stage renal
disease, the most effective intervention strategy is com-
bined kidney and pancreas or islet transplantation. Iso-
lated islet cell transplantation has proven to be an effective
treatment modality for patients with type 1 diabetes who
suffer from hypoglycemia unawareness resulting in fre-
quent emergency room visits (10). Both approaches to
�-cell replacement result in dramatic improvements in
prevailing glycemia, yet both are limited by the need for
immune system alteration to prevent both allorejection
and recurrent autoimmunity, as well as the limited avail-
ability of tissue.

The immunologic problems partly may be addressed in
an identical manner to that discussed above. In addition, it
may be possible to protect cells used for �-cell replace-
ment by immunoisolation (Fig. 5) (36,37). To that end,
various encapsulation methods have been attempted for
many years. More recently, progress has been made with
nanoencapsulation using conformal approaches to fabri-
cate polymer capsules. Biomaterial scaffolds have also
been used to provide mechanical stability and three-
dimensional distribution of �-cells to reduce stress and
improve nutrient distribution (38). Implantable biohybrid
devices can be used both to protect cells and to provide
localized delivery of immunomodulatory drugs, thereby
limiting systemic toxicity (39).

The availability of an adequate source of cells for �-cell
replacement has been a vexing problem, but one for which
there are a host of potentially innovative solutions (40).
Clearly, cadaveric organ donation cannot meet the poten-
tial needs, especially since in the U.S. in 2009 there were
but 8,021 organ donors with only 1,739 pancreata col-
lected. Although distal pancreatectomy for either pancreas
or islet transplantation has been done, this is not likely a
robust source of tissue. Xenotransplantation with porcine
islets has been successful in nonhuman primates (41,42)
and has been attempted in human beings. A variety of stem
cells—embryonic, mesenchymal, bone marrow, cord
blood, adipocyte-derived, and others—have been ex-
plored. There has been progressive improvement in this
field, first with insulin-expressing cells being created, then
with insulin-producing cells being developed, and finally
with the generation of glucose-responsive insulin-secret-
ing cells (43). Another approach to modifying cells is by
protein transduction domain strategies, whereby several
proteins can be delivered simultaneously to targeted intra-
cellular compartments with their presence in the medium
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FIG. 4. Potential scheme for combination therapy to interdict the type 1 diabetes disease process. Such a combination might include an
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only as long as required and with maximum transfection
efficiency (44). Although much work still remains, there
has been substantial progress in the generation of “�-cells”
from stem cells, such that these cells demonstrate insulin
gene expression, insulin synthesis and processing, insulin
packaging and storage in granules, glucose sensing, and
appropriate release of insulin and C-peptide.

Alternatively, other types of existing adult cells may be
reprogrammed or transdifferentiated into �-cells. In ani-
mal systems, functional insulin-producing cells have been
generated from pancreatic �-cells (45), pancreatic ductal
cells (46), pancreatic acinar cells (47), and from human
liver cells (48). A recent study generated pluripotent stem
cells from fibroblasts of patients with type 1 diabetes (49).
In theory, one could envision obtaining such tissue (such
as liver) by biopsy, manipulating that tissue in the labora-
tory to convert it to insulin-producing cells, and then
reinfusing them as an autotransplant back into the indi-
vidual from whom the tissue was obtained.

An alternative to external differentiation in vitro is to
stimulate neogenesis or regeneration of insulin-secreting
tissue in vivo. As noted above, agents that may enhance
�-cell function and potentially stimulate repair, regenera-
tion, or neogenesis of �-cells include glucagon-like peptide
1 (33), exenatide (34), islet neogenesis-associated peptide,
and human proislet peptide-2B (35). They clearly have
demonstrated the ability to do so in rodents and/or in vitro,
although the potential for regeneration or neogenesis of
�-cells in human beings is still unclear. It should also be
noted that, in conjunction with adequate immunomodula-
tion, exenatide has been used in individuals receiving a
second islet transplant (50) with remarkable success in

preserving posttransplant islet function and maintaining
insulin independence, especially if the drug is adminis-
tered also in the peritransplant period and not just when
islet function is beginning to decline at variable times
following transplantation. Yet some investigators have
raised concern that the improved �-cell function seen with
exenatide in type 2 diabetes is not sustained after discon-
tinuation of exenatide, and they have assumed that this is
indicative of the lack of an effect on islet mass. Although
islet function serves as a surrogate of islet mass in the
absence of an independent measure of islet mass, it may
be that continued exposure to the drug is required for
improved islet function even after mass has been ex-
panded. Thus the interpretation of such experiments is
complex, and they cannot be used to conclude that these
agents do not expand islet cell mass in human beings. In
addition, the benefit of exenatide could go well beyond an
insulinotrophic, �-cell–enhancing effect. This is because
an antiapoptotic, anti-inflammatory, and immunomodula-
tory effect has been associated with exenatide treatment
(51).
Preserving �-cell function and mass. A successful
approach to the prevention or cure of type 1 diabetes
requires that �-cell function and mass be preserved. This is
true both for native �-cells, regenerated �-cells, and for
any cells used to replace �-cells. From the discussion
above, there are at least three components to preserving
�-cell function and mass. These include: 1) abrogating or
controlling the immune response, both in terms of auto-
immunity and allorejection (if a nonidentical source of
�-cells is used); 2) protecting cells used for �-cell replace-
ment by immunoisolation; and 3) using pharmacologic
agents to enhance �-cell function and potentially stimulate
repair, regeneration, or neogenesis of �-cells. The appro-
priate manner of use of such strategies remains to be
determined. For example, it may be that it is necessary to
arrest autoimmunity and induce immune regulation or
immune tolerance prior to replacing or regenerating
�-cells. Alternatively, it may be possible to apply such
strategies simultaneously, such as combined islet cell and
hematopoietic stem cell transplantation to induce chimer-
ism and graft tolerance (52).
Conclusions. Although considerable work remains to be
accomplished, the potential to prevent and to cure type 1
diabetes is clearly within reach. The clinical trials neces-
sary to demonstrate this must be well designed, ade-
quately powered, carefully controlled, and vigilantly
conducted. Depending on the modality being tested and
the population being used for such trials, sample sizes
likely will require a collaborative, cooperative, multicenter
approach. The diabetes community of scientists, clinical
trialists, patients, families, funding agencies, and regula-
tory agencies must work together in a cooperative and
collegial manner if we are to be successful in our efforts to
prevent and cure type 1 diabetes. Approaches that are
more aggressive than those used in the past, including
combination approaches and novel interventions, will
likely be needed. Despite current impediments, the
progress in recent years has been greater than in preced-
ing decades, and together, we are uniquely poised to
address existing challenges and conquer type 1 diabetes.
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