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Abstract
Introduction The advent of immune checkpoint blockade (ICB) has led to significantly improved disease outcome in lung 
adenocarcinoma (ADC), but response of ALK/EGFR-positive tumors to immune therapy is limited. The underlying immune 
biology is incompletely understood.
Methods We performed comparative mRNA expression profiling of 31 ALK-positive, 40 EGFR-positive and 43 ALK/
EGFR-negative lung ADC focused on immune gene expression. The presence and levels of tumor infiltration lymphocytes 
(TILs) as well as fourteen specific immune cell populations were estimated from the gene expression profiles.
Results While total TILs were not lower in ALK-positive and EGFR-positive tumors compared to ALK/EGFR-negative 
tumors, specific immunosuppressive characteristics were detected in both subgroups: In ALK-positive tumors, regulatory 
T cells were significantly higher compared to EGFR-positive (fold change: FC = 1.9, p = 0.0013) and ALK/EGFR-negative 
tumors (FC = 2.1, p = 0.00047). In EGFR-positive tumors, cytotoxic cells were significantly lower compared to ALK-positive 
(FC =  − 1.7, p = 0.016) and to ALK/EGFR-negative tumors (FC =  − 2.1, p = 2.0E-05). A total number of 289 genes, 40 part 
of cytokine–cytokine receptor signaling, were differentially expressed between the three subgroups. Among the latter, five 
genes were differently expressed in both ALK-positive and EGFR-positive tumors, while twelve genes showed differential 
expression solely in ALK-positive tumors and eleven genes solely in EGFR-positive tumors.
Conclusion Targeted gene expression profiling is a promising tool to read out tumor microenvironment characteristics from 
routine diagnostic lung cancer biopsies. Significant immune reactivity including specific immunosuppressive characteristics 
in ALK- and EGFR-positive lung ADC, but not a total absence of immune infiltration supports further clinical evaluation 
of immune-modulators as partners of ICB in such tumors.

Keywords Lung adenocarcinoma · ALK fusion · EGFR mutation · Immunotherapy · Immune checkpoint blockade · 
Immunosuppression

Abbreviations
ADC  Adenocarcinoma
ALK-positive tumor  Tumor with activating ALK 

gene fusion

ALK/EGFR-negative tumor  Tumor that is neither ALK-
positive nor EGFR-positive

EGFR-positive tumor  Tumor with activating 
somatic mutation in EGFR

FC  Fold change
ICB  Immune checkpoint blockade
LTR  Long-term responders (at 

least one year after start of 
ICB)

NSCLC  Non-small cell lung cancer
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RP  Rapid progressors (within 
two months after start of 
ICB)

rho  Spearman correlation 
coefficient

TILs  Tumor-infiltrating 
lymphocytes

TKI  Tyrosine kinase inhibitor
TMB  Tumor mutational burden
TME  Tumor microenvironment
Tregs  Regulatory T cells

Introduction

Non-small cell lung cancer (NSCLC) is the leading cause 
of cancer-related mortality worldwide [1]. Despite major 
advances in therapeutic options, the majority of patients are 
diagnosed at advanced stage with a median survival rate 
below 2 years. Genetic profiling is of key importance for 
treatment decision in NSCLC, since targeted therapies, 
mainly tyrosine kinase inhibition (TKI), have shown dra-
matically superior efficacy as comparted to standard of care 
chemotherapy in oncogene-addicted tumors [2]. EGFR 
mutations and ALK fusions represent the most frequent targ-
etable alterations with a prevalence of, respectively, 10–20% 
and 3–5% in a Caucasian population with lung adenocarci-
nomas (ADC) [3].

While the advent of immune checkpoint blockade (ICB) 
led to significant advances in disease control and survival 
of driver-negative NSCLC, it quickly became apparent that 
ALK- and EGFR-positive tumors show limited response to 
ICB. For example, even despite encouraging early results 
from the Keynote-001 trail suggesting potential efficacy 
of pembrolizumab in TKI-naïve EGFR-mutated NSCLC, 
these were invalidated in a subsequent phase 2 trial [4, 5]. 
Similarly, Checkmate 012 [6], a phase 1 trial investigating 
first-line nivolumab monotherapy or in combination with 
standard therapies for NSCLC demonstrated no meaning-
ful activity in EGFR-mutated tumors. The same trial also 
investigated the combination of nivolumab with platinum-
based chemotherapy and showed reduced activity in EGFR-
mutant compared to EGFR-wildtype tumors [7]. Further-
more, several clinical trials combining ICB and TKI resulted 
in significant toxicity without a signal of improved activity 
above TKI [7–9]. The only exception so far has been the 
IMpower150 study, which demonstrated a survival ben-
efit for TKI-pretreated patients with ALK/EGFR-positive 
NSCLC when the PD-L1 inhibitor atezolizumab was com-
bined with both the antiangiogenic agent bevacizumab and 
chemotherapy [10, 11].

The biological underpinnings for ICB primary resist-
ance in patients with EGFR-/ALK-positive NSCLC are 

incompletely understood. Lower tumor mutational burden 
(TMB), for example, in tumors of never smokers [12, 13], 
a different nature of PD-L1 expression (intrinsic, induced 
by oncogenic signaling rather than tumor-infiltrating lym-
phocytes) [14, 15] and features of the tumor microenvi-
ronment (TME) [16–19], possibly influenced by MAPK-
signaling [20], have all been suggested as potential causes. 
The TME is increasingly recognized as crucial parameter 
for the efficacy of immunotherapies in general, but bio-
logical data, especially for the less frequent ALK-positive 
tumors, are limited [21].

We employed the NanoString nCounter technology 
and the PanCancer Human IO 360 Panel to investigate 
the TME in 114 formalin-fixed and paraffin-embedded 
(FFPE) biopsies of clinically annotated ALK-positive, 
EGFR-positive and ALK/EGFR-negative advanced lung 
ADC. We also analyzed gene expression data of earlier 
stage, resectable tumors from the TCGA lung ADC cohort.

Material and methods

Study cohort

The retrospective study cohort included 31 ALK-positive, 
40 EGFR-positive and 43 ALK/EGFR-negative lung ADC 
patients diagnosed and treated at the Heidelberg Univer-
sity Hospital between 2007 and 2020 (Table 1). ALK and 
EGFR status were determined at the Heidelberg Insti-
tute of Pathology using our routine diagnostic workflow 
of combined DNA and RNA sequencing starting from 
formalin-fixed and paraffin-embedded (FFPE) lung biop-
sies [22]. Tumors harboring activating EGFR mutations 
were classified as EGFR-positive, and tumors harboring 
oncogenic ALK fusions were classified as ALK-positive 
(Suppl. 1).

EGFR/ALK-positive patients were therapy-naïve, i.e., 
received neither TKI nor chemo- or immunotherapy prior 
to biopsy. ALK/EGFR-negative patients underwent biopsy 
immediately before start of ICB treatment and were further 
subdivided according to the subsequent ICB response in 
16 long-term responders (LTR; durable response to ICB 
of 12 months or more), 21 rapid progressors (RP; disease 
progression within two months of ICB start) and 6 patients 
with an intermediate duration of response to ICB (IR). For 
all patients, only biopsies from the primary (lung) tumor 
with sufficient available mRNA for expression profiling were 
analyzed. The study was approved by the ethics committee 
of Heidelberg University (S-145/2017). The subcohort of 
ALK/EGFR-negative tumors was also analyzed in a study 
comparing the gene expression differences between LTR and 
RP [23].
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TCGA lung adenocarcinoma cohort

Gene expression and clinical data of the TCGA lung ADC 
cohort (LUAD) were downloaded from the PanCanAtlas 
webpage of the Genomic Data Commons repository (https:// 
gdc. cancer. gov/ about- data/ publi catio ns/ panca natlas). Only 
samples diagnosed as lung adenocarcinoma and of the type 
“primary solid tumor” (code: 01) were included. Informa-
tion on ALK fusion status was obtained from a gene fusion 
analysis based on RNA-Seq data [24]. The TCGA cohort 
included 5 ALK-positive, 57 EGFR-positive and 439 ALK/
EGFR-negative lung ADC (Suppl. 2).

Targeted gene expression profiling

Targeted mRNA expression profiling was conducted 
on the NanoString nCounter gene expression platform 
(NanoString Technologies, Seattle, WA) using a 770-gene 
panel (PanCancer Human IO 360 Panel) focused on genes 
connected with the interplay between tumor, tumor micro-
environment and immune response in cancer. Per sample, 
100 ng of total RNA in a final volume of 5 μl was mixed 
with a 3′ biotinylated capture probe and a 5′ reporter probe 
tagged with a fluorescent barcode sequence from the Pan-
Cancer IO 360 gene expression code set. Probes and target 
transcripts were hybridized at 65 °C for 18 h according to 
the manufacturer’s recommendations. Hybridized samples 
were run on the NanoString nCounter preparation station 

using the high-sensitivity protocol, in which excess cap-
ture and reporter probes are removed and transcript-spe-
cific complexes are immobilized on a streptavidin-coated 
cartridge. The samples were scanned at maximum resolu-
tion on the nCounter Digital Analyzer.

Immunohistochemistry

For detection of FOXP3 and CD8 protein expression, 3 μm 
thick paraffin sections were prepared. Deparaffinization 
and tissue staining were performed using a Benchmark 
Ultra IHC Staining module according to standard pro-
tocols (FOXP3 Monoclonal Antibody, clone 236A/E7, 
eBioscience, Invitrogen, Thermo Fisher Scientific Inc., 
Waltham, MA and CONFIRM anti-CD8 Rabbit Mono-
clonal Primary Antibody, clone SP57, Roche, Mannheim, 
Germany). Staining was visualized using the Vectastain 
elite ABC detection system (Vector, Burlingame, CA, 
USA) and using 3,3′-Diaminobenzidine (Optiview DAB 
IHC Detection Kit or ultraView Universal DAB Detec-
tion Kit, Ventana, Roche, Mannheim, Germany) as chro-
mogen. Hematoxylin was used for counterstaining of 
cell nuclei. Evaluation and scoring were performed by 
an expert pathologist using the image analysis software 
QuPath (Open Source Digital Pathology, https:// github. 
com/ qupath).

Table 1  Clinicopathological 
characteristics of the study 
cohort comprising 114 lung 
adenocarcinomas

* Long-term responders
† Intermediate progressors
‡ Rapid progressors

Mutation subtype ALK-positive EGFR-positive ALK/EGFR-negative

Number 31 40 43
Age: median (min.- max.) 58 (33–90) 69.5 (46–83) 64 (41–89)
Sex:
 Male 15 (48%) 7 (18%) 21 (49%)
 Female 16 (52%) 33 (83%) 22 (51%)

Smoking history:
 Smoker 9 (29%) 15 (38%) 41 (95%)
 Non-smoker 17 (55%) 25 (63%) 2 (5%)
 Unknown 5 (16%) 0 (0%) 0 (0%)

Tumor stage:
 I 0 (0%) 0 (0%) 0 (0%)
 II 1 (3%) 4 (10%) 0 (0%)
 III 7 (23%) 10 (25%) 0 (0%)
 IV 23 (74%) 26 (65%) 43 (100%)

Prior therapy:
 Naïve 31 (100%) 40 (100%) 26 (60%)
 Chemotherapy 0 (0%) 0 (0%) 17 (40%)

Response to ICB no ICB no ICB 16  LTR*, 6  IR†, 21  RP‡

https://gdc.cancer.gov/about-data/publications/pancanatlas
https://gdc.cancer.gov/about-data/publications/pancanatlas
https://github.com/qupath
https://github.com/qupath
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Data analysis

Statistical analysis was performed using the programming 
language R. Sample normalization of the gene expression 
data was performed by fitting a linear model to negative and 
positive controls and subsequent housekeeping gene nor-
malization. For the latter, the 20 panel genes with the lowest 
coefficient of variation and an expression level of at least 100 
in the TCGA lung ADC dataset were used as housekeepers 
(AKT1, API5, DNAJC14, EIF2B4, ELA, ERCC3, GLUD1, 
HDAC3, HMGB1, IFNAR1, MLH1, OAZ1, PUM1, RIPK1, 
SF3A1, STAT3, TBC1D10B, TLK2, TMUB2 and UBB). The 
gene expression profile of each sample was scaled by the 
median expression level of the housekeeping genes. Gene 
expression data were log2-transformed prior to statistical 
analysis and visualization.

The abundance of 14 immune cell populations (B cells, 
CD45+ cells, CD56dim NK cells, CD8+ T cells, cytotoxic 
cells, dendritic cells, exhausted CD8+ T cells, macrophages, 
mast cells, neutrophils, NK cells, T cells, Th1 cells and Treg 
cells) was estimated from the mRNA expression of marker 
genes as described and validated before [25]. The abundance 
of cell populations was reported on log2 scale. The “immu-
nological distance” between two tumors was defined as the 
Manhattan distance between in the space of the 14 immune 
cell populations. Analyses were carried out on the following 
two levels: (1) on the level of the abundance of 14 immune 
cell populations and (2) on the level of the mRNA expres-
sion of 770 genes.

For heatmap displays, each of the cell populations (or 
genes) was centered (but not scaled) with respect to the 
mean abundance (or mean mRNA expression) over the sam-
ples. Hierarchical clustering was performed using Pearson 
correlations as similarity measure and the average linkage as 
measure of distances between clusters. Correlations between 
clusters and genetic subgroups were assessed using Fisher’s 
exact test.

Differences between ALK-positive, EGFR-positive and 
ALK/EGFR-negative tumors were assessed for significance 
using the Kruskal–Wallis as omnibus test and the Wilcoxon 
test as post hoc test. The Benjamini–Hochberg procedure 
was used for p value correction, and lists of cell popula-
tions or genes were compiled controlling the false discovery 
rate (FDR) at 5%. KEGG Mapper was used to visualize the 
cytokine–cytokine receptor network (pathway hsa04060) 
[26].

Results

The study cohort comprised 31 ALK-positive, 40 EGFR-
positive and 43 ALK/EGFR-negative lung ADC patients 
(Table 1). Biopsies of each of the 114 primary tumors 

underwent gene expression profiling with an assay of 770 
genes focused on immune-related genes. The abundance of 
14 immune cell populations in the TME was estimated using 
an already established method [25].

Overall level of immune cell infiltration

The levels of the immune cell populations were grouped by 
hierarchical clustering and visualized in a heatmap (Fig. 1a). 
The markers of cytotoxic cells, T cells, CD8+ T cells and 
exhausted CD8+ T cells clustered tightly together (all 
pairwise Spearman correlations ρ > 0.77). Moreover, mac-
rophages and CD45+ cells showed a strong positive correla-
tion (ρ = 0.67). The tumors clustered together in two main 
immunological groups, “cold” tumors (n = 58) and “hot” 
tumors (n = 56). The immunological groups did not corre-
late with the mutation type (ALK-positive, EGFR-positive or 
ALK/EGFR-negative) of the tumors (p = 0.82). Furthermore, 
the immunological groups did neither correlate with the type 
of ALK fusion (V1 vs. V3, p = 1) nor with the type of EGFR 
mutation (Ex19del vs. L858R, p = 0.69).

In line with the cluster analysis, neither the levels of 
CD45+ cells nor of total TILs (calculated as in [25]) cor-
related with the mutation type (p = 0.47 and p = 0.11). 
Additionally, we split the ALK/EGFR-negative tumors in 
long-term responders (LTR) and in rapid progressors (RP) 
with respect to ICB and carried out a four-group-analysis of 
ALK-positive tumors, EGFR-positive tumors, LTR and RP. 
Both, CD45+ cells and total TILs were significantly higher 
in LTR, but not in RP compared to EGFR-positive tumors 
(Fig. 1b, c). Neither CD45+ cells nor total TILs showed sig-
nificant differences when comparing LTR or RP with ALK-
positive tumors.

To test whether ALK/EGFR-positive tumors are “immu-
nologically closer” to RP than to LTR, we operationalized 
the concept of immunological similarity by the introduc-
tion of an immunological distance based on the abundance 
of the 14 immune cell populations. It turned out that both 
ALK-positive tumors and EGFR-positive tumors were sig-
nificantly closer to LTR than to RP tumors falsifying the 
hypothesis (Suppl. 3). This observation suggested distinct 
rather than common immunosuppressive features of the 
three subgroups, a hypothesis that we further addressed by 
comparative analyses of immune cell populations and gene 
expression profiles between the subgroups.

Specific immune cell populations

Seven of 14 immune cell populations were significantly 
different in ALK-positive, EGFR-positive and ALK/EGFR-
negative tumors using omnibus testing (Fig. 2a, marked 
by*). Regulatory T cells (Tregs) were significantly higher 
in ALK-positive tumors compared to ALK/EGFR-negative 
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tumors (FC = 2.1, p = 0.00047). Cytotoxic cells, CD8+ T 
cells and exhausted CD8+ T cells were significantly lower 
in EGFR-positive tumors compared to ALK/EGFR-negative 
tumors (FC =  − 2.1, p = 1.1E-05; FC =  − 1.9, p = 0.0037 
and FC =  − 1.6, p = 0.0045). Here, ‘cytotoxic cells’ (mark-
ers genes: PRF1, GZMA, GZMB, GZMH, GNLY, CTSW, 
KLRB1, KLRD1, KLRK1 and NKG7) refer to a broader cell 

population of granzyme releasing cells including cytotoxic 
T cell and cytotoxic NK cells compared to the more spe-
cific population of ‘CD8+ T cells’ (marker genes: CD8A 
and CD8B). Tregs, neutrophils, cytotoxic cells, exhausted 
CD8+ T cells and macrophages were significantly higher in 
ALK-positive compared to EGFR-positive tumors (FC = 1.9, 
p = 0.0013; FC = 1.8, p = 0.00078; FC = 1.7, p = 0.015; 

Fig. 1  Immunological analysis of 114 lung adenocarcinomas by 
targeted gene expression profiling. a Clustering of the tumors by 
the abundance of 14 immune cell populations. b CD45+ cells were 
higher in EGFR/ALK-negative tumors that showed durable ICB 
response (long-term responders, LTR) compared to EGFR/ALK-
negative tumors that progressed rapidly (rapid progressors, RP) 

and compared to EGFR-positive tumors. Levels of CD45+ cells 
between ALK-positive, EGFR-positive and rapid progressing ALK/
EGFR-negative tumors did not differ significantly. IR = intermedi-
ate responders. c Similar as in B but for total TILs. Distributions are 
shown with median, lower and upper quartile
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FC = 1.6, p = 0.017 and FC = 1.5, p = 0.00074). Thus, ALK-
positive tumors stood out by significantly higher Tregs com-
pared to EGFR-positive and ALK/EGFR-negative tumors, 
while EGFR-positive tumors stood out by significantly lower 

cytotoxic cells and exhausted CD8+ T cells compared to the 
two other subgroups.

In two more analyses, we investigated subgroups of 
the ALK/EGFR-negative tumors that were homogeneous 

Fig. 2  Levels of specific immune cell populations differ between 
ALK-positive, EGFR-positive and ALK/EGFR-negative lung adeno-
carcinomas. a Significantly higher Tregs in ALK-positive tumors 
compared to ALK/EGFR-negative tumors. Significantly lower cyto-
toxic cells, CD8+ T cells and exhausted CD8+ T cells in EGFR-pos-
itive tumors compared to ALK/EGFR-negative tumors. Significantly 
higher Tregs cells, neutrophils, macrophages, exhausted CD8+ T 
cells and cytotoxic cells in ALK-positive compared to EGFR-positive 

tumors. * = significant in omnibus test. b Significantly higher regu-
latory T cells in ALK-positive tumors compared to EGFR-positive 
tumors and to ALK/EGFR-negative tumors that progressed rapidly 
or intermediately after ICB. c Significantly lower cytotoxic cells in 
EGFR-positive tumors compared to ALK-positive tumors, to ALK/
EGFR-negative tumors that showed durable ICB response and to 
ALK/EGFR-negative tumors that progressed rapidly under ICB
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regarding (1) prior treatment, (2) the duration of response 
to immune therapy, (3) smoking history and (4) TP53 muta-
tion status. Firstly, the results obtained for the complete 
group of ALK/EGFR-negative tumors stayed correct for 
the subgroup of treatment-naïve tumors: Tregs were higher 
in ALK-positive cancer compared to treatment-naïve ALK/
EGFR-negative cancer (FC = 2.3, p = 0.00015). Cytotoxic 
cells, CD8+ T cells and exhausted CD8+ T cells were lower 
in EGFR-positive cancer compared to treatment-naïve ALK/
EGFR-negative cancer (FC =  − 2.2, p = 4.1E-05; FC =  − 2.0, 
p = 0.01 and FC =  − 1.7, p = 0.0082). Secondly, the group of 
ALK/EGFR-negative tumors was split in long-term respond-
ers (LTR) and rapid progressors (RP) under ICB (Fig. 2b, c, 
Suppl. 4). Tregs were significantly higher in ALK-positive 
tumors compared to RP (FC = 2.9, p = 0.00069), while a 
non-significant trend to higher levels (FC = 1.4, p = 0.094) 
was observed in comparison to LTR. Cytotoxic cells were 
significantly lower in EGFR-positive tumors compared to 
both RP and LTR (FC =  − 1.9, p = 0.0043 and FC =  − 2.9, 
p = 1.6E-06). Thirdly, levels of Tregs and cytotoxic cells did 
not differ significantly between smokers and non-smokers, 
while Tregs were enhanced in both ALK-positive tumors of 
smokers and non-smokers and cytotoxic cells were depleted 
in both EGFR-positive tumors of smokers and non-smokers 
(Suppl. 5A/B). Likewise, TP53 mutations did not confound 
the regulation patterns of Tregs and cytotoxic cells detected 
in the study cohort (Suppl. 5C/D).

Next, we investigated the validity of the findings in a 
cohort of earlier lung ADC (Suppl. 2). Of the three immune 
cell populations that were significantly reduced in EGFR-
positive tumors compared to ALK/EGFR-negative tumors, 
the reduction of cytotoxic cells and CD8+ T was also found 
in the TCGA cohort (FC =  − 1.6, p = 0.015 and FC =  − 1.6, 
p = 0.0018). A significantly higher abundance of Tregs in 
ALK-positive tumors was not detected in the TCGA cohort, 
but this analysis was heavily underpowered with only five 
ALK-positive cases available.

FOXP3 and CD8 protein expression

Representative example cases of the study cohort were ana-
lyzed using immunohistochemistry (Fig. 3). FOXP3 and 
CD8 protein expression were quantified by counting the pos-
itive cells in relation to all cells (tumor, immune and other 
cells) in the tissue section. The percentage of FOXP3-pos-
itive cells was lower than 4% in all of the twenty analyzed 
cases. We observed a diffuse distribution FOXP3-positive 
immune cells in the intra- and peritumoral stroma, while we 
did not observe any clusters of two or more adjacent FOXP3-
positive cells. The percentage of FOXP3 was significantly 
higher (p = 0.029) in the ALK-positive cases (mean: 1.84%) 
compared to the ALK-negative cases (mean: 0.96%). The 
percentage of CD8-positive cells ranged between virtually 

0% and 60% in the ten analyzed example cases. CD8-pos-
itive immune cells showed formation of small groups as 
well as of larger dense clusters. The percentage of CD8-
positive cells was significantly lower (p = 0.0065) in the 
EGFR-positive cases (mean: 9%) compared to the EGFR-
negative cases (mean: 40%). Altogether, the protein expres-
sion analysis confirmed enrichment of FOXP3-positive cells 
in ALK-positive cancer and depletion of CD8-postive cells 
in EGFR-positive cancer.

PD‑L1 expression

Levels of PD-L1 mRNA were analyzed in a four-group-anal-
ysis (Fig. 4a). PD-L1 mRNA expression was significantly 
lower in EGFR-positive tumors compared to the ALK-posi-
tive tumors (FC =  − 1.8, p = 0.00073) and compared to both 
groups of ALK/EGFR-negative tumors (LTR: FC =  − 2.7, 
p = 0.00077; RP: FC =  − 2.0, p = 0.01). Significant positive 
correlations with PD-L1 mRNA expression were observed 
for eight of the 14 immune cell populations, namely for cyto-
toxic cells (ρ = 0.45), CD8+ T cells (ρ = 0.38), exhausted 
CD8+ cells (ρ = 0.34), neutrophils (ρ = 0.33), T cells 
(ρ = 0.32), Th1 cells (ρ = 0.31), dendritic cells (ρ = 0.3) and 
Treg cells (ρ = 0.28).

Thus, by far the strongest correlation was observed 
between PD-L1 mRNA and cytotoxic cells (Fig. 4b). Partly, 
this correlation was induced by the incidence of low PD-L1 
expression and low abundance of cytotoxic cells in EGFR-
positive tumors and at the same time higher levels of both 
markers in ALK-positive and ALK/EGFR-negative tumors. 
Additionally, PD-L1 expression and cytotoxic cells corre-
lated positively within some of the subgroups, namely in 
ALK-positive tumors (ρ = 0.45, p = 0.012) and in ALK/
EGFR-negative tumors (ρ = 0.36, p = 0.02), but not EGFR-
positive tumors where the correlation was not significant.

Gene expression analysis

In omnibus testing, 289 of 770 investigated genes showed 
significantly different expression levels in ALK-posi-
tive, EGFR-positive and ALK/EGFR-negative tumors 
(FDR = 5%, Suppl. 6). In detail, 145 genes were differentially 
expressed between ALK-positive and ALK/EGFR-negative 
tumors, 122 genes were differentially expressed between 
EGFR-positive and ALK/EGFR-negative tumors, and 192 
genes were differentially expressed between ALK-positive 
and EGFR-positive tumors. The results could be partially 
confirmed by analyzing the independent TCGA cohort of 
early stage lung ADC with a match of 44 genes (30%), 63 
genes (52%) and 28 genes (15%) of the respective differen-
tially expressed genes. Confirmation rates were imperfect, 
but clearly above the random baseline of 5% corresponding 
to the p value threshold 0.05. A bias was expected, because 
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of the limited sample size (only five tumors with ALK 
fusions in the TCGA cohort), clinical differences between 
the in-house and the TCGA cohort (later stage vs. earlier 
stage tumors) and different analysis platforms (NanoString 
nCounter vs. RNA-Seq).

These were the four most significant gene expression 
changes detected by the omnibus test in the study cohort 
(Fig. 5a–d): VHL was overexpressed in ALK-positive tumors 

compared to both EGFR-positive tumors and ALK/EGFR-
negative tumors. EGFR was overexpressed in EGFR-positive 
tumors compared to both ALK-positive tumors and ALK/
EGFR-negative tumors. BAD showed the highest expres-
sion in ALK-positive tumors, an intermediate expression in 
EGFR-positive tumors and the lowest expression in ALK/
EGFR-negative tumors. VEGFB showed the same decreas-
ing expression pattern as BAD. The overexpression of EGFR 

Fig. 3  Immunohistochemical 
analysis of FOXP3 and CD8 
protein expression in repre-
sentative example cases of the 
study cohort. Positive cells 
were quantified as percentage 
of all (tumor and stroma) cells. 
a Comparison of ALK-positive 
tumors with high Treg mRNA 
marker and ALK-negative 
tumors with low Treg mRNA 
marker. The percentage of 
FOXP3-positive cells was 
significantly higher in the ALK-
positive tumors (mean: 1.84%) 
than in ALK-negative tumors 
(mean: 0.96%). b Compari-
son of EGFR-positive tumors 
with low cytotoxic cell mRNA 
marker and EGFR-negative 
tumors with high cytotoxic cell 
mRNA marker. The percent-
age of CD8-positive cells was 
significantly lower in the EGFR-
positive tumors (mean: 9%) 
compared to the EGFR-negative 
tumors (mean: 40%)
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in EGFR-positive tumors compared to ALK-positive and 
ALK/EGFR-negative tumors was also found in the TCGA 
cohort (FC = 2.2, p = 0.0097 and FC = 3.1, p = 3.1E-16), 
while we did not detect differential expression of the other 
three genes.

Analysis of the cytokine–cytokine receptor 
signaling network

Beyond the estimation of immune cell abundance in the 
TME, gene expression profiling offers the opportunity to 
gain insight into the regulation of immune response. Of 
294 genes annotated in the KEGG map of cytokines and 
cytokine receptors, 121 genes (41%) were covered by the 
used targeted expression assay. Of these, 40 genes (33%) 
were differentially expressed, 17 between ALK-positive and 
ALK/EGFR-negative tumors, 16 between EGFR-positive 
and ALK/EGFR-negative tumors and 26 between ALK-
positive and EGFR-positive tumors (Fig. 5e). Compared to 
ALK/EGFR-negative tumors, five genes were differently 
expressed in both ALK-positive and EGFR-positive tumors, 
while twelve genes showed differential expression solely in 
ALK-positive tumors and eleven genes showed differen-
tial expression solely in EGFR-positive tumors (Fig. 5f). 
We assigned the changes to the map of the interaction of 
cytokines and receptors (Suppl. 7).

IL2, an interferon that is important for the prolifera-
tion of T and B lymphocytes and in particular for the dif-
ferentiation of CD4+ T cells to T helper cells and Tregs, 
was overexpressed in ALK-positive and in EGFR-positive 
tumors compared to ALK/EGFR-negative tumors (FC = 3.0, 
p = 0.00013 and FC = 3.2, p = 3.0E-05). IL11, an interferon 
that is known to stimulate the T cell-dependent development 
of immunoglobulin-producing B cells, was underexpressed 
in ALK-positive and in EGFR-positive tumors compared to 
ALK/EGFR-negative tumors (FC =  − 4.5, p = 2.7E-05 and 
FC =  − 3.4, p = 0.00024). Tumor necrosis factor TNFRSF4, 
suggested to play a role in CD4+ T cell response as well as in 
T cell-dependent B cell proliferation and differentiation, was 
strongly overexpressed in ALK-positive tumors compared to 
ALK/EGFR-negative tumors and compared to EGFR-pos-
itive tumors (FC = 5.2, p = 4.0E-07 and FC = 7.4, p = 1.0E-
07). FASLG, a cytokine that binds to the receptor FAS that 
transduces apoptotic signals in cells, was underexpressed in 
EGFR-positive tumors compared to ALK/EGFR-negative 
tumors and compared to ALK-positive tumors (FC =  − 3.5, 
p = 2.5E-05 and FC =  − 2.6, p = 0.0033), an observation pos-
sibly related to the lower abundance of cytotoxic cells in 
EGFR-positive tumors. Prolactin receptor (PRLR), which 
has been suggested as a therapeutic target in subgroups of 
breast and of prostate cancer [27], was overexpressed in 
EGFR-positive tumors compared to ALK/EGFR-negative 

Fig. 4  PD-L1 expression in ALK-positive, EGFR-positive and ALK/
EGFR-negative lung adenocarcinoma. a Significantly lower PD-L1 
mRNA expression in EGFR-positive tumors compared  to ALK-pos-
itive  tumors, ALK/EGFR-negative tumors that progressed rapidly 
after ICB and ALK/EGFR-negative tumors that responded durable to 

ICB. b PD-L1 mRNA expression and levels of cytotoxic cells cor-
related positively significantly in ALK-positive and ALK/EGFR-neg-
ative tumors, while the correlation was weak and non-significant in 
EGFR-positive tumors
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tumors and compared to ALK-positive tumors (FC = 3.8, 
p = 0.0004 and FC = 2.6, p = 0.013).

Discussion

About 45% to 50% of all NSCLC show a variety of mutually 
exclusive genetic driver lesions that can be therapeutically 
exploited. Collectively, EGFR mutations and ALK fusions 
represent the largest subgroup comprising approx. 20–25%. 
While these tumors respond well to TKIs, the efficacy of 
ICB is generally poor despite tremendous trial efforts in the 
last few years. These observations led to the hypothesis of a 
poorly immunogenic “immune desert” that prevents success-
ful application of ICB. Early studies of various sample sizes 
and disease stages investigating immune cell compositions 
of NSCLC by either immunohistochemistry or flow cytom-
etry revealed the presence of a broad range of infiltrating 
immune cells including T cells, NK cells, macrophages, B 
cells, dendritic cells and granulocytes [28–35].

Complementing and extending these studies, we com-
piled a retrospective cohort of carefully clinically annotated 
and confirmed ALK- and EGFR-positive NSCLC, molecu-
larly analyzed at the Heidelberg routine diagnostic labora-
tory [22]. We profiled routine diagnostic formalin-fixed and 
paraffin-embedded biopsies after mutational analysis by 
NGS using the NanoString nCounter technology [36]. This 
technology, which can be directly applied in a routine diag-
nostic setting and is tissue sparing, facilitates focused analy-
sis of mRNA profiles of 770 genes with fragmented nucleic 
acids as input material. It enables a multilayered analysis 
of specific immune cell types as well as expression levels 
of cytokines, cytokine receptors and other immune genes.

In the first analysis presented here, we identified two 
groups of immunologically “cold” and “hot” tumors, 
which were not restricted to a specific subgroup (ALK-
positive, EGFR-positive or ALK/EGFR-negative) or 

oncogene variant (e.g., ALK V1 vs. V3 or EGFR Ex19del 
vs. L858R). In the analysis of specific cell populations, 
different modifications of the TME were detected in 
ALK-positive and in EGFR-positive tumors compared to 
ALK/EGFR-negative tumors, respectively: While ALK-
positive cases displayed a Treg enriched TME, EGFR-
positive cases showed a cytotoxic cell-depleted TME 
suggesting different mechanisms that abrogate a strong 
and sustained immune cell response. These two different 
TMEs appear to be governed by specific immunomodula-
tory networks, which might be clinically exploitable [37]. 
Our results confirm other studies analyzing genetic sub-
types of NSCLC that found low infiltrates of T cells and 
CD8+ cells in EGFR-mutant tumors [17, 18]. By contrast, 
data for ALK-positive NSCLC are highly limited, a few 
groups identified low CD8 populations in these tumors 
as well [21, 38]. A more recent study presented reported 
changes in the immune TME associated with TKI inhibi-
tion [39].

For ALK-positive disease, we observed a significant 
downregulation of CXCL10 and CXCL11 negatively influ-
encing general T cell recruitment [40], while at the same 
time upregulating CXCL12 [41–43] as well as CCL22 
[44–46] which attract CXCR4+ Tregs. Consistent with the 
suggested regulation mechanism, T cell levels in the study 
cohort correlated significantly with CXCL10 and CXCL11 
(ρ = 0.44, p = 1.6E-06 and ρ = 0.47, p = 1.1E-07). Tregs cor-
related significantly with CCL22 (ρ = 0.64, p = 2.8E-14), 
while the correlation of Tregs and CXCL12 was not sig-
nificant. Downregulation of CXCL10 and CXCL11 was also 
observed in EGFR-positive disease.

Comparing ALK-positive and EGFR-positive disease, we 
noted strong upregulation of IL10 in ALK-positive tumors. 
IL10 is involved in negative feedback mechanisms which 
decrease the antigen-presenting activity of dendritic cells 
and inhibit cytotoxic functions and cytokine-release of T 
and NK lymphocytes [47]. Similarly, pleiotropic IL6 was 
upregulated, which was reported to negatively influence T 
cell response and innate immunity [48, 49]. Notably, the 
upregulation of CSF1 and CCL18—as identified in the TME 
of ALK-positive tumors —increases type 2 (M2) tumor-
associated macrophages (TAM) which have tumorigenic 
functions and are known to contribute to immune evasion 
[50, 51]. VEGFB was also upregulated in ALK-positive 
NSCLC. This might be explained by angiogenic effects but 
could also be due to potential immunosuppressive effects 
recently described for VEGF signaling [52, 53]. Interest-
ingly, we identified upregulation of some costimulatory mol-
ecules influencing T cell response, including TNFRSF4 (aka 
OX40 [54]). We also observed upregulation of TNFSF13 
(aka APRIL), a molecule influencing B cell development. 
The latter two phenomena may represent an unfruitful 

Fig. 5  Differential gene expression between ALK-positive, EGFR-
positive and ALK/EGFR-negative lung adenocarcinoma. a–d Expres-
sion levels of most significantly differentially expressed genes in 
omnibus testing: a VHL was overexpressed in ALK-positive tumors 
compared to both EGFR-positive tumors and ALK/EGFR-negative 
tumors. b EGFR was overexpressed in EGFR-positive tumors com-
pared to both ALK-positive tumors and ALK/EGFR-negative tumors. 
c BAD showed the highest expression in ALK-positive tumors, 
an intermediate expression in EGFR-positive tumors and the low-
est expression in ALK/EGFR-negative tumors. d VEGFB showed 
the same decreasing expression pattern as BAD. e–f Analysis of the 
cytokine–cytokine receptor system: e Fold changes of the 40 differen-
tially expressed of the 121 investigated cytokines and cytokine recep-
tors. f Twelve genes were differentially expressed exclusively between 
ALK-positive and ALK/EGFR-negative tumors, eleven genes were 
differentially expressed exclusively between EGFR-positive and 
ALK/EGFR-negative tumors, while five genes were differentially 
expressed in both comparisons. ↑ = upregulation, ↓ = downregulation

◂
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attempt to overcome a generally immune response deprived 
TME.

The proinflammatory cytokine IL2 was found to be 
upregulated in both ALK- and EGFR-positive tumors, 
while IL11, a member of the IL6 family, was found to 
be downregulated in both subgroups. IL2 is known to 
modulate the development and expansion of Tregs exert-
ing immunosuppressive effects [55]. High IL11 has been 
linked to cell proliferation and tumorigenesis in in vitro 
and in vivo models of NSCLC as well as to unfavorable 
prognosis [56].

EGFR-positive tumors feature a CD8+ deprived envi-
ronment that is modulated by downregulation of CCL4, a 
molecule that supports recruitment of CD103+ dendritic 
cells which active CD8+ cells [57] as well as downregu-
lated CXCL10, the ligand for CXCR3 on cytotoxic T cells 
and downregulated CXCL11 negatively modulating CD8+ T 
cell migration [58, 59]. IFNGR1 and IFNGR2 were upregu-
lated, possibly as a compensatory yet non-successful mecha-
nism to overcome impaired CD8+ T cell-mediated immune 
response.

At the Heidelberg Institute of Pathology, mRNA extracts 
of lung cancer biopsies are acquired within the routine 
workflow of lung cancer biopsies and used for gene fusion 
analysis [22]. For most of the tumors in the study cohort, 
leftovers of such extract were available and suitable for gene 
expression profiling. Thus, targeted gene expression repre-
sents a tissue-saving method to read out multi-dimensional 
information on the immune TME from diagnostic lung can-
cer biopsies.

It is a limitation of gene expression analysis of bulk tis-
sues that expression levels are summarized over all cells in 
the tissue, while most of the human genes are expressed in 
various cell types, e.g., in cancer cells and in different other 
cells in the TME. Thus, in general, the cells types that are 
causative for the detected gene expression changes cannot 
be identified from a bulk tissue analysis. Nevertheless, there 
are transcripts that are expressed by a only a single cell type 
and conversely there are cell types that can be characterized 
by the expression of specific marker genes, a methodology 
that has been exploited to distinguish between 14 immune 
cell populations in current study.

An advantage of nucleic acid-based technologies is the 
parallel monitoring of a high number of genes, while spatial 
resolved technologies such as immunohistochemistry and 
multispectral imaging usually allow the monitoring of only 
one or a few genes in parallel and are more difficult to gen-
eralize. Thus, nucleic acid-based technologies can be very 
helpful for screening and knowledge discovery, while spatial 
resolved technologies should be employed for validation and 
in-depth cell type-specific analysis. In the current study, we 
validated an accumulation of Tregs in ALK-positive tumors 

and a depletion of CD8+ T cells in EGFR-positive tumors 
using IHC.

Spatial tumor heterogeneity represents an additional 
potential limitation for studies in metastatic NSCLC based 
on a single biopsy of each patient, but this method of sam-
ple collection is currently used in the routine molecular 
pathology.

Collectively, our data revealed two different types of TME 
modification in ALK- and EGFR-positive NSCLC, respec-
tively, which we term Treg-modulated and CD8-modulated 
immune TME, each accompanied by a specific characteristic 
of cytokine signaling. Therefore, tailored therapy strategies 
will probably be required for oncogene-addicted tumors and 
we expect detailed profiling of the TME to be instrumental 
for guiding the selection of appropriate immunomodulatory 
partners to ICB. Furthermore, our results support the need 
for exploration of new therapeutic approaches to transform 
these TME into “hot” states [60]. This may be achievable 
by opportunistic combinations of ICB with radio- and 
chemotherapy, or by more subtle, specific approaches that 
either inhibit specific immunosuppressive agents enriched 
in “cold” tumors or supplement and boost proinflammatory 
molecules depleted in “cold” tumors. The detection of sig-
nificant immune reactivity in oncogene-addicted NSCLC, in 
contrast the conception of an absolute “immune desert,” sug-
gests that well-aimed use of immunomodulators currently 
explored in various pre-clinical studies and clinical trials 
[37, 61] may also hold promise in EGFR- and ALK-positive 
NSCLC.
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