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Abstract

Dengue is considered non-endemic to mainland China. However, travellers frequently

import the virus from overseas and local mosquito species can then spread the disease in

the population. As a consequence, mainland China still experiences large dengue out-

breaks. Temperature plays a key role in these outbreaks: it affects the development and sur-

vival of the vector and the replication rate of the virus. To better understand its implication in

the transmission risk of dengue, we developed a delay differential equation model that

explicitly simulates temperature-dependent development periods and tested it with collected

field data for the Asian tiger mosquito, Aedes albopictus. The model predicts mosquito

occurrence locations with a high accuracy (Cohen’s κ of 0.78) and realistically replicates

mosquito population dynamics. Analysing the infection dynamics during the 2014 dengue

outbreak that occurred in Guangzhou showed that the outbreak could have lasted for

another four weeks if mosquito control interventions had not been undertaken. Finally, we

analyse the dengue transmission risk in mainland China. We find that southern China,

including Guangzhou, can have more than seven months of dengue transmission per year

while even Beijing, in the temperate north, can have dengue transmission during hot sum-

mer months. The results demonstrate the importance of using detailed vector and infection

ecology, especially when vector-borne disease transmission risk is modelled over a broad

range of climatic zones.

Author summary

Dengue is a mosquito-borne disease and the transmission of its virus depends on four fac-

tors: The presence of 1) the virus, 2) the human host, 3) the mosquito vector, and 4) the
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suitability of environmental conditions. Mainland China faces regular dengue outbreaks.

Because the virus is constantly imported by infected travellers into the susceptible popula-

tions of Chinese metropolises, factors 1) and 2) are almost always met. We now investigate

factors 3) and 4) to see when and where the risk for outbreaks is greatest. We use a novel

model that considers the development of both the mosquitoes and the viruses under dif-

ferent climate conditions. Our findings suggest that the Asian tiger mosquito (Aedes albo-
pictus) can potentially transmit dengue virus over large parts of mainland China; the

biggest transmission risk is simulated over southern China where large outbreaks have

occurred historically, but also over the temperate north, as far as Beijing, where smaller

dengue outbreaks could occur during hot summer months.

Introduction

Mosquito-borne diseases have long been an issue in mainland China (People’s Republic of

China) [1]. Arboviruses are numerous [2], malaria cases often reached 20 to 30 million cases

in a single year during the last century [3,4] and southern China was a hotspot for filarial nem-

atode transmission [5]. But while malaria has been nearly and lymphatic filariasis completely

eliminated during this century [6,4], thanks to intensified control measures, arboviruses such

as dengue still persist and cause outbreaks with the biggest burden reported for Yunnan, the

province bordering Vietnam, Laos and Myanmar, and Guangdong on the south coast of

China [2].

Dengue cases were only sporadically identified in China in the early 20th century [7]. This

changed in 1978, when a dengue outbreak with about 22,000 cases occurred in Guangdong

province [8]. Since that year, cases have been reappearing every year, frequently introduced by

travellers from dengue-endemic regions [2]. In some years, introduced infections lead to local

transmission resulting in large dengue outbreaks: roughly 500,000 cases were reported in 1980,

100,000 cases in 1986 and nearly 50,000 cases in 2014 [8,9]. The city of Guangzhou, with 15

million inhabitants, was the epicentre of the 2014 outbreak that soon spread to the whole prov-

ince of Guangdong [10]. Unlike in many other dengue-ridden countries, the main vector of

dengue in Guangzhou is not Ae. aegypti, the yellow fever mosquito which is absent in Guang-

zhou, but the less efficient dengue vector Ae. albopictus, the Asian tiger mosquito, long since

established over large parts of China [11,12].

Numerous studies have investigated the 2014 dengue outbreak, looking for example at the

impacts of early year precipitation [13] and resulting surface water for breeding sites [14], at

the impacts of vaccination and control [15], initial case importation and interventions [13,16]

or human mobility [10,17]. These studies use dynamical models based on ordinary differential

equations which are useful tools to describe vector-host population and infection dynamics.

However, the description of delayed temporal effects by ordinary differential equation (ODE)

models is not very accurate. The pathogen incubation period in the mosquito represents such

a delayed effect [18] and the use of ODEs can lead to an overestimation of transmission activ-

ity. Delayed differential equations (DDEs) can model these effects more accurately because

their rate of change depends not only on the current but also on previous time steps. A temper-

ature-dependent incubation rate for example, can be modelled depending on the whole tem-

perature development since the start of the infection and not only on the current day

temperature.

DDE models were introduced to the field of entomology by the work of Gurney et al. on

blowflies and by Nisbet and Gurney for the general theory [19,20]. Even though their work
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was quickly followed by a first DDE model for the mosquito Ae. aegypti [21], DDE models

were not as frequently used as ODE models because they are more complex to solve. But there

is an increasing number of published studies using DDE models during more recent years;

these models have been used to study mosquito population dynamics [22,23] and the transmis-

sion of a range of mosquito-borne diseases, including West Nile [24], Rift Valley fever [25],

chikungunya [26] and malaria [27].

Here, we develop a novel DDE model to simulate mosquito dynamics in mainland China,

as well as dengue transmission dynamics during the 2014 outbreak. We then analyse the

potential dengue season length for mainland China and highlight four highly populated cities

at risk.

Model and methods

We use the model developed for Europe and the UK in [28] as a framework to describe the

vector population dynamics. This model used ordinary differential equations (ODEs), and

classes of eggs, (aquatic) juveniles, immature females, mature females, and special diapausing

eggs, to describe all life stages. In order to introduce virus transmission in the model, we now

add dengue-infected female mosquitoes to the equation system along with human hosts. Also,

the transitions between vector classes are modelled using maturation delays, in order to

describe the infection dynamics more realistically. The resulting delayed differential equation

(DDE) model comprises seven equations for the vector and four equations for the human

host. The derivation of the DDE system from the original ODEs is explained further in S1.1 in

S1 Supplementary Material.

Vector dynamics

The vector life cycle is shown in Fig 1. Eggs, E, hatch after a certain development time. The

emerging larvae and pupae are combined in an aquatic juvenile class, J. After a certain time,

juveniles develop into 50% newly eclosed female adults, I; male adults, which play no role in

virus transmission, are ignored. After a resting stage, females mature to the adult stage A, take

their first blood meal and start to lay eggs. Normal eggs, E, are laid in spring and summer,

while diapausing eggs, Ed, are laid in autumn when the days are getting shorter. These eggs

stay inactive over the winter and are activated by warmer and longer days in spring. All classes

experience some temperature-dependent mortalities. Only juveniles also experience a density-

Fig 1. Life stages of Aedes albopictus. The cycle goes from eggs, E, to larvae/pupae (juvenile), J, to newly eclosed

(immature) females, I, to mature adult females, A. Adult female mosquitoes lay normal eggs, E, in the summer months

or diapausing eggs, Ed, at the end of the season. Diapausing eggs overwinter and are activated by warmer and longer

days in spring.

https://doi.org/10.1371/journal.pntd.0009153.g001
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dependent mortality based on an environmental capacity K which relies on rainfall and

human population density.

The transitions and mortalities of classes are now described by a system of delay differential

equations. The structure of a DDE can be described by a recruitment term R with all incoming

individuals from other classes, a maturation term M with the individuals that change to

another class, and a mortality term for the individuals that leave the system. With parameter

definitions given in Table 1, the population dynamics in the vector are described by:

d
dt
EðtÞ ¼ bð1 � oÞAðtÞ � bð1 � oÞAðt � tEÞexpð�

R t
t� te
mEðsÞdsÞ � mEEðtÞ

¼ REðtÞ � MEðtÞ � mEEðtÞ
ð1Þ

d
dt
EdðtÞ ¼ boAðtÞ � φEdðtÞ ð2Þ

d
dt
JðtÞ ¼ MEðtÞ þ φgEdðtÞ �

ðMEðt � tJÞ þ φgEdðt � tJÞÞexpð�
R t
t� tJ
mJðsÞdsÞ

1þ ðMEðt � tJÞ þ φgEdðt � tJÞÞ
R t
t� te
LðuÞdu

� mJ JðtÞ �
JðtÞ2

KðtÞ

¼ RJðtÞ � MJðtÞ � mJ JðtÞ �
JðtÞ2

KðtÞ

ð3Þ

d
dt
IðtÞ ¼

1

2
MJðtÞ �

1

2
MJðt � tIÞexpð�

R t
t� tI
mAðsÞdsÞ � mAIðtÞ

¼ RIðtÞ � MIðtÞ � mAIðtÞ
ð4Þ

Table 1. Parameter definitions and values. References for point estimates are given below, detailed derivation and

references of all other parameters are shown in [28]. Environmental drivers are temperature, T, rainfall, R, photope-

riod, P, latitude, L, day of year, DOY, and human population density, H.

Parameter Value/Formula

CTTS Critical temperature in spring (˚C) 11.0 �

CPPS Critical photoperiod in spring (hours) 11.25 �

φ(T, P) Spring hatching rate (1/day) 0 if T7 < CTTS or P < CPPS

0.1 if T7� CTTS and P � CPPS

CPPA(L) Critical photoperiod in autumn (hours) 10.058 + 0.08965 L

ω(P) Fraction of eggs going into diapause 0 if DOY < 183 or P > CPPA

0.5 if DOY� 183 and P� CPPS

τE Normal egg development time (days) 7.1

τJ(T) Juvenile development time (days) 83.85 − 4.89T + 0.08T2

τI(T) First pre-blood meal time (days) 50.1 − 3.574T + 0.069T2

μE(T) Normal egg mortality rate (1/day) −ln(0.955 exp(−0.5 ((T-18.8)/21.53)6))

μJ(T) Juvenile mortality rate (1/day) −ln(0.977 exp(−0.5 ((T−21.8)/16.6)6))

μA(Tmean) Adult mortality rate (1/day) − ln(0.677 exp(−0.5 ((Tmean-20.9)/13.2)6) Tmean
0.1)

γ(TDJF,min) Survival of diapausing eggs (1/winter) 0.93 exp(−0.5 (TDJF,min-11.68)/15.67)6)

β(T) Egg laying rate (1/day) 33.2 exp(−0.5 ((T−70.3)/14.1)2) (38.8 − T)1.5 if T� 38.8

0 if T > 38.8

λ Capacity parameter (larvae days/hectare) 404 †

� [74]
† Estimated so that the maximum vector-to-host ratio in Guangzhou was about 100 adult females per human,

compared to 94–314 bites per person per day in nearby Macau [75].

https://doi.org/10.1371/journal.pntd.0009153.t001
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d
dt
AðtÞ ¼ MIðtÞ � mAAðtÞ ð5Þ

with L uð Þ ¼
1

KðuÞ
expð

R u
u� tJ

mJðsÞdsÞ:

Mosquito maturation periods, τ, and mortality rates, μ, depend on daily mean temperature

T. Only the egg hatching rate in spring is triggered by the average temperature over the past

seven days, T7. The winter survival probability γ of diapausing eggs is dependent on the mini-

mum winter temperature, TDJF,min. The survival probability is applied when eggs are activated

in spring. Remaining diapausing eggs that have not hatched until August are removed.

The carrying capacity K depends on rainfall R and human population density H, and is

given by

K R;Hð Þ ¼ l
1� aevap
1� atevap

Pt
x¼1
aðt� xÞevap arainR xð Þ þ adensH xð Þð Þ with scaling factors αevap, αrain, and

αdens as defined in [28,29].

Note that we do not follow the approach for delay differential equation models by [20] in

which the time delay itself is modelled by a differential equation. Instead, we calculate all time

delays before we run the simulations, see S1.2 in S1 Supplementary Material.

Disease dynamics in the vector

An introduction of dengue virus (DENV) into the model leads to two more vector classes. We

now distinguish between susceptible mosquito females, AS, exposed females that are infected

but cannot transmit the virus yet, AE, and infectious females, AI, see Fig 2.

When a host seeking female bites an infected human with the biting rate α, it will become

exposed with a certain probability bHV. With HI/Nh as the fraction of infected humans in the

local population, this leads to a total infection rate of αbHVHI/Nh for susceptible mosquitoes,

AS. Depending on the temperature-dependent extrinsic incubation period (EIP), exposed

females will finally change to the infectious state during which they can infect human hosts.

All susceptible, exposed and infected females die with the normal adult mortality, μA and con-

tinue to lay eggs with fecundity rate β. Eq 5) for mature females becomes

d
dt
ASðtÞ ¼ MIðtÞ � abHV

HIðtÞ
NhðtÞ

ASðtÞ � mAASðtÞ ð6Þ

Fig 2. The mosquito life cycle with the mature female class split into susceptible, exposed, and infectious females,

AS, AE and AI, respectively. When a susceptible mosquito bites an infected human host, it gets infected (exposed) with

a certain probability and changes to the infectious class after a temperature-dependent extrinsic incubation period.

Human hosts change from susceptible, HS, over exposed, HE, to infectious, HI, and finally recover, HR. Parameter

symbols and mortality arrows are not included for readability.

https://doi.org/10.1371/journal.pntd.0009153.g002
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d
dt
AEðtÞ ¼ abHV

HIðtÞ
NhðtÞ

ASðtÞ � abHV
HIðt � EIPÞ
Nhðt � EIPÞ

ASðt � EIPÞexpð�
R t
t� EIPmAðsÞdsÞ

� mAAEðtÞ ð7Þ

d
dt
AIðtÞ ¼ abHV

HIðt � EIPÞ
Nhðt � EIPÞ

ASðt � EIPÞexpð�
R t
t� EIPmAðsÞdsÞ � mAAIðtÞ; ð8Þ

such that the three adult female classes combined result in the total number of egg-laying

females: AS + AE + AI = A.

Parameter values are given in Table 2. Note that the incidence rate αbHV HI/Nh AS uses

non-delay terms in Eq (6) but delay terms in Eq (8). This issue is explained in more detail in

S1.3 in S1 Supplementary Material.

This approach neglects the possibility of vertical dengue virus transmission, i.e. the poten-

tial transmission of the virus from adult females to their eggs and thus to the next generation

of adults. In consequence, there is no overwintering of infected eggs that could start a new out-

break in the following year and new dengue cases would have to be imported to initiate dengue

transmission.

Disease dynamics in the human host

We model disease dynamics in the human host with ordinary differential equations (ODEs) as

the incubation period in the human host is relatively short and temperature-independent, and

ODEs are computationally less expensive to solve.

Human hosts are described by four classes, susceptible HS, exposed HE, infected HI, and

recovered HR. When a susceptible human host, HS, gets bitten by an infected mosquito, it

changes to the exposed state, HE, with a probability of bVH. It remains in the exposed state for

the intrinsic incubation period (IIP) and then changes to the infected state, HI. Infected indi-

viduals then recover with a rate of r and become immune, HR. We assume that we only have a

single dengue virus serotype circulating in the population. As we look at very small numbers

of infections for only short periods, we neglect birth and natural death rates for human hosts

as well as (cross-)immunity to serotypes. We also neglect dengue induced mortality as it is

Table 2. Additional parameter definitions and values used for disease dynamics with references at the bottom.

Parameter Value/Formula

α(T) Biting rate (1/days) 0.5 (0.0043 T + 0.0943) �

bVH Infection probability from vector to host 0.5 †

bHV Infection probability from host to vector 0.31 †

EIP(T) Extrinsic incubation period (days) 1.03 (4 + exp(5.15–0.123T)) ‡

δ Max. number of people infected by single mosquito (individuals / hectare) 4.5

IIP = 1/νH Intrinsic incubation period (days) 5§

r Recovery rate of humans (1/days) ⅕§

� Daily biting rates for Ae. aegypti vary between 0.1 and 0.2 blood meals per day [76,77], halved for Ae. albopictus based on observed feeding intervals [78].
† Estimates by [79,80].

‡ Estimate for Ae. aegypti by [76] with scaling factor for Ae. albopictus by [81].

¶ Estimate for Guangzhou 2014.

§ Estimates by [82,30].

https://doi.org/10.1371/journal.pntd.0009153.t002
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usually very low (below 1% [30]) and thus has only a marginal effect on disease dynamics.

Equations for infection dynamics in the human host are then given by:

d
dt
HSðtÞ ¼ � abVHAIðtÞ

d

NhðtÞ
HSðtÞ ð9Þ

d
dt
HEðtÞ ¼ abVHAIðtÞ

d

NhðtÞ
HSðtÞ � nHHEðtÞ ð10Þ

d
dt
HIðtÞ ¼ nHHEðtÞ � rHIðtÞ ð11Þ

d
dt
HRðtÞ ¼ rHIðtÞ ð12Þ

Note that we divide the infection probability term for the vector in Eq (6), αbHVHI/NhAS,

by the total number of humans, Nh (frequency-dependent transmission) [31], while we do not

divide the infection probability term for the human, αbVHAIδ/NhHS, by the total number of

mature mosquitoes, A (density-dependent transmission), in Eq (9). Dividing the infection

probability of the vector by the total number of human hosts accounts for a diluting effect, so

that an infected person in a big city is less likely to be bitten than an infected person in a rural

area if we assume the same mosquito abundance. This diluting effect does not apply to mos-

quitoes equally. We assume that the number of newly infected persons depends on the total

number of infected mosquitoes in an area, rather than on the frequency of infected females in

the mosquito population. We do, however, introduce the scaling factor δ/Nh; a single mosquito

will thus only infect Hx = αbVHδ humans per day.

To investigate the influence of each parameter on the model output we perform the elemen-

tary effects test (EET), see S1.4 in S1 Supplementary Material for details.

Climate and population data

We use weather station data from the Chinese Meteorological Data Service Center (CMCD).

The network comprises more than 800 stations with daily temperature and rainfall data avail-

able from 2006 to 2016. Missing rainfall data for weather stations in the CMCD data set are

imputed with the nearest neighbour technique [32]. Human population density is based on

the GPWv4 data set for 2015 [33], using the values of the grid cells in which weather stations

are located. Data points are linearly interpolated on a grid of approx. 2 km by 2.75 km for filled

contour plots.

For the four cities, we use data point #133 for Beijing (40.23˚N, 116.52˚E), #86 for Jinan

(36.36˚N, 117.00˚E), #362 for Shanghai (31.24˚N, 121.27˚E) and #760 for Guangzhou

(23.13˚N, 113.29˚E) from the CMCD data set. Note that the nearest weather station for Beijing

is located about 39 km outside the city centre in a sparsely populated area. We thus use popula-

tion densities of 13, 9.5, 38, and 21.06 humans per hectare for Beijing, Jinan, Shanghai, and

Guangzhou respectively [33–37]. These densities are higher than the values of their nearest

weather station grid cell but more accurate. However, this leads to discrepancies between

regional and city-level results.

Mosquito and dengue data

We use China wide presence/absence data for Ae. albopictus for 2015 (S1 Data) to validate our

vector suitability predictions. We run the model with the climate data set for the period 2006
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to 2016 and calculate individual suitability indices. The suitability index is defined by the num-

ber of eggs that are produced at the end of a year, after placing a single (diapausing) egg at the

beginning of that year into an uncolonised location [28]. The ratio by which the number of

eggs has increased (suitable) or decreased (unsuitable) defines the suitability index of that year,

and we took the median over the simulated 10 years. We then use a nearest neighbour algo-

rithm to match presence/absence locations with weather station locations. We check perfor-

mance and optimal threshold of the suitability index with a receiver operating characteristic

(ROC) analysis.

The Breteau index (BI) measures the number of water containers or bodies infested with

mosquito larvae per 100 estates or houses inspected. Monthly BI data of Ae. albopictus was

available for Guangzhou for 2006–2015 to validate population dynamics over longer time peri-

ods (S2 Data). BI data was also available for 21 out of 34 provinces, autonomous regions or

municipalities for 2015 to spatially validate population dynamics of the vector (S3 Data). To

estimate a BI from mosquito data, we assume that clutches of eggs are randomly (Poisson) dis-

tributed to available containers. The probability that a container contains one or more juve-

niles, multiplied by the number of containers available, gives the BI estimate:

BIðtÞ ¼ bð1 � e� aJðtÞÞ ð13Þ

J(t) is the total number of juvenile larvae and pupae in the area at time t, a is a factor to

relate total juvenile numbers to the mean number per container and b is the mean number of

water containers per 100 households. Here, we use b = 140 [38] and a = 0.00054. The factor a
is calculated as the inverse of the average number of juveniles per container (4.45L/container �

42.3 juv/L, [39]), multiplied by the average number of containers per area (1.4 container/

household � 21.06 people/hectare / 3 people/household [40]). BI values above 4 can be a good

indicator for dengue transmission risk [41,42], however BI often does not correlate with den-

gue incidence and outbreaks can happen with BI< 4 [43] or lagged by up to three months

[44].

Dengue data was available for 2014 to validate the modelled infection dynamics. The 2014

dengue outbreak took place mostly in Guangdong province, with its capital Guangzhou as the

epicentre, but also subsequently spread to other provinces. To analyse weekly case numbers

for Guangzhou only, we included all cases that happened within a 72 km radius around the

Guangzhou city centre (23.09˚N, 113.17˚E). This radius was chosen to also account for the

large number of cases reported in the directly adjacent urban areas of Guangzhou, see Fig D in

S1 Supplementary Material for details.

Mosquito and dengue incidence data sets were recorded and provided by the National

Institute for Communicable Disease Control and Prevention (ICDC), China CDC. Vector and

disease occurrence locations were given at prefecture (300+) or county (2500+) level, and thus

had to be pre-processed to allocate mosquito occurrences or disease cases to locations in coor-

dinate format. The geo-location website http://www.geonames.org/ was used to retrieve lati-

tude and longitude coordinates for centres of administrative regions. To validate the results,

the matching algorithm was repeated with a random sample using another database at http://

maps.cga.harvard.edu/ to double check the accuracy coordinates.

To calculate the season length of potential dengue transmission, it is assumed that every sin-

gle emerging adult female meets a dengue-infected human for its first blood meal, from the

first female in the season to the very last one. Simulations show that Guangzhou experienced

infectious mosquito densities of at least one infected mosquito per hectare during the outbreak

2014, roughly from early May to mid-December. The maximal length of the dengue

PLOS NEGLECTED TROPICAL DISEASES Assessing dengue risk in China with a DDE model

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0009153 March 26, 2021 8 / 21

http://www.geonames.org/
http://maps.cga.harvard.edu/
http://maps.cga.harvard.edu/
https://doi.org/10.1371/journal.pntd.0009153


transmission season is thus defined as the period with at least one infected mosquito per hect-

are in this setting.

Results

Analytical and numerical solutions show that the vector population can persist between 16.5

and 32.5˚C, with an optimal temperature of 27˚C, see S1.6 in S1 Supplementary Material.

Depending on the temperature, the model predicts that the larval and pupal population is

about 4 (around the optimal temperature) to 30 times (towards the lower and upper suitable

ranges) larger than the adult population.

Mainland China’s suitability for Ae. albopictus
Fig 3 shows Ae. albopictus presence/absence data derived from [12] and collected by China

CDC, in comparison with the modelled suitability index. The modelled suitability is highly

consistent with presence/absence data: 90.4% of data points are correctly categorised as pres-

ent/absent, the sensitivity is 92%, the specificity is 87% and Cohen’s κ = 0.77. The central plain

and the southern hills are highly suitable for Ae. albopictus, while the Tibetan plateau and

northern China appear unsuitable. However, the model misses some suitable locations in the

Himalayas close to the border with Bhutan, as well as in areas east of Beijing, as far as the bor-

der with North Korea. Both regions experience winters with freezing temperatures below

-15˚C. This makes overwintering unlikely by model assumptions, but microclimate conditions

could help Ae. albopictus to survive even here, e.g. in some suitable mountain valleys, and habi-

tations in warmer cities.

On the other hand, the model falsely predicts suitable areas in the Taklamakan desert in

Xinjiang Uygur Autonomous Region in western China. While the temperatures would be suit-

able here, the scarce rainfall probably prohibits mosquito activity. There are, however, oases

and the cities Kashgar and Yarkant with more than 100,000 inhabitants, rivers and relatively

mild diurnal temperature ranges on the south-western edge of the desert that could enable

mosquito larvae development in artificial breeding sites.

The ROC analysis found that the rate of correctly predicted suitability could be slightly

improved when we defined areas as suitable where one egg leads to about 25 eggs after 365

days, see Fig 4. With this adapted suitability index, the Taklamakan desert would show up as

unsuitable while the south and east remain suitable, see S1.7 in S1 Supplementary Material for

further details.

Mosquito dynamics

In the next step, we checked whether the DDE model could replicate temporal mosquito

dynamics and compared model results with Breteau index (BI) data for Guangzhou from

2006 to 2015. Monthly Breteau indices in Guangzhou were measured at 12 different loca-

tions. Two locations (Nansha and Panyu) were situated at the river delta and near a wetland

park and showed very high BI values of up to 60 positive containers per 100 houses.

Monthly mean model outputs fit the observed BI values well (Spearman’s ρ = 0.83,

p<0.001). BI values peak in summer and are low in winter and correctly indicate years with

higher (2008) and lower (2010) numbers than average, see Fig 5. In 2015, intensive mos-

quito control measures were undertaken following the 2014 outbreak, consequently fewer

mosquitoes were observed. Our model, that does not consider control measures, overesti-

mated BI in 2015.

Observed BI values for Guangzhou in winter are often well above zero. This mosquito activ-

ity during winter is not captured by the model, which assumes very low survival rates below
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0˚C. We also compared model outputs to monthly BI data at province level for 2015. While

our model predicts the highest mosquito numbers in southern China, recorded BI numbers in

2015 were actually highest in some northern provinces, see S1.8 in S1 Supplementary Material.

Fig 3. Mainland China’s suitability for Ae. albopictus. Top: Mosquito presence in 2007 (black triangles) and 2015

(red triangles) and absence for 2007 (cyan dots) and 2015 (blue dots). Bottom: Modelled suitability index (E0) for the

period 2006 to 2016. Values above 1 indicate suitable regions, below unsuitable regions. The CMCD climate data set

was used to drive the model. Maps were created with Python package Basemap [83].

https://doi.org/10.1371/journal.pntd.0009153.g003
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Dengue outbreak in Guangzhou 2014

We now introduce dengue transmission in our DDE model framework and simulate the 2014

dengue outbreak in Guangzhou.

Fig 4. Receiver operating characteristic curve. The black dot represents Youden’s index, the best compromise

between specificity (1-False Positive Rate) and sensitivity (True Positive Rate). The area under the curve (AUC) gives

the probability of a region with mosquito occurrence getting a higher suitability index than one without.

https://doi.org/10.1371/journal.pntd.0009153.g004

Fig 5. Monthly Breteau indices (BIs) in Guangzhou. Left: The modelled BI in Guangzhou compared to the observed

value. BI values above 4 (dashed black line) indicates risk of dengue transmission. Note that BI data for 2009 and 2014

were incomplete. Right: Scatter plot of simulated vs. observed BI values.

https://doi.org/10.1371/journal.pntd.0009153.g005
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Fig 6 shows the number of weekly cases during the 2014 dengue outbreak in the Guangzhou

area. In response to the ongoing outbreak, mosquito control measures or interventions (con-

tainer emptying and fumigation with chemical treatments) were conducted. These vector con-

trol measures were applied sporadically in the summer months and then continuously

throughout October and November [13].

Simulated weekly cases are very realistic during the first half of the outbreak. Following the

introduction of 691 infected cases in mid-May [45], the number of weekly cases slowly

increases throughout June, July and August before seeing a steep increase in September. While

observed cases decreased from October onwards, possibly due to intervention efforts, simu-

lated case numbers continued to increase for another four weeks until unfavourable climate

conditions very likely limited the outbreak in December.

An introduction of dengue cases in mid-May was immediately followed by a rapid increase

in mosquito abundance (Fig 7). While May temperatures in Guangzhou are generally very suit-

able for Ae. albopictus, there was above-average rainfall in May 2014 that likely created additional

breeding sites. Modelled mosquito density for 2014 was higher than the modelled ten-year aver-

age, particularly in June, August and September which might have added to the outbreak.

Simulated Length of the dengue transmission season

The potential length of the dengue transmission season for China is analysed. Fig 8 shows the

maximum number of infected mosquitoes for four key Chinese cities: Beijing, Jinan, Shanghai

and Guangzhou. Beijing has a relative short mosquito season, with potentially infectious mos-

quitoes from June/July to October. Jinan, a city with 8.5 million inhabitants, about 400 km

Fig 6. Dengue cases in Guangzhou. Top: Observed number of weekly human dengue cases from May to December

during the 2014 dengue outbreak (blue bars) and simulated weekly cases (red line). Grey shades indicate officially

ordered interventions to control the mosquito population [13]. Bottom: Dividing simulated by observed incidence

cases gives the relative error.

https://doi.org/10.1371/journal.pntd.0009153.g006

PLOS NEGLECTED TROPICAL DISEASES Assessing dengue risk in China with a DDE model

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0009153 March 26, 2021 12 / 21

https://doi.org/10.1371/journal.pntd.0009153.g006
https://doi.org/10.1371/journal.pntd.0009153


Fig 7. Mosquito density in Guangzhou 2014. Solid line: Modelled adult females (uninfected and infected) during the

2014 dengue outbreak. Dashed lines: Simulated maximum and minimum adult female density during the period

2006–2016. Blue bars: Weekly rainfall. Heavy rainfall in May might have led to the steep increase in observed mosquito

numbers in late May/June.

https://doi.org/10.1371/journal.pntd.0009153.g007

Fig 8. Maximum density of infected mosquitoes. Black lines indicate simulations for individual years 2006–2016, the

red lines indicate means. Note that these high infectious mosquito densities were only reached if every bite occurred on

an infected human. During the 2014 outbreak, infectious mosquito numbers were about 0.0002 infectious females per

hectare in our simulation.

https://doi.org/10.1371/journal.pntd.0009153.g008
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south of Beijing, shows similar mosquito densities with higher peaks in mid-summer in indi-

vidual years. Shanghai and Guangzhou show a different pattern. Here, numbers already start

to increase in April/May and decline to near-zero only in December. Moreover, the curves

show a strong dip during the hot summer months. The maximal length of the dengue seasons

would be about 3 months for Beijing and Jinan, about 6 months for Shanghai and could last

up to 8 months for Guangzhou. We also repeated these simulations using the equivalent ODE

model that gave much higher numbers and longer dengue seasons, especially for the more

temperate regions, see S1.9 in S1 Supplementary Material.

Analysing the maximal length of the dengue transmission season for mainland China

shows that dengue transmission is theoretically possible nearly everywhere Ae. albopictus is

present, see Fig 9 and Fig 3. The south coast of China including Hainan, Guangxi, Guangdong,

and Fujian, shows the longest transmission season of seven months and more. The further

north, the shorter the simulated length of the dengue transmission season. Areas near but out-

side the urban areas of Beijing only have about six weeks where dengue might be effectively

transmitted. Cities with higher human population densities such as Beijing and Guangzhou

have an even longer transmission period when simulated individually (Fig 8). This is since the

climate data is often derived from weather stations outside bigger cities where the population

density is lower, which leads to fewer artificial breeding sites simulated by the model.

Discussion

Though vector population and disease dynamics are difficult to predict from environmental

factors, we realistically modelled the temperature-dependence of Ae. albopictus, its seasonal

and local abundance and its role in dengue transmission in mainland China with a novel

stage-structured DDE model. The model gives basic species’ characteristics, such as

Fig 9. Simulated length of the dengue transmission season (months). The depicted median was calculated over the

2006–2016 period. Beijing, Jinan, Shanghai and Guangzhou are indicated by black dots. The map was created using the

Basemap package in Python package [82].

https://doi.org/10.1371/journal.pntd.0009153.g009
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temperature range and temperature optimum, that are in line with statistical analyses on this

species’ temperature niche [46,47].

The simulated length of the dengue transmission season for mainland China corresponds

very well with observed transmission between 2002 and 2008 for southern China. With a few

exceptions, all cases happened within the seven months of May/June to December [8]. The

areas with the longest transmission periods are also in line with the identified areas at risk of

dengue for the 2020s by [48]. These areas are situated on the south coast of China because

here, the maximum number of infectious mosquitoes is greatest and potential outbreaks have

more time to build up. Further north, the model still predicts dengue transmission as far north

as Beijing (one to two months). Shandong province, close to Beijing with up to three months

of potential transmission, recently experienced a minor dengue outbreak in 2017 with about

200 cases [49] and in 2019 with about 51 cases. The simulated density of infectious mosquitoes

is even higher for individual cities and the potential transmission period is longer than in the

surroundings, due to the model’s assumption that this Aedes species thrives better in urban

areas with higher human population densities.

Looking at the 2014 dengue outbreak in Guangzhou, model simulations suggest that the

outbreak could have reached much higher numbers if it was not for the officially ordered con-

trol interventions. This finding is in accordance with other modelling studies [13,17]. It should

be noted though that up to 75% of dengue cases are asymptomatic [50] and that actual case

numbers during the outbreak were much higher. The omission of asymptomatic infections in

our model framework might lead to an underestimation of the number of cases, especially at

the start of the outbreak. While temperatures were not exceptionally suitable during the out-

break for this region [16], the early introduction of initial, imported dengue cases in May led

to a long build-up of case numbers that played a key role in the final outbreak size [13]. Our

results corroborate that this build-up of sufficient infectious mosquito numbers was only pos-

sible in southern regions of China.

While the model had a good performance in simulating mosquito presence and absence,

between-year mosquito abundance and the length of the dengue transmission season, it did

not fully capture mosquito activity during the winter months, possibly due to two reasons: lar-

vae could endure low outside temperatures for longer time periods than laboratory studies

that were used to drive our model parameters [51] suggest. Field studies in southern as well as

in northern provinces would be helpful to better tailor mosquito survival parameters in the

model to winter temperatures, especially as different strains of Ae. albopictusmight show dif-

ferent climate responses or indoor/outdoor resting behaviour. It is also possible that larvae

inhabit warmer households indoors in winter and thus survive longer due to microclimatic

conditions which are not considered by the model. However, houses in southern China often

lack heating systems, consequently this factor might play less of a role in Guangzhou compared

to northern provinces of China or Europe. Another study has found lower, but still positive

mosquito indices during Guangzhou winter months [52].

The model also struggled to reproduce observed BI values for 2015, both for the local data

in Guangzhou, as well as for regional data in Chinese provinces. An explanation for this dis-

crepancy might be that significant mosquito control interventions were undertaken in 2014

and 2015 [13], especially in the southern provinces which skewed observed BI values. In addi-

tion, the modelled regional BIs represent means of random samples of locations, which might

not be the case for recorded province-level BIs, for which locations with known established

mosquito populations might have been chosen.

Ae. albopictus was the main vector responsible for this outbreak. Li et al. showed that this

mosquito species is getting harder to control due to increased insecticide resistance in recent

years [53]. In contrast to Europe where this mosquito species might spread farther north in the
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future [28], model results suggest that Ae. albopictus has already filled its full potential ecologi-

cal niche in mainland China, and this finding is consistent with observations for 2007 [12].

Nevertheless, it might spread farther north in the future as warming temperatures render

regions in the north and at higher altitudes more suitable [54].

The yellow fever mosquito, Ae. aegypti, which is more competent to transmit dengue virus

than Ae. albopictus, is currently only present on Hainan island, Leizhou peninsula in Guang-

dong and bordering counties in Yunnan province [55]. However, urbanisation and warming

temperatures might also favour Ae. aegypti to spread farther north and east [56] and the future

could see both Aedes species overlapping in Guangzhou and Guangdong provinces [57]. This

will also lead to further spread of dengue outbreaks [58] and probably also affect other arbovi-

ruses circulating in mainland China [2], including the Zika virus [59] and Batai virus [60].

Apart from the presence of the vector, climate is one of the most important factors for mos-

quito-borne disease transmission in mainland China [61]. While we modelled the climate

dependencies of mosquito and virus very carefully, we had to neglect other possible drivers of

disease emergence. These included socioeconomic factors such as the regional gross domestic

product (GDP) [62], differences in insecticide usage [63], but also the possibility for Ae. albo-
pictus to pass on the dengue virus from adult female to egg, the so-called vertical transmission

[64]. Vertical transmission of dengue virus has been observed in many south-east Asian coun-

tries [65], but it is still debatable to what extent this mechanism actually contributes to disease

outbreaks [66]. In their study, Sun et al. concluded that vertical dengue virus transmission was

unlikely to have impacted the 2014 outbreak [9].

However, recent literature suggests that some dengue serotypes might have circulated in

southern China for years [67] and that the dengue strain responsible for the 2014 outbreak has

been circulating since [68]. It is an interesting question whether this is still caused by the after-

math of the 2014 outbreak and will vanish in the next few years or whether dengue has to be

considered endemic in China again. Future modelling studies could include different dengue

serotypes [69] and thus more realistically predict severe dengue cases with potential cross reac-

tions. Finally, future studies could also introduce stochasticity in mosquito parameters or

regional habitat qualities to further assess model uncertainty [70,71]. It is possible that the lat-

ter could explain some of the discrepancies observed in our regional BI predictions.

While this model indicates the constant risk of dengue transmission, it can also indicate where

and whenAe. albopictus populations build up to large numbers such as during the summer

months in Guangzhou in 2014. Our abundance model could then be combined with the statistical

model developed by Sang et al. in order to build an early warning system to anticipate dengue hot-

spots in real time [72]. These spatial hotspots could be suppressed by targeted vector control mea-

sures [73] before an introduction of the virus leads to thousands of dengue cases again.

In summary, we show that DDE models are a valuable tool in explaining and predicting

vector-borne disease outbreaks, here capturing many aspects of the recent epidemiology of

dengue virus transmission dynamics in mainland China and the distribution of one of its key

vectors, Ae. albopictus.
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of temperature and implications for global dengue epidemic potential’, PLoS ONE. 2014; 9(3). https://

doi.org/10.1371/journal.pone.0089783 PMID: 24603439

78. Farjana T, Tuno N. ‘Effect of body size on multiple blood feeding and egg retention of Aedes aegypti (L.)

and Aedes albopictus (Skuse) (Diptera: Culicidae)’, Medical Entomology and Zoology. 2013: 63(2);

123–131. https://doi.org/10.7601/mez.63.123

79. Paupy C, Ollomo B, Kamgang B, Moutailler S, Rousset D, Demanou M et al. ‘Comparative Role of

Aedes albopictus and Aedes aegypti in the Emergence of Dengue and Chikungunya in Central Africa’,

Vector-Borne and Zoonotic Diseases. 2010; 10(3); 259–266. https://doi.org/10.1089/vbz.2009.0005

PMID: 19725769

80. Manore CA, Hickmann KS, Xu S, Wearing HJ, Hyman JM. ‘Comparing dengue and chikungunya emer-

gence and endemic transmission in A. aegypti and A. albopictus’, Journal of Theoretical Biology. 2014;

356: 174–191. https://doi.org/10.1016/j.jtbi.2014.04.033 PMID: 24801860

81. Brady OJ, Golding N, Pigott DM, Kraemer MUG, Messina JP, Reiner RC et al. ‘Global temperature con-

straints on Aedes aegypti and Ae. albopictus persistence and competence for dengue virus transmis-

sion.’, Parasites & vectors. 2014; 7(1): 338. https://doi.org/10.1186/1756-3305-7-338 PMID: 25052008

82. Gubler DJ. Dengue and Dengue Hemorrhagic Fever, Clinical Microbiology Reviews. 1998; 11: 480–

496. PMID: 9665979

83. Python’s Basemap Matplotlib Toolkit documentation. 2016. Available from: https://matplotlib.org/

basemap/.

PLOS NEGLECTED TROPICAL DISEASES Assessing dengue risk in China with a DDE model

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0009153 March 26, 2021 21 / 21

https://doi.org/10.1371/journal.pone.0213353
https://doi.org/10.1371/journal.pone.0213353
http://www.ncbi.nlm.nih.gov/pubmed/30835769
https://doi.org/10.1371/journal.pone.0051244
https://doi.org/10.1371/journal.pone.0051244
http://www.ncbi.nlm.nih.gov/pubmed/23251466
https://doi.org/10.1371/journal.pntd.0000508
https://doi.org/10.1371/journal.pntd.0000508
http://www.ncbi.nlm.nih.gov/pubmed/19721700
https://doi.org/10.1016/j.mbs.2012.11.013
https://doi.org/10.1016/j.mbs.2012.11.013
http://www.ncbi.nlm.nih.gov/pubmed/23246807
https://doi.org/10.1371/journal.pntd.0003808
http://www.ncbi.nlm.nih.gov/pubmed/26020627
https://doi.org/10.1002/ps.4174
https://doi.org/10.1002/ps.4174
http://www.ncbi.nlm.nih.gov/pubmed/26482455
http://www.ncbi.nlm.nih.gov/pubmed/12674530
https://doi.org/10.1093/jmedent/42.3.419
http://www.ncbi.nlm.nih.gov/pubmed/15962796
https://doi.org/10.1603/0022-2585-37.1.77
http://www.ncbi.nlm.nih.gov/pubmed/15218910
https://doi.org/10.1371/journal.pone.0089783
https://doi.org/10.1371/journal.pone.0089783
http://www.ncbi.nlm.nih.gov/pubmed/24603439
https://doi.org/10.7601/mez.63.123
https://doi.org/10.1089/vbz.2009.0005
http://www.ncbi.nlm.nih.gov/pubmed/19725769
https://doi.org/10.1016/j.jtbi.2014.04.033
http://www.ncbi.nlm.nih.gov/pubmed/24801860
https://doi.org/10.1186/1756-3305-7-338
http://www.ncbi.nlm.nih.gov/pubmed/25052008
http://www.ncbi.nlm.nih.gov/pubmed/9665979
https://matplotlib.org/basemap/
https://matplotlib.org/basemap/
https://doi.org/10.1371/journal.pntd.0009153

