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Poland; dbukowska@umk.pl
9 Department of Veterinary Surgery, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland;
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Abstract: Exosomes are a heterogenous subpopulation of extracellular vesicles 30–150 nm in range
and of endosome-derived origin. We explored the exosome formation through different systems,
including the endosomal sorting complex required for transport (ESCRT) and ESCRT-independent
system, looking at the mechanisms of release. Different isolation techniques and specificities of
exosomes from different tissues and cells are also discussed. Despite more than 30 years of research
that followed their definition and indicated their important role in cellular physiology, the exosome
biology is still in its infancy with rapidly growing interest. The reasons for the rapid increase in
interest with respect to exosome biology is because they provide means of intercellular communication
and transmission of macromolecules between cells, with a potential role in the development of
diseases. Moreover, they have been investigated as prognostic biomarkers, with a potential for further
development as diagnostic tools for neurodegenerative diseases and cancer. The interest grows
further with the fact that exosomes were reported as useful vectors for drugs.
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1. Introduction

In order to maintain homeostasis, cells continuously interact with their environment through
the secretion of different types of extracellular vesicles. Extracellular vesicles (EVs), comprising of
a heterogenous group of membrane-derived vesicles of varying origin, size, and features, have a
crucial role in cellular exchange. Despite the fact that the term has been broadly used for various
forms of EVs [1], basic criteria for their definition have been determined [2]. The main division and
separation of nanovesicles are based on the process of biogenesis, size of the vesicles, and cargos [3].
The largest are apoptotic bodies produced by cells during apoptosis, 1–5 µm in diameter, and generated
by budding directly from the plasma membrane (PM), followed by release into extracellular space [4,5].
Microvesicles (MV) are 150–1000 nm vesicles that have a similar method of formation as the apoptotic
bodies [6]. The smallest and most recently discovered subpopulation of nanovesicles are exosomes,
cellular mediators with a diameter of 30 to 150 nm [7]. Exosomes are formed differently than
microvesicles and apoptotic bodies (Figure 1), through the invagination of endosomal membrane,
resulting in multivesicular body (MVBs) formation, which later fuses with PM and releases exosomes
into the extracellular space [8]. Even though characteristics of microvesicles, apoptotic bodies and
exosomes are well understood, the size ranges are only rough estimates. Exosomes are produced by
a majority of mammalian cells, such as: B lymphocytes, cytotoxic cells, platelets, oligodendrocytes,
dendritic cells, mast cells, adipocytes, neurons, glial cells, endothelial cells and epithelial cells [5,9].
Exosomes’ release takes place both in physiological and morbid conditions, with these nanovesicles
present in various body fluids [10]. For the first time, exosomes were observed in 1983, by two
independent groups of researchers [11,12]. They described the externalization of transferrin receptors
during the maturation of a sheep’s reticulocytes via small vesicles of 50 nm in size. The term “exosome”,
defining those structures, was used four years later [13]. At the beginning, exosomes were considered
only as cellular disposal of obsolete proteins and other molecules [14]. However, subsequent studies
confirmed their functions in continuous intercellular communication. In 1996, Raposo et al. reported
their involvement in antigen presentation and adaptive immune response. It was shown that proteins
bound to major histocompatibility complex (MHC) class II dimers placed on exosomes, which were
produced and secreted by Epstein-Barr-virus-transformed B lymphocytes, induced stimulation of
specific T cells [15]. In 1998, another group of researchers described exosomes’ secretion by dendritic
cells promoting antitumor response [16]. Since then, numerous publications described the important
role of exosomes in cell-to-cell communication, carrying various molecular cargo [17]. The current
version of ExoCarta online database hosts 41,860 proteins, >7540 RNA, and 1116 lipids that can be
found in exosomes [18]. Other exosomes dedicated databases with less entries include Exosome RNA,
Vesiclepedia, Urinary Exosome Protein Database, exoRBase, and EVpedia. This variety of molecules
proves a significant role of nanovesicles in numerous physiological processes, such as lactation, cell
proliferation and immune response [19–21], but also in pathological states like cardiovascular diseases,
neurodegenerative process, cancer development and progression, inflammation, or even asthma.
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Figure 1. Biogenesis of three types of extracellular vesicles including exosomes, apoptotic bodies and 
microvesicles. All nanovesicles are released into the extracellular space, however their synthesis is 
dependent on the state of cell, e.g., apoptotic bodies are only produced during programmed cell 
death, while exosomes and microvesicles are secreted during cell cycle and normal state of cell. 

2. Cellular Origins and Chemical Properties of Exosomes 

Exosome biogenesis is inseparably connected with the endocytic pathway (Figure 2), such that 
invagination of plasma membrane during endocytosis results in early endosome formation (EE). 
Maturation of EEs into late endosomes (LE) occurs via inward budding of early endosome 
membranes. Within lumen LE develops as the multivesicular body (MVB) containing intraluminal 
vesicles (ILVs) [22]. Most of the time, MVBs are directed to lysosomes containing hydrolase, resulting 
in degradation of their cargo [23]. Otherwise, MVBs migrate to the cell surface to fuse with PM and 
release ILVs into the extracellular space, that in turn become an exosome upon cellular exit [24]. 
Transport of MVBs is directed through accessory proteins: tumor susceptibility gene 101 protein 
(TSG101), programmed cell death 6-interacting protein Alix, heat shock cognate protein 70 (HSC70), 
heat shock protein 90β (HSP90β), cluster of differentiation proteins 9 (CD9), CD81, CD63, and 
involves either the presence of ESCRT protein family, known as exosomal marker family proteins 
crucial in the ESCRT-dependent formation or alternatively sphingomyelinase enzyme in the ESCRT-
independent formation [25]. Tetraspanin enriched microdomeins (TEM) assisted by CD81 play major 
role in sorting of bioactive proteins, genetic materials and lipids into the exosomes [26]. Zhang et al. 
recently described the establishment of exosome based intracellular communication being possible 
due to microRNAs, which are highly abundant as exosomal cargo mainly demonstrate their function 
in human plasma derived exosomal species.  

Figure 1. Biogenesis of three types of extracellular vesicles including exosomes, apoptotic bodies and
microvesicles. All nanovesicles are released into the extracellular space, however their synthesis is
dependent on the state of cell, e.g., apoptotic bodies are only produced during programmed cell death,
while exosomes and microvesicles are secreted during cell cycle and normal state of cell.

2. Cellular Origins and Chemical Properties of Exosomes

Exosome biogenesis is inseparably connected with the endocytic pathway (Figure 2), such
that invagination of plasma membrane during endocytosis results in early endosome formation
(EE). Maturation of EEs into late endosomes (LE) occurs via inward budding of early endosome
membranes. Within lumen LE develops as the multivesicular body (MVB) containing intraluminal
vesicles (ILVs) [22]. Most of the time, MVBs are directed to lysosomes containing hydrolase, resulting
in degradation of their cargo [23]. Otherwise, MVBs migrate to the cell surface to fuse with PM
and release ILVs into the extracellular space, that in turn become an exosome upon cellular exit [24].
Transport of MVBs is directed through accessory proteins: tumor susceptibility gene 101 protein
(TSG101), programmed cell death 6-interacting protein Alix, heat shock cognate protein 70 (HSC70),
heat shock protein 90β (HSP90β), cluster of differentiation proteins 9 (CD9), CD81, CD63, and involves
either the presence of ESCRT protein family, known as exosomal marker family proteins crucial in the
ESCRT-dependent formation or alternatively sphingomyelinase enzyme in the ESCRT-independent
formation [25]. Tetraspanin enriched microdomeins (TEM) assisted by CD81 play major role in sorting
of bioactive proteins, genetic materials and lipids into the exosomes [26]. Zhang et al. recently described
the establishment of exosome based intracellular communication being possible due to microRNAs,
which are highly abundant as exosomal cargo mainly demonstrate their function in human plasma
derived exosomal species.
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Figure 2. Endocytic pathways in the process of exosome biogenesis. Different steps of exosome 
biogenesis are demonstrated including early endosome formation, late endosome formation and 
multivesicular body (MVB) formation, respectively. MVB is then either transported into the lysosome 
for lysosomal exocytosis or fused with the endosomal membrane followed by exosomes release into 
the extracellular space. Two main organelles are shown including Golgi apparatus and endoplasmic 
reticulum due to their interaction with early endosomes as soon as they are formed from endocytic 
vesicles. 

2.1. ESCRT-Dependent Formation 

Numerous pathways and molecules are involved in formation of MVBs and ILVs. The 
endosomal sorting complex required for transport (ESCRT) is the most known ubiquitin-dependent 
mechanism responsible for sorting ubiquitinated proteins into ILVs [27]. This mechanism was 
presented in Figure 3. ESCRT consists of four complexes numbered in order of their action: ESCRT-0 
(previously called vacuolar protein sorting-associated protein 27/heat shock element 1 complex 
VPS27/HSE1), ESCRT-I, ESCRT-II, and ESCRT-III. These complexes cooperate with specific 
molecules, such as: VPS4 proteins (VPS4A, VPS4B, lyst-interacting protein 5 (LIP5)) and Bro1 
complexes (Alix, his-domain protein-tyrosine phosphatase (HDPTP), BRO1 domain and CAAX motif 
containing protein (BROX)) [22]. ESCRT-0 is activated by phosphatidylinositol 3-phosphate PI(3)P 
and ubiquitinated molecules present on the outside of endosomal membrane. The whole process 
initiates by recognising and engaging ubiquitinated transmembrane proteins, promoting their 
concentration on the late endosomal membrane. ESCRT-0 also recruits ESCRT-I through the 
interaction between hepatocyte growth factor regulated tyrosine kinase substrate prosaposin (HRS 
PSAP) domains and ESCRT-I subunit TSG101 [28]. ESCRT-I complex is essential for sorting cargo in 
the MVB and deforming the membrane, resulting in bud formation. ESCRT-II also participates in 
cargo sorting, additionally regulating ESCRT-III complex formation [29]. Progida et al. suggested 
ESCRT-II interaction with RILP protein, which also binds with dynein–dynactin motor complex, 
involved in endosome motility [30]. ESCRT-III is responsible for the sorting and concentration of 
MVB cargo, as well as driving vesicle scission. It also participates in ESCRT recycling via recruitment 
of the AAA-type VPS4 ATP-ase [31]. 

Figure 2. Endocytic pathways in the process of exosome biogenesis. Different steps of exosome
biogenesis are demonstrated including early endosome formation, late endosome formation and
multivesicular body (MVB) formation, respectively. MVB is then either transported into the lysosome
for lysosomal exocytosis or fused with the endosomal membrane followed by exosomes release
into the extracellular space. Two main organelles are shown including Golgi apparatus and
endoplasmic reticulum due to their interaction with early endosomes as soon as they are formed from
endocytic vesicles.

2.1. ESCRT-Dependent Formation

Numerous pathways and molecules are involved in formation of MVBs and ILVs. The endosomal
sorting complex required for transport (ESCRT) is the most known ubiquitin-dependent mechanism
responsible for sorting ubiquitinated proteins into ILVs [27]. This mechanism was presented in
Figure 3. ESCRT consists of four complexes numbered in order of their action: ESCRT-0 (previously
called vacuolar protein sorting-associated protein 27/heat shock element 1 complex VPS27/HSE1),
ESCRT-I, ESCRT-II, and ESCRT-III. These complexes cooperate with specific molecules, such as: VPS4
proteins (VPS4A, VPS4B, lyst-interacting protein 5 (LIP5)) and Bro1 complexes (Alix, his-domain
protein-tyrosine phosphatase (HDPTP), BRO1 domain and CAAX motif containing protein (BROX)) [22].
ESCRT-0 is activated by phosphatidylinositol 3-phosphate PI(3)P and ubiquitinated molecules present
on the outside of endosomal membrane. The whole process initiates by recognising and engaging
ubiquitinated transmembrane proteins, promoting their concentration on the late endosomal membrane.
ESCRT-0 also recruits ESCRT-I through the interaction between hepatocyte growth factor regulated
tyrosine kinase substrate prosaposin (HRS PSAP) domains and ESCRT-I subunit TSG101 [28]. ESCRT-I
complex is essential for sorting cargo in the MVB and deforming the membrane, resulting in bud
formation. ESCRT-II also participates in cargo sorting, additionally regulating ESCRT-III complex
formation [29]. Progida et al. suggested ESCRT-II interaction with RILP protein, which also binds with
dynein–dynactin motor complex, involved in endosome motility [30]. ESCRT-III is responsible for
the sorting and concentration of MVB cargo, as well as driving vesicle scission. It also participates in
ESCRT recycling via recruitment of the AAA-type VPS4 ATP-ase [31].
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Figure 3. The endosomal sorting complexes required for transport (ESCRT)-dependent mechanism 
of sorting of ubiquitinated cargo into the multivesicular precursor of exosomes. The process involves 
accumulation and ubiquitination of transmembrane proteins on to the late endosomal membrane, 
followed by recruitment of phosphatidylinositol 3-phosphate (PI(3)P), ESCRT complex (ESCRT-0, 
ESCRT-1, ESCRT0-2, ESCRT-3), RAB-interacting lysosomal protein (RILP), dynein-dynactin complex, 
AAA-type vacuolar protein sorting-associated protein 4 (VPS4) ATP-ase, respectively. Following 
steps of the ESCRT-dependent sorting are presented including the input, output and changes in 
conformation of particular proteins due to their activation, stimulation and reuse. Importantly, upon 
change in conformation of ESCRT-0 PI(3)P protein binds and allows ESCRT-0 dependent activation 
of ESCRT-1. Active ESCRT-1 signals back to ESCRT-2 that works in association with RILP protein-
dynein-dynactin complex. Once both ESCRT-1 and ESCRT-2 are localized on to the late endosomal 
membrane, ESCRT-3 is recruited at both sites to facilitate pinching in the membrane. AAA-type VPS4 
ATP-ase comes at last to pinch off the endosomal vesicle and release it in association with 
ubiquitinated cargo. 

2.2. ESCRT-Independent Pathways 

The ESCRT pathway is considered to be the most important mechanism of exosome formation. 
However, MBV and ILV formation also occur in a ubiquitin-independent way. Heparan sulphate 
proteoglycans promote exosome biogenesis through syntenin, a cytosolic adaptive protein. Syntenin 
binds syndecan with Alix, which interacts with several ESCRT (TSG101 and charged multivesicular 
body protein 4 (CHMP4)) proteins. It serves as an intermediate between ESCRT-I and ESCRT-III, and 
is involved in the budding and scission processes [7]. Moreover, recent articles indicate the presence 

Figure 3. The endosomal sorting complexes required for transport (ESCRT)-dependent mechanism
of sorting of ubiquitinated cargo into the multivesicular precursor of exosomes. The process involves
accumulation and ubiquitination of transmembrane proteins on to the late endosomal membrane,
followed by recruitment of phosphatidylinositol 3-phosphate (PI(3)P), ESCRT complex (ESCRT-0,
ESCRT-1, ESCRT0-2, ESCRT-3), RAB-interacting lysosomal protein (RILP), dynein-dynactin complex,
AAA-type vacuolar protein sorting-associated protein 4 (VPS4) ATP-ase, respectively. Following steps
of the ESCRT-dependent sorting are presented including the input, output and changes in conformation
of particular proteins due to their activation, stimulation and reuse. Importantly, upon change in
conformation of ESCRT-0 PI(3)P protein binds and allows ESCRT-0 dependent activation of ESCRT-1.
Active ESCRT-1 signals back to ESCRT-2 that works in association with RILP protein-dynein-dynactin
complex. Once both ESCRT-1 and ESCRT-2 are localized on to the late endosomal membrane, ESCRT-3
is recruited at both sites to facilitate pinching in the membrane. AAA-type VPS4 ATP-ase comes at last
to pinch off the endosomal vesicle and release it in association with ubiquitinated cargo.

2.2. ESCRT-Independent Pathways

The ESCRT pathway is considered to be the most important mechanism of exosome formation.
However, MBV and ILV formation also occur in a ubiquitin-independent way. Heparan sulphate
proteoglycans promote exosome biogenesis through syntenin, a cytosolic adaptive protein. Syntenin
binds syndecan with Alix, which interacts with several ESCRT (TSG101 and charged multivesicular
body protein 4 (CHMP4)) proteins. It serves as an intermediate between ESCRT-I and ESCRT-III, and
is involved in the budding and scission processes [7]. Moreover, recent articles indicate the presence of
an ESCRT-independent pathway for exosome formation (Figure 4). ESCRT-independent formation
was initially described in oligodendroglial cells that secreted exosomes containing proteolipid protein
(PLP) [32]. The secretion of exosomes happened only after depletion of neutral sphingomyelinases
(nSMase), enzymes hydrolysing sphingomyelin to ceramide, being indicative as a crucial role of
ceramide in PLP sorting into ILVs. Interestingly, exosome secretion was not decreased, despite ESCRT
inhibition. Recently, four-transmembrane domain proteins belonging to the tetraspanin family have
been considered to be implicated in other pathways of cargo selection and exosome formation, in neither
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ESCRT-dependent nor ceramide-dependent manner [33]. Human melanoma cells secrete exosomes
containing melanosome proteins, following a CD63-dependent mechanism [34]. In human embryonic
kidney 293 cells (HEK293), the expression of CD82 and CD9 promote the discharge of β-catenin through
exosomes, whereas a study employing rat pancreatic adenocarcinoma cells describes a role for Tspan8
in the recruitment of particular mRNA and transmembrane proteins into exosomes [35,36]. In 2013,
Perez-Hernandez et al. described Tetraspanin-enriched microdomains (TEM) full of CD81 particles,
which is considered to be another ESCRT-independent manner of protein sorting into ILVs [37]. There
are far more molecules and cellular structures creating various pathways of exosome formation, such
as lipid raft domains [38], flotllin-2 [39], phospholipase D2 (PLD2) and GTPase ADP ribosylation factor
6 (ARF6) [40,41], chaperone HSC70 [42] and membrane protein of lysosomes and late endosomes called
lipopolysaccharide induced TNF factor (SIMPLE) [43]. In conclusion, there are many pathways of
exosome formation and it is still unclear whether the sorting and sequestering of particular molecules
involve different mechanisms, and consequently proteins, or if there are various MVB subpopulations
within singular cells.
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Figure 4. Three independent of each other processes of ESCRT-independent formation are proferred,
including ceramide dependent manner, cluster of differentiation 63 (CD-63) dependent mechanism
and ESCRT-independent formation in human embryonic kidney cells (HEK293). The ceramide
dependent manner of ESCRT-independent formation relies on hydrolysis of spingomyelin to ceramide
associated by the presence of neutral sphingomyelinases (nsMase). CD-63 dependent mechanism of
ESCRT-independent mechanism is associated with release of exosomal cargo containing melanosome
proteins from the exosomes secreted by human melanoma cells. ESCRT independent exosomal
nanovesicle formation in HEK293 relies on discharge of β-catenin through the membrane of exosomes
secreted by CD82+ CD9+ HEK293 cell.

2.3. Secretion

Just as multiple pathways occur during MVB biogenesis, numerous mechanisms and particles
are considered to be involved in exosome secretion. After formation, MVB can either fuse with a
lysosome to degrade their cargo or fuse with the plasma membrane, resulting in exosome release.
Although different MVB fates are known, the mechanism distinguishing both paths remains not
fully understood. A recent study by Villarroya-Beltri suggests that ISGylation, a posttranslational
ubiquitin-like modification of TSG101 (one of the ESCRT-I complex components) induces its aggregation
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and degradation, promoting exosome release by stimulation of fusion of MVB with lysosome. This
results in increased exosome release indicating posttranslational modifications of the cargo proteins
as a regulatory mechanism of MVB fate determination. Continuous transport of MVB to plasma
membrane is performed via their interaction with actin, cortactin, microtubule skeleton and RAB
proteins, along with their effectors [44]. Hoshino et al. suggested the role of actin cytoskeleton in
exosome release in cancer cells. Actin-rich invadopodia seem to have remarkable influence on the
secretion of exosomes [45]. MVB fusion with plasma membrane is facilitated and controlled by the
largest family of more than 60 small GTPases-RAB proteins, which participate in all of the processes
concerning vesicle transport within cells. The details of their action remain unknown, although
involvement of specific proteins, namely RAB2B, RAB4, RAB5A, RAB7, RAB9A, RAB11, RAB27A,
RAB27B, RAB35, is already confirmed in endosome motility and exosome secretion. Generally, release
of exosomes requires various RAB proteins. After MVB docking with plasma membrane, SNARE
(soluble NSF-attachment protein receptor) complexes facilitate the fusion of plasma membrane and
MVB employing the SNAP protein. Until now, two proteins of the SNARE family facilitate exosome
release: VAMP7 is crucial for the secretion of acetylcholinesterase-containing vesicles from K562
erythroleukemia cells, while YKT6 is necessary for WNT3A release from HEK293 cells. Apart from
RAB and SNARE family, there are other effectors considered to be involved in exosome secretion, such
as diacyl glycerol kinase α (DGKα), V0 subunit of vacuolar ATPase (V0-ATPase) and small GTPases of
the Rho/Rac/cdc42 family [22,46,47].

2.4. Cargo

Exosomes are 30–150 nm in size, double-layered vesicles with density fluctuation from 1.10 to
1.20 g/mL [48]. Exosomes have cup-shaped or saucer-like morphology, observable under transmission
electron microscopy [49]. The cup-shape of EVs is observed after negative staining or other non-cryo
EM processing, i.e., it has been interpreted as an artefact of this processing as the cup-shape is
not visible by cryo-EM [50]. Regarding biochemical properties, exosomes represent a heterogenous
family of vesicles marked by different compositions and carrying diverse cargo [51]. The diversity
of exosome secreting cells results in a different protein composition of each exosome subpopulation,
although, due to endosomal origins, analogous molecules are commonly found in a majority of these
subpopulations [25]. The common group comprises proteins crucial for MVB biogenesis (Alix, TSG101,
clathrin), molecules involved in fusion and exosome release (RAB and other families of small GTPases,
flotollins, annexins, ARF6), adhesion proteins (integrins), tetraspanins (CD9, CD63, CD81), heat-shock
proteins (HSP70, HSP90), cytoskeletal proteins (actin, tubulin) and metabolic enzymes (e.g., aldolase
1, GAPDH, PKM2). The presence of other proteins, such as MHC II depends on specific exosome
releasing cells [52].

Even though the EVs always have a lipid encapsulation, lipidomics is not the most often used
method in EV analysis, and there are few studies regarding proteomic analysis, highlighting as
with proteins, different cells release exosomes of diverse lipid composition [53]. The exosome
membrane does not exactly reflect plasma membrane of the maternal cell (e.g., enrichment
of exosome membrane in sphingomyelin and glycosphingolipids, as well as lower amount of
phosphatidylinositol in comparison to releasing cell) [28]. However, similarly to PM, the exosome
membrane is double-layered with an asymmetric distribution of particular lipid classes in inner
and outer portions [54]. Exosomes are enriched in sphingolipids, especially sphingomyelin,
cholesterol, phosphatidylcholine, phosphatidylserine (PS), phosphatidylethanolamine, ceramide,
and glycerophospholipids [55]. Curiously, there is an absence of lysobisphosphatidic acid (LBPA),
which is crucial for ILV formation and is found inside those structures. As a plasma membrane, the
exosome membrane contains lipid rafts, detergent-resistant domains containing specific components
(e.g., glycolipids, Src tyrosine kinases or glycosylphosphatidylinositol (GPI-anchored proteins) [56].
Lipid rafts are involved in exosome formation and the secretion of specific molecules into the
extracellular space [38].
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Apart from proteins and lipids, exosomes carry a significant amount of RNA cargo, including
mRNA, miRNA, and other non-coding RNAs, such as lncRNA [57]. In 2013, Valadi et al. described
1300 mRNA and 120 miRNA particles that are transported to target cells via exosomes, which may
regulate their gene expression and protein translation [46]. This horizontal transport of functional
RNA between cells has been observed in vitro as well as in vivo [58–63]. Exosomal RNA differs from
maternal cell RNA content, which proves the existence of specific mechanisms and proteins controlling
RNA sorting into exosomes [64]. Even though the nature of this process remains unknown, RNA
binding proteins (RBP), such as Mex-3 RNA Binding Family Member C (MEX3C) and heterogeneous
nuclear ribonucleoprotein A2/B1 (hnRNPA2B1) are some of the molecules suggested to be involved in
the sorting of miRNA [65]. Next to RNA, several studies have described the existence of exosomal DNA
(exoDNA) which, in contrary to exoRNA, probably undergoes a random sorting process. Thereby,
exoDNA reflects the complete genomic DNA of the parental cell [66]. Other studies confirm these
results suggesting that exosomes carry fetal cfDNA, that can be used as a biomarker for pregnancy
complications [67]. On the contrary, study by Jeppesen et al. contradicts feature of exosome as active
vehicles for DNA release, suggesting that DNA is more likely released through endosomal mechanisms
and autophagy [68].

3. Methods of Isolation and Specificity of Exosomes Isolated from Selected Tissue and Cell Types

Extracellular vesicles, including exosomes, have been isolated from fluids, e.g., plasma, saliva,
human breast milk, semen, amniotic fluid, cerebrospinal fluid, bronchoalveolar lavage, bile, urine,
synovial fluid, aqueous humour, tear fluid, nasal secretions, and pleural effusions [2,69]. However,
samples derived from biofluids contain an exosome mix of different cellular origins. To analyse
exosomes from particular tissues or cells, it is best to collect conditioned media from cultured cells [70].
Currently, there is intensive research going on, looking at different aspects of the exosomes and
focusing on their isolation. Various methods of isolation, purification, and further characterization
are being developed concurrently, however the isolation methods do not only isolate exosomes or
nanovesicles but also other precipitates and contaminants. Several methods of exosome isolation have
been proposed and developed: ultracentrifugation, ultrafiltration, size exclusion chromatography
(SEC), polymer precipitation, immunoaffinity chromatography and techniques based on microfluids.
Each method and approach have advantages, as well as disadvantages, and is used depending on the
size of exosomes and their origins.

3.1. Ultracentrifugation

Differential ultracentrifugation is the most commonly used technique of exosome isolation from
biofluids and cell cultures [71]. It consists of three centrifugation steps with increasing centrifugal
forces. First, low-speed centrifugation (300× g) is performed to remove cells and large cell debris from
the cell culture fluid. The second round of centrifugation (10,000–20,000× g) is applied to remove
large cellular debris, organelles and MVs. The last round of centrifugation is performed at highest
speed (100,000–150,000× g) in order to separate exosomes from the supernatant. To produce exosome
preparations of higher purity, a sucrose or iodoxinol density-gradient medium used to separate
exosomes from other nonvesicles according to molar concentration and thus the density of particular
phases. Ultracentrifugation is quite expensive, time-consuming, and a large amount of untreated
samples is used, with the possibility of damaging the exosomes during the procedure [21,72].

3.2. Size-Based Isolation of Exosomes

This term comprises ultrafiltration and size exclusion chromatography (SEC). These methods are
based on a passage through physical barriers dependent on the size of particles. Ultrafiltration uses
nanomembranes or membranes with different cut-off molecular weights (MWCO) [73]. SEC employs
columns containing heterogenous pours. These methods do not require special equipment and do
not pose a danger of damaging exosomes during the procedure. When it comes to disadvantages,
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the SEC method is relatively time-consuming. Additionally, molecules of the same size range
cannot be separated from exosomes. In/out-put volumes are also an important limitation in SEC.
Ultracentrifugation and SEC are of limited accuracy, therefore they are commonly combined with other
isolation methods including ultrafiltration [74].

3.3. Polymer Precipitation

This method has been routinely used for isolating viruses [75] and macromolecules for over
50 years. Polyethylene glycol (PEG) or other hydrophobic polymers precipitate exosomes through
changing solubility and dispensability of the samples. Typically, PEG precipitation solution is combined
with exosome containing biofluid and incubated at 4 ◦C overnight, with the obtained precipitation
separated via low-speed centrifugation or filtration. Many companies offer isolation kits, such as
ExoQuick or Pure-Exo. However, these methods co-precipitate contaminants, such as proteins and
lipoproteins [76,77].

3.4. Immunoaffinity Chromatography

In this method, antibodies are attached to magnetic beads or other matrices through covalent
bonding. The whole process depends on binding reaction between antibodies and specific
surface-associated proteins expressed by exosomes, such as Alix, TSG101 or tetraspanins, resulting in
immobilization of exosomes on magnetic beads. This method allows to isolate specific subpopulations
of these nanovesicles, containing only antibody-recognised proteins, resulting in high purity isolate.
Additionally, it can be applied for quantitative and qualitative analysis of exosomes. However, this is a
relatively expensive method, abd ius not suitable for the isolation of large amounts of EVs [77,78].

3.5. Microfluidistics-Based Techniques

This method of separation is based on the physical and biochemical properties of particular
exosome subtypes. Isolation techniques based on microfluidistics developed may be divided into three
categories: immunoaffinity, sieving, and exosome separation using porous structures. Microfluid-based
isolation techniques are in the early stages of development. However, due to their advantages, such
as low reagent volumes, very high purity of isolated products and short processing time, they will
be widely used in diagnostics. The main drawback for their clinical application is a problem with
the fast and efficient production of sufficient exosome quantities. For exosome isolation and analysis,
microfluidistics can further be combined with immunoaffinity and sieving [79].

3.6. Exosomes of Different Tissue and Cellular Origins

3.6.1. Liver

Exosomes play an important role in communication between hepatocytes and non-parenchymal
cells in liver tissue. Using a polymer precipitation technique, Nojima et al. isolated hepatocyte-derived
exosomes containing sphingosine kinase 2 (SK2), a protein involved in liver repair and regeneration
after injury. Exosomes derived from non-parenchymal cells did not induce those reactions, suggesting
SK2 to be a specific cargo of hepatocyte-derived exosomes [80,81].

3.6.2. Heart

Exosomes are considered to be involved in cardiac protection and repair [82,83]. Exosomes from
cardiomyocytes were first isolated in 2007 from rat primary cell culture, using ultracentrifugation and
differential centrifugation techniques [84]. Since then, a large number of studies described heart-derived
exosomal cargo in physiological and pathological conditions [85]. In one of them, the researchers
measured the level of four cardiac-specific miRNAs (miR-1, miR-208a, miR-133a, miR-499) in rat
models of the cardiac fibrosis process and confirmed miR-208a participation in fibroblast proliferation
and differentiation [86].
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3.6.3. Brain

Functions of exosomes in the central nervous system (CNS) are described in Section 3.2. The EV
isolation protocol of exosomes present in the CNS extracellular space comprises the gentle dissociation
of brain tissue, to avoid excessive cellular lysis, and application of low-speed centrifugation, filtration,
and ultrafiltration, in that order [87,88]. Particular subpopulations of exosomes, containing unique
cargo, are secreted by neural cells. Neuron-derived nanovesicles contain a specific protein, anti-neural
cell adhesion molecule L1 (L1CAM) [89]. Oligodendrocytes-derived exosomes carry proteolipid
protein (PLP), one of the major component of myelin [90]. Whereas microglia release vesicles enriched
in CD13, surface-associated peptidase [91].

3.6.4. Bone

Exosomes play a crucial role in bone homeostasis. Exosomes are secreted by almost every bone
cell, such as bone mesenchymal stem cells, osteoblasts, osteoclasts, osteoclast precursor cells, osteocytes,
bone marrow stromal cells and bone narrow adipocytes, thereby participating in osteogenesis, bone
remodelling and resorption [92]. The isolation technique most commonly used to separate bone-derived
exosomes is ultracentrifugation, whereas the analysis of bone-derived exosomal markers reveals specific
molecules, such as osteoclast-derived miR-214-3p, reducing bone formation [93].

3.6.5. Adipose Tissue

Exosome release has been described in adipocytes and adipose stromal cells (ADSCs),
playing an important role in sustaining homeostasis, through participating in numerous processes:
adipogenesis, angiogenesis, nerve regeneration, inflammation, regulation of energy metabolism and
immunomodulation. Adipocyte-derived exosomes contain molecules such as adiponectin, resistin,
tumour necrosis factor α (TNF-α), retinol binding protein 4 (RBP-4), macrophage-colony-stimulating
factor (MCSF), fatty acid synthase (FASN), glucose-6-phosphate dehydrogenase (G6PD) and acetyl-CoA
carboxylase (ACC) [94].

4. Clinical Significance of Exosomes

Recently, the potential application of exosomes as diagnostic targets has gained attention. How
to take the advantages of exosomes in clinical applications is one of the important directions for
exosome study. Their properties, such as the fact that exosome content changes significantly during
morbid conditions in comparison to physiological state, has been used as a significant starting point
in looking at exosomes as a potential diagnostic tool. Moreover, due to their common presence in
biofluids, they are easily accessible in a non-invasive manner. Exosomes secreted by various cells
express specific surface molecules, which can be used to determine their cellular origins. Additionally,
these nanovesicles are stable and can be stored long-termm, as their content, used for analyses, is
membrane-enclosed and protected from degradation [95]. For instance, loading a bioactive protein
in exosomes avoids the immunogenicity and cleavage by proteases. Tang et al. recently engineered
exosomal Tat to specifically reactivate latent human immunodeficiency virus 1 (HIV-1) [96]. Further,
CD4+ exosomes released from CD4+ T cells seem to hinder spread of HIV virus by competing with
viral particles in terms of binding to other molecules and therefore restrict viral replication by for
example delivering active molecules [97]. Currently, it is clear that exosomes also are vehicles for
HIV particles in acquired immune deficiency syndrome (AIDS) infected persons, contributing to the
overall pathogenic effect. Even though the effect is still persistent, it is now possible to target the
mechanisms involved in sorting of the viral particles into exosomes [98]. Alternatively, other studies
have shown that exosomes carrying HIV-1 protein Nef (exNef) as their cargo are prone to be engulfed
by macrophages, causing the release of the exNef into the cellular space [99].
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4.1. Exosomes as a Diagnostic Tool-Diagnostics in CNS Diseases

In 2006, Faure et al. provided the first direct evidence of exosome secretion by neurons.
Subsequently, numerous studies confirmed release of these nanovesicles by glial cells, such as
astrocytes, oligodendrocytes, microglial cells, and neural stem cells. Exosomes are an important mode
of communication between neurons and glia in the CNS, making them crucial for the physiological
function of neurons through the participation in and modulation of numerous processes, including
neuronal maturation and repair, as well as the activity and plasticity of synapses [100]. Exosome
secretion by neurons and neuroglia is a reflection of their current state as they also readily cross the
blood–brain barrier [101]. These properties mark exosomes as potential future diagnostic tool for
neurodegenerative diseases. Currently, diagnosis of neurodegenerative diseases is based on clinical
symptoms, leaving limited therapeutic possibilities due to the high advancement of the disease at
the moment of detection. However, in 2006, Rajendran et al. described the presence of the Aβ

protein (a toxic protein accumulated in brain parenchyma typical for Alzheimer’s disease (AD) in
exosomes released by human embryonal carcinoma cell line NT2a, as well as the presence of an
exosome-associated Alix protein in the amyloid plaque of three AD patients [102]. In 2011, an elevated
level of phosphorylated tau protein (AT270) was found in neutrally derived exosomes extracted from
the cerebrospinal fluid (CSF) of early AD patients [103]. In 2015, Goetzl et al. found out that increased
level of cathepsin D, lysosomal-associated membrane protein 1 (LAMP1) and ubiquitinylated proteins,
as well as lowered content of HSP70 in exosomes is related to pre-clinical phase of AD [104]. Multiple
sclerosis, frontotemporal dementia, amyotrophic lateral sclerosis, Huntington’s disease and prion
protein-associated diseases are all neurodegenerative illnesses in which exosomes and their content
may serve as effective, pre-clinical diagnosis [105–110]. Acquired brain injuries could also be diagnosed
based upon exosomes. Traumatic brain injury (TBI), spinal cord injury (SCI) and ischemic stroke lack
specific biomarkers allowing for fast detection of their nature, extent and affected region. Exosomes
carrying information on their cellular origins may provide these information, becoming potential novel
biomarkers [111]. Exosomes are also a promising diagnostic tool in status epilepticus [112].

4.2. Exosomes and Cancer

Exosomes are considered to be involved in numerous mechanisms promoting cancer development,
such as pre-metastasis niche formation [113], angiogenesis [114], migration and invasion [115], immune
response modulation [116], metastasis [117], and drug resistance. Moreover, increased exosome
secretion is a key adaptation to hypoxia, facilitating angiogenesis and metastasis in new niche
conditions [118]. Small extracellular vesicle loading systems employing exosomes and exosome mimics
known as small extracellular vesicles (sEVs) are being developed as a novel delivery strategy in
chemotherapy-based cancer therapies dependent on loading external cargo composed of a tumour
inhibiting agent and modifying exosomal surface proteins [119]. Recently designed artificial chimeric
exosomes demonstrated a better antitumor therapeutic answer with elevated tumour accumulation
when comparing with conventional liposomes [120]. Main challenges of exosome based systems
include cancer-specific methods for loading the cargos into the vesicle and manipulation of the surface
proteins so that the half-life of the vesicles is prolonged, making them a long lived therapeutic target
to be explored in the near future. Additionally, recent research concerning the native content of the
exosomal cargo might also significantly contribute to the understanding of exosomal proteomics,
creating further possibilities for exploring alternative therapeutically relevant agents. As described,
exosomes are deeply involved in cancer progression. Thus, the disruption of communication via
tumour-derived exosomes is a potential therapeutic treatment strategy that can be achieved through the
inhibition of exosome formation, release, or uptake by recipient cells. For example, the application of
sphingomyelinase inhibitors, which participate in intracellular ceramide-dependent exosome synthesis,
leads to decreased production of these nanoparticles [3]. The small GTPase family of RAB proteins is
involved in exosome release and could be yet another potential group of treatment targets. RAB27A
blockade was found to result in tumour growth inhibition [6]. Exosome secretion is also dependent on
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intracellular calcium levels, with its increase resulting in increased EV release. Application of dimethyl
amiloride, an inhibitor of voltage-gated Ca2+ channels, results in myeloid-derived suppressor cell
(MDSC) inhibition due to the decreased production of tumour-derived exosomes (TDEs), resulting in
the reduced immunosuppressive function of these cells [121].

4.2.1. Exosomes as Tumour Biomarkers

Solid biopsy is the most common tumour diagnosis tool used in clinical practice. However, this
method is highly invasive, often unpleasant, and traumatic to a great number of patients. Additionally,
biopsies are an impractical for conducting screening and prognostic assays. Hence, clinicians and
diagnosticians have found better means of diagnosis, including the Food and Drug Administration
(FDA) approved prostate intelliscore test, EV-based tests available for clinical use. Recently, far less
invasive liquid biopsies are gaining more and more interest, with blood-derived or urine-derived
exosomes indicated as novel potential diagnostic and prognostic markers for many types of cancer.
Yoshioka et al. developed a new method for diagnosis of colorectal cancer, called “ExoScreen”.
This method is highly sensitive, quick, and easy in terms of execution. Tumour-derived exosomes are
trapped by two antibodies, one specific to CD9, a tetraspanin protein widely present on the exosome
membrane, and one specific against CD147, a protein specific for colorectal-derived exosomes. Binding
effectiveness can then be effectively detected with the use of immunoblotting [122]. Another interesting
study identifies glypican-1 (GPC1) as a biomarker of early state pancreatic cancer [123]. Several types
of exosomes and their cargo (especially miRNA) are also used as preclinical biomarkers in many types
of cancer, such as lung cancer, hepatocellular carcinoma, pancreatic cancer, colorectal cancer, melanoma,
breast cancer, prostate cancer, ovarian cancer, glioblastoma, and nasopharyngeal carcinoma [72,124].

4.2.2. Exosomes as a Drug Delivery System

Currently, drugs and genes are most commonly administered with the use of liposomes and
polymeric nanoparticles. Liposomes are synthetic, sphere-shaped phospholipid nanovesicles composed
of at least one lipid bilayer that encloses an aqueous space [125]. Nanoparticles are synthetic or
semi-synthetic colloidal polymers of 10–1000 nm in diameter [126]. Besides the fact that these
vesicles have been commonly used as a promising administration route for many anti-cancer drugs,
anti-fungal drugs, and analgesics, limitations in their usage include the short half-life of liposomes
in the circulatory system, varying biocompatibility, and long-term toxicity. Exosomes seem to be
a potent drug delivery system with an array of desirable features being composed of membranes
rather than synthetic polymers, which represent improved tolerance by host organism. Exosomal
vesicles have promising long circulating half-life, very low or no toxicity, intrinsic capability to target
specific tissues or even cells (very important in CNS diseases), low immunogenicity and tend to have
innate homing capacity [127]. Exosomes may also be genetically engineered to pass through biological
obstacles, such as the blood-brain barrier, penetrate into tissues, as well as carry numerous types of
drug molecules and genes, such as proteins, lipids, RNAs and DNAs, effectively protecting them
from degradation [128]. One of the first studies describing the usage of exosomes as a drug delivery
system was conducted in 2010. Curcumin, an anti-inflammatory, antineoplastic and antioxidant drug,
was administered to mice with lipopolysaccharide-induced septic shock. It was found that curcumin
carried by exosomes was more soluble and bioavailable with higher clinical activity [129]. Since then,
numerous studies on animal models and cell cultures have been performed, such as: exosome mediated
catalase administration to in vitro cultured neurons and mice suffering from PD [130], doxorubicin
administration to human H1299 and A549 lung cancer cells [131], or delivery of miRNA (miR-122) to
human liver hepatocellular carcinoma HepG2 cell line, as well as HepG2 cell bearing mice in vivo [132].
Due to the success of these studies, exosomes have recently been approved as drug carriers in clinical
trials, facilitating the treatment of melanoma, non-small-cell lung carcinoma, colorectal cancer, cancer
of the head and neck, as well as ulcers and type I diabetes mellitus [70,72]. Critical challenges in
the context of exosomes as potential drug delivery vehicles for cancer therapies include ineffective
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exosome separation techniques and a lack of purification techniques required following the successful
isolation of exosomes [119]. Other challenges encompass the limited availability of highly sensitive
exosomal biomarkers, non-large-scale production and low drug loading efficiency [120].

5. Conclusions

In summary, exosomes are the smallest group of nanovesicles, serving as a method of intracellular
communication. Interest in exosomes has grown tremendously in the past two decades due to their
multiple functions in both physiological and pathological processes. Exosomes not only allow cells to
send out signals, but also to transport proteins. Exosomes can either be formed in the ESCRT dependent
or ESCRT—independent pathways. Currently, the most effective methods for the isolation of exosomes
of statistically relevant purity include ultracentrifugation, size exclusion chromatography, polyethylene
glycol precipitation, immunoaffinity chromatography, and microfluidistics. Exosomal cargo vary
according to the organ they are derived from. There is a rapidly growing interest in employing
exosomes as diagnostic tools for cancer and tumour therapies as well as vectors for drug delivery.
There are still more questions than answers in the subject of their biogenesis, cargo sorting and release
mechanisms. Moreover, the isolation of clinical grade exosomes is time-consuming, requiring the
development of new, more efficient technologies. The understanding of exosome biology is improving,
creating a new area for diagnostic, prognostic, and therapeutic applications to be discovered in the
near future.
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