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Bone destruction induced by the metastasis of breast cancer cells is a frequent complication that is caused by the interaction between 
cancer cells and bone cells. Receptor activator of nuclear factor kappa-B ligand (RANKL) and the endogenous soluble RANKL inhibitor, 
osteoprotegerin (OPG), directly play critical roles in the differentiation, activity, and survival of osteoclasts. In patients with bone metastases, 
osteoclastic bone resorption promotes the majority of skeletal-related events and propagates bone metastases. Therefore, blocking 
osteoclast activity and differentiation via RANKL inhibition can be a promising therapeutic approach for cancer-associated bone diseases. 
We investigated the potential of isoliquiritigenin (ISL), which has anti-proliferative, anti-angiogenic, and anti-invasive effects, as a preventive 
and therapeutic agent for breast cancer cell-induced bone destruction. ISL at non-toxicity concentrations significantly inhibited the 
RANKL/OPG ratio by reducing the production of RANKL and restoring OPG production to control levels in hFOB1.19 cells stimulated 
with conditioned medium (CM) of MDA-MB-231 cells. In addition, ISL reduced the expression of cyclooxygenase-2 in hFOB1.19 cells 
stimulated by CM of MDA-MB-231 cells. Therefore, ISL may have inhibitory potential on breast cancer-induced bone destruction.
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INTRODUCTION

Bone metastasis from breast cancer leads to severe bone 

destruction through the interaction between cancer cells and 

bone cells.1 Osteolytic bone destruction significantly decreases 

the survival rate of patients with metastatic breast cancer.2 

Receptor activator of nuclear factor kappa-B ligand (RANKL) and 

osteoprotegerin (OPG) are key molecules in bone-resorbing 

osteoclast differentiation and activation. RANKL from osteo-

blasts binds to receptor activator of nuclear factor kappa-B (RANK) 

on the surface of preosteoclasts and promotes the maturation of 

osteoclasts. OPG secreted by osteoblasts obstructs the binding of 

RANKL and RANK. Whereas a balance between RANKL and OPG is 

maintained in normal physiology, various cytokines or 

chemokines secreted by breast cancer cells disrupt the balance 

between RANKL and OPG.3 Consequently, the number of 

bone-resorbing osteoclasts and bone destruction are abnormally 

increased in patients with metastatic breast cancer.4 Therefore, 

RANKL can be a strategic therapeutic target for patients with 

metastatic breast cancer.5

Isoliquiritigenin (ISL) (Fig. 1A) is a flavonoid derived from 

licorice and shallot.6 ISL has diverse pharmacological activities 

such as anti-inflammatory, anti-diabetic, anti-angiogenic, and 

anti-osteoclastic properties.7-10 In addition, ISL has strong anti- 

cancer effects in various types of cancers.11-13 In breast cancer, ISL 

inhibits the metastasis of human breast cancer cells through 
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Figure 1. The effect of isoliquiritigenin (ISL) on the receptor activator of nuclear factor kappa-B ligand (RANKL)/osteoprotegerin (OPG) ratio 
in hFOB1.19 cells treated with conditioned medium (CM) of MDA-MB-231 cells. (A) Chemical structure of ISL. (B) hFOB1.19 cells were cultured
with indicated concentrations of ISL for 24 hours and 48 hours. The cell viability was analyzed by the MTT assay. Data are expressed 
as the means ± SE, aP ＜ 0.01 vs. untreated cells. (C) hFOB1.19 cells were treated with CM and ISL at noncytotoxic concentrations for 
24 hours. RANKL and OPG levels in the culture media were determined using commercially available ELISA kits. Data are expressed as 
the means ± SE, bp ＜ 0.01 vs. control; aP ＜ 0.05, cP ＜ 0.01 vs. hFOB1.19 cells treated with CM of MDA-MB-231 cells. (D) hFOB1.19 
cells were incubated with CM of MDA-MB-231 cells and ISL (1-10 M) for 48 hours. Then, the cells were harvested and analyzed by fluo-
rescence activated cell sorter (FACS) as described in Materials and Methods. MFI, mean fluorescence intensity; C, control.



 

Sun Kyoung Lee, et al: Effect of Isoliquiritigenin on Breast Cancer Bone Metastasis 283

preventing anoikis resistance, as well as the migration and 

invasion of BT-549 and MDA-MB-231 cells.14 ISL also induces 

growth inhibition and apoptosis through downregulation of the 

arachidonic acid metabolic network and the deactivation of 

PI3K/Akt in MCF-7 and MDA-MB-231 cells.15

In the present study to verify the potential of ISL as a 

promising agent for control of breast cancer bone metastasis, we 

investigated whether ISL could affect RANKL and OPG expression 

in osteoblastic cells stimulated with conditioned medium (CM) of 

metastatic breast cancer cells.

MATERIALS AND METHODS
1. Materials

ISL, vitamin C (ascorbic acid), vitamin D3, vitamin K3, MTT, 

dimethylsulfoxide, and bovine serum albumin (BSA) were 

purchased from Sigma (St. Louis, MO, USA). Leibovitz’s L-15 (L-15) 

medium, Dulbecco’s Modified Eagle’s Medium:Nutrient Mixture 

F-12 (Ham) (1:1) (DMEM/F12), FBS, and antibiotics were purchased 

from Gibco BRL (Grand Island, NY, USA). Monoclonal antibody 

(mAb) against human RANKL was obtained from R&D Systems 

(Minneapolis, MN, USA), and polyclonal anti-human COX-2 

antibody was purchased from Cayman Chemical (Ann Arbor, MI, 

USA). Normal goat immunoglobulin G (IgG) and normal rabbit 

IgG, as well as an enhanced chemiluminescence (ECL) kit were 

obtained from Santa Cruz Biotechnology (Dallas, TX, USA).

2. Cell culture

MDA-MB-231 human breast cancer cells and hFOB1.19 human 

fetal osteoblast cells were obtained from American Type Culture 

Collection (Manassas, VA, USA). MDA-MB-231 cells were cultured 

in L-15 supplemented with 10% FBS and 1% penicillin/ 

streptomycin. hFOB1.19 cells were maintained DMEM/F12 with 

10% FBS and 1% penicillin/streptomycin, and, at 80% to 90% 

confluence, cultured in differentiation medium for an additional 

2 to 3 days prior to treatment with CM of breast cancer cells and/or 

ISL. Differentiation medium consisted of DMEM:F-12 (1:1), 50 

g/mL, vitamin C, 10−8 M vitamin D3, 10−8 M vitamin K3, and 10% 

charcoal-stripped FBS to minimize exposure to hormones and 

growth factors.16

3. MTT assay

hFOB1.19 osteoblasts were seeded into 96-well culture plates 

at a density of 1 × 104 cells/well. Twenty-four hours later, 

hFOB1.19 cells were cultured for 24 hours and 48 hours in 

respective serum-free media with various concentrations of ISL. 

Cell viability was measured using an MTT assay. The absorbance 

was determined at 570 nm using a microplate reader (Bio-Rad 

Laboratories, Hercules, CA, USA).

4. Preparation of conditioned medium derived from 
MDA-MB-231 cells

MDA-MB-231 cells (1 × 106 cells) were plated in T75 culture 

flasks with 10 mL DMEM:F-12 (1:1) supplemented with 10% FBS, 

and incubated at 37oC. When the cells were nearly confluent, the 

medium was changed to serum-free DMEM:F-12 (1:1). After 24 

hours incubation, the medium was collected as CM, aliquoted, 

and frozen at −20oC. For the following experiments, 70% CM in 

differentiation medium was used.16

5. ELISA

hFOB1.19 cells were cultured in 96-well plates (1 × 105 

cells/well) in DMEM/F12 containing 10% FBS for 24 hours and 

then treated with 70% CM of MDA-MB-231 cells and ISL (0.1-10 

M). After 24 hours incubation, cultured medium of the 

hFOB1.19 cells was collected. The RANKL and OPG protein levels 

in the collected medium were quantified using commercially 

available ELISA kits (EIAab, Guangguguoji, China) according to the 

manufacturer’s protocols.

6. Flow cytometric (fluorescence activated cell sorter) 
analysis

hFOB1.19 cells (1 × 106 cells) were treated with 70% CM and 

ISL at the indicated concentrations for 48 hours. The cells were 

detached with 2 mM EDTA and subsequently incubated in 

phosphate-buffered saline (PBS) with 1% BSA on ice for 30 

minutes. Aliquots (2 × 105 cells) were incubated with 100 L 

RANKL mAb (10 g/mL) on ice for 1 hour. The cells were washed 

twice with Mg2+- and Ca2+-free PBS with 1% BSA and resuspended 

in Mg2+- and Ca2+-free PBS containing 1% BSA and a 1:50 dilution 

of fluorescein isothiocyanate-conjugated IgG. After incubation 

with secondary antibody for 1 hour at 4oC, the cells were washed 

again. Ten thousand events were stored as list mode data for 

further analysis using WinMDI software (Windows Multiple 

Document Interface Flow Cytometry Application, 1993-1998 

Joseph Trotter).16

7. Reverse transcription-PCR

hFOB1.19 cells (1 × 106 cells) were treated with 70% CM and 

ISL for 6 hours. Total RNA from hFOB1.19 cells was extracted 

using the TRIzolⓇ Reagent (Invitrogen, Carlsbad, CA, USA). Single 

stranded cDNA was transcribed from the RNA (2 g) using 
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Promega’s reverse transcription system (Madison, WI, USA). PCR 

was carried out in a reaction mixture containing cDNA (2 g), 

MgCl2 (25 mM), dNTPs (10 mM), primers (1 pmol), and Taq 

polymerase (1 unit) (Takara, Shiga, Japan) with the following 

primers: COX-1, forward 5ˊ-CATCCTCGACGGCATCTCAGC-3ˊ; 
reverse 5ˊ-TTGGGTCAGGGGTGGTTATTG-3ˊ; COX-2, forward 5ˊ
-ATGACTTCCAAGCTGGCCGT-3ˊ; reverse 5ˊ-CCTCTTCAAAAACT 

TCTCCACACC-3ˊ; GAPDH, forward 5ˊ-GTCAGTGGTGGACCTGAC 

CT-3ˊ; reverse 5ˊ-AGGGGTCTACATGGCAACTG-3ˊ. The amplifica-

tion consisted of 30 cycles with an annealing temperature of 63°C 

for COX-1, 57.5oC for COX-2 and 52oC for GAPDH. The PCR 

products were electrophoresed, and the detected bands were 

analyzed with the TINA program ver. 2.10e (Raytest, Strauben-

hardt, Germany).

8. Western blotting

hFOB1.19 cells (1 × 106 cells) were cultured in media 

containing 70% CM and/or ISL at the indicated concentration for 

6 hours, and were lysed with the radioimmunoprecipitation 

assay buffer. The protein concentration was measured with a 

bicinchoninic acid (BCA) kit (Pierce, Rockford, IL, USA). Equal 

amounts of protein (40 g) were loaded onto a gel for SDS-PAGE. 

The blots were transferred to a polyvinylidene difluoride 

membrane (Millipore, Billerica, MA, USA). The membrane was 

blocked with 5% skim milk in Tris-buffered saline with Tween 20 

(TBST) and then incubated with the primary antibodies for COX-2 

(1:1,000) and -actin (1:2,000) in 3% skim milk in TBST for 24 

hours at 4oC. After washing, the blots were incubated for 1 hour 

with secondary antibody coupled to horseradish peroxidase 

(1:2,000) and visualized with the ECL kit.

9. Statistical analysis

Statistical analysis was performed with SPSS statistical 

software ver. 21 (IBM, Endicott, NY, USA). Data are expressed as 

mean ± SE. Data were analyzed by means of the Student’s t-test 

to express differences between the two groups. Results with 

values of P ＜ 0.05 and P ＜ 0.01 were considered statistically 

significant.

RESULTS
1. Isoliquiritigenin inhibited the receptor activator of 

nuclear factor kappa-B ligand/osteoprotegerin ratio 
in osteoblastic cells stimulated with conditioned 
medium of MDA-MB-231 breast cancer cells

We first examined the cytotoxicity of ISL on hFOB1.19 human 

osteoblastic cells. When hFOB1.19 cells were exposed to various 

concentrations of ISL, the viability of hFOB1.19 cells was 

suppressed at 20 M by 17% with 24 hours treatment and by 47% 

with 48 hours treatment (Fig. 1B). Next, we analyzed the secreted 

levels of soluble RANKL and OPG in hFOB1.19 cells treated with 

CM of MDA-MB-231 cells and ISL at noncytotoxic concentrations, 

using ELISA kits. ISL treatment significantly inhibited the 

secreted levels of RANKL and rescued those of OPG into the 

culture medium of osteoblastic cells stimulated with CM of 

MDA-MB-231 cells. Consequently, the elevated RANKL/OPG ratio 

by CM of MDA-MB-231 cells was inhibited by ISL treatment in a 

dose-dependent manner (Fig. 1C). In addition, we detected the 

expression level of membrane-bound RANKL in hFOB1.19 cells 

using fluorescence activated cell sorter analysis. CM of breast 

cancer cells increased the membrane-bound RANKL expression, 

but ISL reduced the CM-induced level of membrane-bound 

RANKL by 37% at 10 M (Fig. 1D).

2. Isoliquiritigenin inhibited the expression level of 
COX-2 in conditioned medium-stimulated osteo-
blastic cells

COX-2 is one of the well-known molecules that regulate the 

expression of RANKL.17,18 Thus, we further examined the effect of 

ISL on the expression of COX-2 in CM-treated hFOB1.19 cells. 

Reverse transcription (RT)-PCR data showed that CM of MDA- 

MB-231 cells increased the mRNA expression of COX-2, but ISL at 

non-cytotoxic concentrations blocked its CM-induced mRNA 

expression in hFOB1.19 osteoblastic cells. COX-1 mRNA expre-

ssion was not changed significantly by either ISL or CM of 

MDA-MB-231 cells in hFOB1.19 cells (Fig. 2A). Western blot 

analysis also indicated that ISL significantly inhibited the protein 

levels of COX-2 in hFOB1.19 cells exposed to CM of MDA-MB-231 

cells (Fig. 2B).

DISCUSSION

Bone metastasis is frequently observed in patients with 

advanced breast cancer, and the mortality rate is significantly 

higher in patients with bone metastasis than in patients without 

bone metastasis.2 Metastatic breast cancer cells metastasize to 

bone and secrete various osteolytic factors.1 These factors 

stimulate osteoblasts that are important regulators of bone 

metabolism and abnormally increase the expression of RANKL, 

which is a key promoting factor for osteoclast differentiation and 

activation.19 Consequently, excessive bone resorption by osteo-

clasts is rapidly increased in patients with metastatic breast 



 

Sun Kyoung Lee, et al: Effect of Isoliquiritigenin on Breast Cancer Bone Metastasis 285

Figure 2. The effect of isoliquiritigenin (ISL) on mRNA and protein expressions of COX-2 in hFOB1.19 cells stimulated by conditioned 
medium (CM) of MDA-MB-231 cells. (A) hFOB1.19 cells were incubated with CM of MDA-MB-231 cells and ISL (1-10 M) for 1 hour. The 
mRNA expression of COX-1 and COX-2 was analyzed by reverse transcription-PCR. (B) hFOB1.19 cells were incubated with CM of MDA-MB-231
cells and ISL (1-10 M) for 6 hours. Proteins were extracted and subjected to western blotting using the specific antibody against COX-2. 
Data are expressed as the means ± SE, aP ＜ 0.01 vs. control; bP ＜ 0.05, cP ＜ 0.01 vs. hFOB1.19 cells treated with CM of MDA-MB-231 
cells. GAPTH, glyceraldehyde-3-phosphate dehydrogenase; C, control.

cancer.4 Several growth factors released from the bone matrix by 

osteoclast-mediated bone resorption contribute to the prolifera-

tion and survival of cancer cells. These amplified interactions 

between breast cancer cells and bone cells, referred to as a ‘vicious 

cycle’, make the condition difficult to treat.20,21 Therefore, 

controlling osteoblastic RANKL expression in the bone micro-

environment with breast cancer metastases can be a promising 

strategy for the prevention and treatment of cancer-associated 

bone loss.

ISL has potent anti-inflammatory, anti-angiogenic, and anti- 

cancer effects.8,10-13 In particular, ISL prevents the metastatic 

potential of breast cancer cells through inhibition of matrix 

metalloproteinase activities and the PI3K/Akt signaling 

pathway.14,15 In our previous study, we found that ISL inhibited 

RANKL-induced osteoclastogenesis.16 The RANKL and OPG from 

osteoblasts are important molecules in the differentiation of 

osteoclasts.22 Thus, we further found that ISL at non-cytotoxic 

concentrations inhibited the RANKL/OPG ratio by blocking the 

expression of soluble and membrane-bound RANKL and the 

decrease in OPG production in human osteoblastic cells 

stimulated with CM of metastatic breast cancer cells. 

COXs are the enzymes that mediate the conversion of 

arachidonic acid to prostaglandins (PGs).23 Whereas COX-1 is 

expressed constitutively in most tissues and plays an important 

role in the maintenance of homeostasis, COX-2 is an inducible 

enzyme contributing to the elevated production of PGs in 

inflammation and cancer.24 Recent studies have demonstrated 

that COX-2 expression regulates the production of PGE2, which is 

one of the osteolytic factors involved in RANKL expression in 

osteoblasts.17 Mice lacking COX-2 showed reduced bone resorp-

tion in response to parathyroid hormone.18 PGE2 produced by 

cancer cells or osteoblasts binds to the osteoblastic EP4 receptor, 

which is one of the PGE receptor subtypes, and induces RANKL 

expression to stimulate bone resorption.25 Additionally, COX-2 

has been known to be involved in breast cancer bone metastasis.26 

In our study, ISL downregulated the expression levels of COX-2 

mRNA and protein elevated by CM of MDA-MB-231 cells in 

hFOB1.19 cells.

Taken together, ISL inhibited the RANKL/OPG ratio and COX-2 

expression in human osteoblast hFOB1.19 cells stimulated with 



286 Journal of Cancer Prevention Vol. 20, No. 4, 2015

CM of metastatic breast cancer MDA-MB-231 cells. Thus, ISL can 

be a beneficial agent to inhibit and treat breast cancer cell- 

associated bone diseases by blocking the interaction between 

cancer cells and bone cells via the inhibition of osteoblastic 

RANKL expression.
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