
Establishment, immunological
analysis, and drug prediction of a
prognostic signature of ovarian
cancer related to histone
acetylation

Yujie Fang1†, Jing Zhao1†, Xu Guo1, Yunfeng Dai2, Hao Zhang1,
Fanxin Yin1, Xiaoxu Zhang1, Chenxi Sun1, Zequan Han3,
Hecheng Wang1* and Yanshuo Han  1*‡

1School of Life and Pharmaceutical Sciences, Dalian University of Technology, Dalian, China,
2Department of Radiotherapy, Yingkou Central Hospital, Yingkou, China, 3Department of Pathology,
Yingkou Fangda Hospital, Yingkou, China

In recent years, epigenetic modifications have been increasingly regarded as

an important hallmark of cancer. Histone acetylation, as an important part of

epigenetic modification, plays a key role in the progress, treatment, and

prognosis of many cancers. In this study, based on the TCGA database, we

performed LASSO regression and the Cox algorithm to establish a

prognostic signature of ovarian cancer associated with histone

acetylation modulator genes and verified it externally in the GEO

database. Subsequently, we performed an immunological bioinformatics

analysis of the model from multiple perspectives using the CIBERSORT

algorithm, ESTIMATE algorithm, and TIDE algorithm to verify the accuracy

of the model. Based on the prognostic model, we divided ovarian cancer

patients into high-risk and low-risk groups, and assessed survival and the

efficacy of accepting immunosuppressive therapy. In addition, based on the

analysis of characteristics of the model, we also screened targeted drugs for

high-risk patients and predicted potential drugs that inhibit platinum

resistance through the connectivity map method. We ultimately

constructed a histone acetylation modulator-related signature containing

10 histone acetylation modulators, among which HDAC1, HDAC10, and

KAT7 can act as independent prognostic factors for ovarian cancer and

are related to poor prognosis. In the analysis of the tumor

microenvironment, the proportion of the B-infiltrating cells and the

macrophages was significantly different between the high- and low-risk

groups. Also, the samples with high-risk scores had higher tumor purity and

lower immune scores. In terms of treatment, patients in the high-risk group

who received immunotherapy had a higher likelihood of immune escape or

rejection and were less likely to respond to platinum/paclitaxel therapy.

Finally, we screened 20 potential drugs that could target the model for

reference.
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Introduction

Ovarian cancer (OC) is one of the three major malignant

tumors of the female reproductive system with the highest

mortality rate (Siegel et al., 2020). Currently, more than

239,000 new cases of ovarian cancer occur worldwide each

year (3.6% of all cancer cases), causing about 152,000 deaths

each year (4.3% of all cancer deaths) (Reid et al., 2017). The

convert location of ovarian cancer in the pelvic cavity accounts

for the inconspicuous symptoms, and most patients are in the

terminal stage when diagnosed due to the lack of effective

screening methods. Also, the 5-year survival rate of patients

with an advanced stage is only 29% (Lheureux et al., 2019).

Tumor cell reduction and platinum-based chemotherapy are

usually the initial treatment for ovarian cancer, but 70% of

patients with epithelial ovarian cancer will relapse within

3 years (Ozga et al., 2015). And, multiple relapses lead to

increasing resistance to chemotherapy drugs through a

bewildering array of mechanisms (Holmes, 2015).

Studies have shown that the progression and treatment effect

of OC are affected by many factors such as disease classification

and staging, treatment strategy, and tumor microenvironment

(Reid et al., 2017). Many transcriptional and epigenetic studies

have also demonstrated that the occurrence, progression, and

prognosis of OC are affected by the dynamic changes of multiple

oncogenes and tumor suppressor genes (Ding et al., 2020). A few

genes that may predict the prognosis of OC have been found in

previous studies, but their clinical application is relatively limited.

Histone acetylation is a dynamically reversible process that

determines the loose state of chromatin, and the relaxed

chromatin in the acetylation state facilitates gene

transcription, normally (Yang et al., 2018). The dynamic

process of histone acetylation is controlled by a series of

histone acetylation modulators (HAMs), which can be

classified as Writers, Erasers, and Readers. Writers include

histone acetyltransferases (HATs), which regulate gene

transcription by adding acetyl groups to lysine residues of

H3 or H4. Acetylation of histones is also removed by histone

deacetylases (HDAC), a class of enzymes known as Erasers. In

addition, proteins called histone acetylation readers recognize

acetylated histones and recruit transcriptional mechanisms (Yun

et al., 2011). These proteins generally contain bromodomain

(BRD) or are themselves acetyllysine-binding proteins, such as

the bromodomain and extra-terminal domain (BET) family.

They are Readers that specifically bind acetylated histone H3/

H4 and recruit downstream effectors to activate transcription

(Jain and Barton, 2017). Readers identify lysine residues at the

tail of acetylated histones by the BRD domain. This recognition is

a prerequisite for protein–histone association and chromatin

remodeling and is closely related to transcriptional activation

(Filippakopoulos et al., 2012).

As an important part of epigenetic modification, histone

acetylation plays an iconic role in the occurrence, development,

and prognosis of many cancers. Unexpected high-frequency

mutations in genes involved in the regulation of histone

acetylation have been found in many cancers in recent

genomic studies, suggesting that some HAMs may act as drive

genes in cancer development (Hu et al., 2019). In epigenetic

studies of breast cancer, samples with higher levels of acetylation

of H4 showed a better prognosis and showed an overall decrease

in the normal breast epithelium compared with the breast cancer

tissue, suggesting that acetylation regulation has an impact on the

prognosis of cancer (Elsheikh et al., 2009).

In recent years, targeted therapy and immunotherapy have

become the key methods in the treatment of many advanced

cancers due to their advantages of small toxicity and strong

targeting (Topper et al., 2020). In terms of gene-targeted therapy,

dysregulation of transcription due to altered protein acetylation

patterns is a hallmark of cancer, and this is currently a

mechanism by which HDAC inhibitors are targeted (Hrabeta

et al., 2014). Presently, there are three HDAC inhibitors available

for the clinical treatment of ovarian cancer; there are many targeted

drugs for acetylation in preclinical trials, and more targeted drugs for

histone acetylation are waiting to be discovered (Marsh et al., 2014).

In terms of immunotherapy, many immune checkpoint inhibitor

(ICI) drugs have been in the treatment of cancer. However, only a

small number of patients can benefit from it due to the specificity of

immunotherapy drugs. In addition, some cancers, such as pancreatic

cancer, breast cancer, or ovarian cancer, seem to have intrinsic

resistance to ICI drugs (Brahmer et al., 2012). How to identify the

population that responds to immunotherapy drugs is a current

problem.

In this study, we collated genes involved in acetylation

regulation, established a novel prognostic signature associated

with acetylation regulation using samples from TCGA and GTEx

databases, and classified cancer patient populations into high-

risk and low-risk groups. Based on CIBERSORT, ESTIMATE,

and ssGSEA algorithms, we discussed differences in immune and

survival characteristics among different risk subgroups in tumor

immune infiltration. We focused on the expression of symbolic

genes CA125 and HE4 and immune checkpoint genes PD-1, PD-

L1, PD-L2, and CTLA4 in different groups of ovarian cancer so as

to further explore the correlation between histone acetylation and

the progress, treatment, and prognosis of ovarian cancer. To

evaluate the role of risk subgroups in the treatment of ovarian

cancer, IMVIgor210 and GSE30161 were introduced for

validation. Furthermore, we used the MOA (mode of action)

method in the cMAP database to screen out potential drugs
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targeting the model. In addition, gene functional enrichment

analysis and protein interaction networks were used to improve

the interaction mechanism of model genes. In conclusion, our

study established a link between the expression of histone

acetylation modulators and the progress, therapy, and

prognosis of ovarian cancer, providing new ideas for the

prognosis and treatment of ovarian cancer and providing help

for ovarian cancer patients to find more effective targeted drugs.

Materials and methods

Data source

RNA-seq data of 375 serous ovarian cancer patients (the

recurrence samples have been removed) and the corresponding

clinical information were from the TCGA-OV data set (data

version: 07-20-2019). RNA-seq data of 88 normal ovarian tissue

samples were from the GTEx data set (data version:04-19-2016)

(https://xenabrowser.net/datapages/). The expression microarray

data and clinical information of 260 serous ovarian cancer patients

fromGSE32062 were downloaded from the GEO database (Yoshihara

et al., 2012). The data format of the expression matrix adopts TPM

(transcripts per kilobase million), and the standardized method is log2
(TPM+1). R package limma and sleuth were used for further quality

control and data collation, and the average value of gene expression

level was adopted for multi-probe genes.

A total of 77 acetylation regulatory genes were straightened

out refer to the literature (Hu et al., 2019), including 22 histone

acetylation genes (Writers), 18 histone deacetylation genes

(Erasers), and 43 histone acetylation recognition genes

(Readers), among which six genes serve as both Writers and

Readers (Supplementary Table S1).

Identification and enrichment analysis of
differentially expressed histone
acetylation modulators

Differentially expressed HAMs were analyzed by the limma

package in R software (Friedman et al., 2010). To further

investigate the biological functions of differential genes, Gene

Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathway enrichment analyses were conducted utilizing

the GOplot package in R software.

Construction and validation of the histone
acetylation modulator-related signature
for patients with ovary cancer

R package glmnet was applied to perform the LASSO

regression algorithm to train the regression coefficient

(Kamarudin et al., 2017). The optimal λ value was determined

by 10-fold cross-validation and 1se analysis. Then the model

genes were further screened by the Akaike information criterion

(AIC), and a gene signature containing 10 HAMs was established

by multivariate Cox regression. The risk score was obtained by

the following formula:

Riskscore = Ʃ (Regression coefficients × Level of gene

expression).

Therefore, TCGA ovarian cancer patients can be divided into

high-risk and low-risk groups according to the median risk score.

To further verify the accuracy of the signature, a

Kaplan–Meier curve was drawn by the survival package of R,

the area under curve (AUC) of the time-dependent receiver

operating characteristic (ROC) curve was analyzed by the time

ROC package (Kamarudin et al., 2017), and a nomogram of

overall survival (OS) prediction probability was established by

the rms package as internal verification. Also, the GSE32062 data

set acts as an external validation cohort. Risk scores of 260 OC

samples were calculated using the abovementioned formula, and

the KM curve and ROC curve were also used to verify the

performance of the gene signature. Additionally, we reviewed

previous literature on marker construction for ovarian cancer to

ensure that AUC values had prognostic credibility (Liu et al.,

2020a; Sun et al., 2019; Bao et al., 2020; Ding et al., 2020; Millstein

et al., 2020).

Correlation between gene expression and
immune infiltration

Cibersort is a convolution tool for the expression matrix of

immune cell subtypes based on linear support vector regression.

The CIBERSORT source was downloaded (https://cibersort.

stanford.edu/) and was then performed in the R platform. The

whole-gene expression matrix of GTEx and TCGA was input to

predict the relative proportion of 22 kinds of immune cells in

the sample, and the expression of immune cells between the

high-risk group and the low-risk group was compared. R

package estimate was applied to predict the immune score

and tumor purity of samples and to compare them in high- and

low-risk groups.

In addition, we downloaded immune estimation data of

TEGA samples from the TIMER database (Li et al., 2016)

(https://cistrome.shinyapps.io/timer/). The relationship

between the relative weight of immune cells (CD4+ T-cells,

CD8+ T-cells, B-cells, and macrophages) and risk score was

explored, and the correlation chart was drawn.

Therapeutic effect evaluation

In order to evaluate the response of different subgroups of

patients to ICIs, we first compared the expression levels of four
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important immune checkpoint genes. Furthermore, the TIDE

algorithm was used to evaluate the possibility of each patient’s

tumor immune escape (Fu et al., 2020) (http://tide.dfci.harvard.

edu/).

IMVIgor210 was the immunotherapy cohort introduced as

an external validation cohort to verify the consistency of the

immunotherapy effect and prediction (Zhang et al., 2020a).

GSE30161 was used to study the relationship between the

model and platinum resistance, which contains 58 patients

with ovarian cancer receiving platinum chemotherapy (Ferriss

et al., 2012).

Mutation analysis

The mutation profile of OC samples was derived from the

TCGA database. The R package maftools is used to process

and analyze data in MAF format. We visualized the

frequency of mutations in the high/low-risk groups and

calculated the tumor mutation burden (TMB) score for

each sample: TMB = (total mutations/total covered

bases) ×10̂6.

Prediction of potential target compounds
for ovarian cancer patients

We utilized Broad’s CMap database to predict potential

drugs that target the HAM-related signature (Subramanian et

al., 2017). The mode of action (MoA) analysis was used to sort

out the class and mechanism of drugs.

Identification of crucial prognostic histone
acetylation modulators

Survival analysis was used to explore the prognostic value of

signature genes and to identify genes with independent

prognostic ability. Subsequently, protein expression of these

independent prognostic factors was confirmed in the Human

Protein Atlas (HPA) database (http://www.proteinatlas.org/)

(Thul et al., 2017).

Protein expression analysis

The STRING database and the geneMania database were

used to build the Protein–protein interaction (PPI) network. The

STRING database (https://string-db.org) depicts a network of

physical and functional interactions of proteins based on

systematic co-expression analysis and literature text mining

(Szklarczyk et al., 2017). PPI network analysis was then

constructed to predict physical and functional interactions of

prognostic HAMs to explore the core genes of the network.

The GeneMANIA database (http://www.genemania.org) can

be used to identify genes associated with signatures for further

analysis (Franz et al., 2018). Interaction networks associated

with signature genes were constructed by identifying gene co-

annotation patterns in gene ontology or using enrichment

analysis.

Statistical analysis

In this study, all statistical analyses were conducted using Perl

software (version 5.32.1.1) and R software (version 4.1.1).

Wilcoxon test and Kolmogorov–Smirnov test were used to

compare paired groups. In addition, p value < 0.05 was

considered as statistically significant.

Result

Differential expression analysis of histone
acetylation modulators in OV

The workflow of our study is illustrated in Figure 1. First, we

downloaded mRNA data of 375 OV samples and

88 corresponding normal ovary samples with clinical

information from the TCGA and GTEx databases. By

comparing the gene expression profiles in the TCGA cancer

group and the GTEx normal group, a total of 21 differentially

expressed genes (DEGs) were identified among 77HAMs genes (|

logFC|>1,p < 0.001), with eight downregulated genes and

13 upregulated genes(Figure 2A,2B). Compared with the

normal group, the expression of SP110 and

HDAC10 reached −2.70 and −2.30 logFC, respectively, which

were significantly downregulated. In contrast, the expression of

ATAD2 and ZMYND8 were upregulated with logFC of 1.96 and

1.98, respectively. All differential expression results are presented

in Supplementary Table S2.

GeneOntology and Kyoto Encyclopedia of
Genes and Genomes functional analysis

Through GO enrichment analysis, the differentially

expressed genes were mainly enriched to 77 items

(q-value<0.05), including histone modification, peptidyl-

lysine modification, histone binding, histone deacetylase

activity, and so on (Supplementary Table S3). The results

of KEGG analysis showed that HAM differential genes

were mainly enriched in three pathways (q-value<0.05):
viral carcinogenesis, alcoholism, and neutrophil

extracellular trap formation (Supplementary Table S4)

(Figures 2C–F).
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Development of the histone acetylation
modulator-related signature

The TCGA cohort (TCGA-OV, n = 375) is used as a training

set to construct HAM-related signatures. To eliminate the

overfitting of gene signature, LASSO regression was performed

to screen genes and train regression coefficients. Then, genes that

contributed less to the model were filtered out by the AIC

criterion. Finally, a 10-gene prognostic marker was obtained,

and the formula was as follows:

Riskscore=(-0.3818)*ELP3+(0.2097)*HDAC1+(0.2688)

*HDAC10+(0.2029)*HDAC11+(0.1501)*HDAC2+(0.3085)

*HDAC4+(0.4347)*KAT7+(-0.3345)*KIAA 2026+(-0.4711)

*SIRT5+(-0.1796)*SP140.

According to the calculated median Risk score, TCGA

patients were then divided into high-risk and low-risk groups

(Supplementary Table S5). The hazard ratio of the signature was

presented (Figure 3A). As shown in Figure 3A, HDAC1, HDAC2,

HDAC4, HDAC10, HDAC11, and KAT7 genes in the HDAC

family were bad prognostic factors (hazard ratio>1), while ELP3,
KIAA 2026, SP140, and SIRT5 were good prognostic factors

(hazard ratio< 1). Furthermore, the line diagram and calibration

diagram of the model were also performed (Figures 3B,C).

The time-dependent ROC curve analysis and Kaplan–Meier

curves were performed (Figures 3D,E) for internal validation of

the model. The AUC values of HAM-related signatures at 1, 3,

and 5 years were 0.737, 0.704, and 0.688, respectively. In order to

achieve a horizontal comparison, a table that includes several

previous modeling of prognostic signatures for ovarian cancer

was compiled (Supplementary Table S6).

External validation of the histone
acetylation modulator-related signature

GSE32062 (n = 260) is a large ovarian cancer data set from

the GEO database, which is used for external validation of the

gene signature. Consistent with internal validation, the

Kaplan–Meier curves (Figure 4A) showed that the high-risk

group had a poorer prognosis. The time-dependent ROC

curve analysis was conducted, and the AUC values were 0.66,

0.584, and 0.638 of 1, 3, and 5 years of prognostication,

respectively (Figure 4B).

Comparing the immune infiltration
between the subgroups

Tumor immune infiltration is one of the main biological

characteristics of various cancers and is significantly related to

FIGURE 1
Flow diagram of this study.
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FIGURE 2
Differential expression analysis and gene enrichment analysis. (A) Heat map of differentially expressed genes. (B) Volcano map of differentially
expressed genes. (C) Enrichment analysis histogram of GO and KEGG analysis. (D) Enrichment analysis bubble plot of GO and KEGG analysis. (E,F)
Enrichment analysis circle diagram of GO and KEGG analysis.
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the prognosis. To study the inner relationship between immune

infiltration and the gene signature, we predict the distribution of

22 immune cells in the TCGA and GTEx cohorts by the

CIBERSORT algorithm at first. The heat map and violin

diagram (Figures 5A,B) indicate that the distribution of

macrophages, B-cells, and CD4 cells have significant

differences between tumor tissues and normal tissues.

Next, we compared the immune infiltration of TCGA

samples in the high- and low-risk groups (Figure 5C). It

shows that the B-memory cells and macrophage M1 were

significantly different between high- and low-risk groups,

indicating a correlation with prognosis. Furthermore, the

relationship between six immune cells and the risk score

was comprehensively compared (Figure 5D). Thereinto, the

infiltration levels of CD8 cells, dendritic cells, and

neutrophils were negatively correlated with the risk score,

while the macrophages were significantly correlated with the

higher risk.

Subsequently, we applied the ESTIMATE algorithm to

calculate the immune score, estimate score, and tumor purity

between low-risk and high-risk groups (Figure 5E). As shown in

Figure 5E, patients with high-risk scores had significantly lower

immune scores than those in the low-risk group, while tumor

purity was significantly higher compared to the low-risk group.

Evaluation of immune status between the
subgroups

By comparing the gene expression profiles of TCGA

patients, we found that the expressions of CTLA4, PD-L1,

and PD-L2 were significantly different among different risk

groups, and the expression levels were higher in the low-risk

group (Figure 6A). Applying the TIDE algorithm, we

calculated the Tidesore, Exclusion score, and Dysfunction

score of each sample, and the scores of all three were high in

the high-risk group. In addition, the infiltrating results of

myeloid-derived suppressor cells (MDSCs) and the

M2 subtype of tumor-associated macrophages (TAM.M2)

and the expression of interferon-γ (IFNG) were

significantly different between the different risk subgroups

(Supplementary Table S3) and correlated with the risk score

(Figure 6B).

To further explore the role of the risk score model in

predicting the immune response of patients, we introduced

the IMVIgor210 cohort for analysis (Supplementary Table S7).

With the increase of risk score, the immune state of patients

changed from inflamed to excluded and desert (Figure 6C), and

the degree of immune infiltration decreased periodically. In

addition, patients with high-risk scores had a lower objective

FIGURE 3
Construction of HAM signature by LASSO regression. (A,B) Prediction of immune cell proportion in TCGA and GTEx samples. (C) Calibration
curve of 3-year OS. (D) Time-dependent ROC curves predicted 1-, 3-, and 5-year prognostic performance in the training cohort. (E) Kaplan–Meier
curves to compare the OS of high-risk and low-risk groups in a training cohort.
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response rate (ORR) to ICI than those in the low-risk

group. (Figure 6D).

Mutation profile and histone acetylation
modulator risk groups

Gene mutation is one of the main reasons for tumor occurrence

and progress. By evaluating the frequency of tumor mutation, the

tumor mutation burden (TMB) of patients can be calculated.

According to the model established, the proportion order of

somatic mutations in high-risk group was TP53 > TTN >
CSMD3 > NF1 > USH2A > MUC16 (CA125) >TOP2A >
MACF1>FLG > LAM (Figure 7A) and that in the low-risk

group was TP53 > TTN > CSMD3 > MUC16 (CA125) >
RYR2 > FAT3 > DST > MYH4 > BRCA1 > MUC17

(Figure 7B). TMB is an important indicator currently used to

evaluate immunotherapy, clinically. Compared with patients with

a high-risk score, TMB was significantly increased in the low-risk

group, andTMBwas correlated with patient survival (Figures 7C,D).

Targeted therapy analysis and drug
prediction

Subsequently, based on the GSE30161 data set, we compared

the prognosis of patients receiving platinum/paclitaxel with

different levels of risk scores (Supplementary Table S8). The

result showed that the high-risk group had a lower percentage of

complete response (CR) after treatment (Figures 8A,B).

By comparing gene expression characteristics between patients

in the high- and low-risk groups (Supplementary Table S9), we

used MoA analysis of CMap to identify 20 ideal compounds for

targeting genetic signatures (Figure 8C). The mechanisms of these

drugs include HDAC inhibitor, CDK inhibitor, PLK inhibitor,

mTOR inhibitor, MEK inhibitor, and so on. Among them, HDAC

FIGURE 4
Validation of HAM signature in the GEO cohort. (A) Kaplan–Meier curves to compare OS of high-risk and low-risk groups in the validation
cohort. (B) Time-dependent ROC curves predicted 1-, 3-, and 5-year prognostic performance in the validation cohort. (C) Risk score distribution. (D)
Individual status of survival. (E) Heat map of the differentially expressed genes between high and low risks.
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inhibitor serves as the main pathway toward the signature,

consisting of six drugs: ISOX (score = 96.26), APicidin (score =

96.09), WT-171 (score = 94.31), Vorinostat (score = 92.59), THM-

I-94 (score = 88.99), and Trichostatin-a (score = 87.17) (Table 1).

Exploring crucial independent prognostic
histone acetylation modulators

Survival analysis was applied to identify the prognostic value

of HAM signature genes in the TCGA cohort. Only HDAC1 (p =

0.028), HDAC10 (p = 0.035), and KAT7 (p = 0.002) were tested

for significant survival correlations (Figure 9A). In addition,

lower expression of HDAC1, HDAC10, and KAT7 resulted in

relatively longer survival, while SP140 (p = 0.064) was

detrimental to survival (Supplementary Table S4).

Protein expression analysis of crucial
histone acetylation modulators

The immunohistochemical diagram of the HPA database is

presented in Figure 9B. The results showed that the protein

expression level of HDAC10 was significantly downregulated in

FIGURE 5
Relationship between the HAM signature and immune infiltration. (A,B) Prediction of immune cell proportion in TCGA and GTEx samples. (C)
Comparison of relative immune cell abundance in high-risk and low-risk groups. (D)Correlation of risk score and immune infiltrates. (E)Comparison
of tumor immune score in high-risk and low-risk groups based on the ESTIMATE R package. *Statistically significant p < 0.05; **: statistically
significant p < 0.01.
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tumor samples. Moreover, the protein expression levels of

HDAC1 and KAT7 were also downregulated to a certain

extent, which was consistent with the results of the survival

analysis.

Based on the STRING and geneMania databases, we have

explored the protein interaction network of the signature genes

(Figures 9C,D). The STRING database shows the inner interaction

network. The result indicates that CREBBP, HDAC1, and

HDAC2 possess the most internal interactions. Furthermore,

through protein interaction analysis conducted by the geneMania

database, we found some genes associated with HAM signature, such

as HDAC9, HDAC8, ALL133500.1, HDAC6, AGMAT, and so on.

Discussion

Ovarian cancer is one of the diseases with the highest

mortality rate of gynecological malignant tumors (Stewart et

al., 2019). The lack of effective and sensitive diagnosis means that

in the early stage of ovarian cancer, the cancer has chemotherapy

resistance and metastasis in the advanced stage, resulting in poor

treatment effect and prognosis of patients (Lisio et al., 2019).

Therefore, rapid and accurate early diagnosis and rational

medication and treatment strategies are the key to the

treatment of ovarian cancer. Genetics and epigenetics are two

key factors that determine the occurrence and development of

tumors. A large number of epigenetic modification-related genes

are changed at a high frequency in cancer and may become

driving genes in the process of cancer development (Hu et al.,

2019). Histone acetylation, involved in the regulation of the cell

cycle, cell differentiation, and apoptosis, greatly affects the

occurrence, development, and treatment of cancer (Farria et

al., 2015).

In this study, we studied 77 important HAMs, including

Writer, Eraser, and Reader. Through GO and KEGG enrichment

analysis, these HAMs are mainly involved in the modification of

FIGURE 6
Evaluation of immune status between low-risk and high-risk groups. (A) Expression level of immune checkpoint genes. (B) Tumor immune
dysfunction and exclusion scores in the high- and low-risk groups. (C) Relationship between risk score and the immune phenotype in the
IMVIgor210 cohort. (D) Objective response rates in the low-risk group (ORR = CR + PR).
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histones and the regulation of a variety of transcriptional

activities, thus playing an important role in the progress,

development, and prognosis of cancer. By analyzing the

transcriptional expression profile of HAMs of ovarian cancer

patients in TCGA and normal samples in GTEx, we established

a prognostic signature of ovarian cancer associated with HAM

genes and verified it in the GEO database. According to the risk

score of our model, patients can be divided into high-risk and low-

risk subgroups, and the OS of patients in the two subgroups is

significantly different in both the training cohort and the validation

cohort. The results of the ROC curve and nomogram indicate that

the risk model established by us is effective in prognosis.

Among the multi-gene signature established by us, there are

10 HAMs, among which two belong to the histone acetylation

enzyme (ELP3, KAT7), two belong to the acetylation reader

(SP140, KIAA 2026), and the other six belong to the histone

deacetylation enzyme (HDAC1, HDAC2, HDAC4, HDAC10,

HDAC11, and SIRT5). KAT7 (HBO1) belongs to the MYST

superfamily and contains a specific region composed of the

acetyl-CoA binding motif and zinc finger (MYST domain).

ELP3 belongs to the GNAT superfamily and has a conserved

GNAT domain and can acetylate lysine residues on histone H3

(Srivastava et al., 2014; Salah et al., 2016); HDAC1 and

HDAC2 are Class I HDAC, which are nuclear proteins.

HDAC4 and HDAC10 are Class II HDACs, which travel

between the cytoplasm and nucleus. HDAC11 is a Class IV

HDAC with shared properties of Class I and CLASS II. It is an

NAD + dependent enzyme. Figure 3A shows that among the six

HDACs, only SIRT5 is a benign prognostic factor, while the rest

are associated with a poor prognosis of ovarian cancer.

In previous studies, these HAM proteins have been

demonstrated to be closely associated with the progress of

many cancer, and different types of HAMs have different

effects on cancer. The catalytic subunit of the histone

acetyltransferase KAT7 complex mediates the acetylation of

histone H3K14ac, H4K5ac, H4K8ac, and H4K12ac, thus

playing a regulatory role in gene transcription, protein

ubiquitination, and immune regulation (Iizuka and Stillman,

1999; Doyon et al., 2006). Studies have shown that

KAT7 enhances the mechanical transduction pathway and

membrane elasticity of ovarian cancer cells through the

overexpression of preferential acetylation histone H4 of co-

mediator JADE2, thus improving the migration ability and

invasiveness of ovarian cancer cells (Quintela et al., 2019; Gao

et al., 2021). SP140 acts as an acetylation reader, preferentially

occupying promoters of silenced genes with histone modification

FIGURE 7
Mutation profile and HAM risk groups. (A,B) Mutation profiles of high- and low-risk groups. (C) TMB differences between high- and low-risk
groups. (D) Correlation between TMB and survival.
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FIGURE 8
Targeted therapy analysis. (A) Efficacy of platinum/paclitaxel in the high- and low-risk groups. (B) Relationship between therapeutic effect and
survival. (C) Potential targeted drugs predicted by cMAP analysis (the abscissa of the heatmap is the compound and score, the ordinate is the cell line,
red indicates sensitivity to the compound, and blue indicates insensitivity to the compound).
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of H3K27me3, and is critical for transcriptional programs that

support the macrophage state (Mehta et al., 2017). Histone

deacetylases HDACs are the most important components of

the gene labels we have established. Among them,

HDAC1 and HDAC2 are class I HDACs, whose increased

expression is an independent risk factor for poor prognosis of

malignant ovarian tumors (Khabele et al., 2007; Weichert et al.,

2008). In ovarian cancer, HDAC1 promotes cancer cell

proliferation by increasing cyclin A (Hayashi et al., 2010), and

HDAC2 interferes with cisplatin-induced activation of DNA

damage responses by remodeling chromatin (Huang et al.,

2016). In addition, many studies have shown that HDAC1 is

also a good diagnostic or prognostic signature for lung cancer,

gastric cancer, glioma, breast cancer, and other cancers (Cao

et al., 2017; Yu et al., 2019; Guo et al., 2020; Yang et al., 2020).

HDAC4 and HDAC10 are Class II HDACs, which are associated

with proliferation, migration, and invasion of a variety of cancers

(Cai et al., 2018; Cheng et al., 2021). SIRT5 is a Class III HDAC

that is involved in oxidative stress or metabolic homeostasis

related to aging, degeneration, or cancer (Gonzalez-Fernandez et

al., 2019). Relevant studies revealed that SIRT5 can promote

autophagy of gastric cancer cells, and SIRT5 can inhibit

peroxisome-induced oxidative stress, thus protecting the liver

and inhibiting the development of hepatoma cells (Chen et al.,

2018; Gu et al., 2021). HDAC11 is the most recently discovered

and the smallest member of the HDAC enzyme. At present,

HDAC11 has been found to be associated with poor prognosis in

the liver, lung, ovarian, glioma, uveal melanoma, and other

cancers (Yanginlar and Logie, 2018; ; Liu et al., 2020b; Bi

et al., 2021). The results of the current literature are

consistent with our findings, further confirming the

widespread role of HAMs in cancer and supporting the

prognostic value of these genes for ovarian cancer and other

cancers.

We focused on the relationship between the risk signature

and the tumor microenvironment. According to the

CIBERSORT algorithm analysis, 19 of the 22 types of immune

cells had significant differences between tumor samples and

normal samples. Among them, the expression of macrophages

M0, macrophages M1, Tregs, and CD4+ T-cells were significantly

upregulated in cancer, indicating that they are important factors

involved in ovarian cancer immunity. However, the infiltration of

B-cells and macrophage M1 showed significant differences

between the samples in the high- and low-risk groups.

Furthermore, correlation analysis showed a negative

correlation between the degree of B-cell infiltration and the

risk score, suggesting a potential tumor suppressive effect of

enhanced B-cell infiltration. Recent studies have also shown that

tumor-infiltrating B-cells have antitumor effects and can

combine with CD4+ T-cells to enhance local immune

responses (Zhang et al., 2020b). Subsequently, we performed

the ESTIMATE algorithm to assess the overall immune status of

ovarian cancer patients. Among them, the tumor purity was

higher in the high-risk group, while the immune score was

TABLE 1 Scores and mechanisms of 20 potential drugs.

Name Comprehensive Score MOA (mechanism of action)

AS-703026 98.41 MEK inhibitor

ISOX 96.26 HDAC inhibitor

apicidin 96.09 HDAC inhibitor

MST-312 96.02 telomerase inhibitor

WT-171 94.31 HDAC inhibitor

cytochalasin-b 94.27 microtubule inhibitor, phagocytosis inhibitor

vorinostat 92.59 HDAC inhibitor, cell cycle inhibitor

epoxycholesterol 91.54 LXR agonist

WYE-354 91.21 mTOR inhibitor

SB-590885 91.06 RAF inhibitor

cytochalasin-d 89.01 Actin polymerization inhibitor, actin stabilizer

THM-I-94 88.99 HDAC inhibitor, apoptosis stimulant, cell cycle inhibitor

WYE-125132 88.82 mTOR inhibitor, PI3K inhibitor

trichostatin-a 87.17 HDAC inhibitor, CDK expression enhancer, ID1 expression inhibitor

wortmannin 86.89 PI3K inhibitor, ATM kinase inhibitor, PLK inhibitor, etc.

torin-2 86.04 mTOR inhibitor

BI-2536 85.47 PLK inhibitor, apoptosis stimulant, cell cycle inhibitor, protein kinase inhibitor

fluticasone 85.25 Glucocorticoid receptor agonist

WAY-170523 85.1 Metalloproteinase inhibitor

fenpiverinium 85.05 Acetylcholine receptor antagonist

Frontiers in Pharmacology frontiersin.org13

Fang et al. 10.3389/fphar.2022.947252

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.947252


FIGURE 9
(A) Kaplan–Meier survival curves revealed contrasting survival possibilities predicted by varying expression of signature genes. (B) Protein
expression of crucial HAMs in ovary cystadenocarcinoma serous and normal ovary tissues based on the HPA database (HDAC1 tumor: HPA029693,
staining: medium, quantity: >75%; HDAC1 normal: CAB068191, staining: medium, quantity: >75–25%; HDAC10 tumor: CAB045977, staining:
medium, quantity: >75%; HDAC10 normal: CAB045977, staining: high, quantity: >75%; KAT7 tumor: HPA044470, staining: medium, quantity:
75–25%; KAT7 normal: HPA044470, staining: medium, quantity: >75–25%). (C,D) PPI network of prognostic HAMs. (C) PPI network by the STRING
database. (D) Protein interaction analysis by the geneMania database.
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significantly reduced. This indicates that patients with a high-risk

score had a poor level of tumor immune infiltration and were less

able to kill tumor cells. Meanwhile, the result revealed a negative

correlation between the risk score of the model and the level of

immune infiltration.

In studies of immunotherapy efficacy, we examined the

expression levels of several important immune checkpoint genes.

We found that the expression of PD-L1, PD-L2, and CTLA4 was

significantly increased in the low-risk group, and it can be speculated

that the low-risk patients might have more obvious effects after

receiving immune checkpoint inhibitors. In addition, the TIDE

algorithm revealed a higher likelihood of immune escape or

immune dysfunction in high-risk patients, heralding poor

response to immunoblocking therapy (ICB) in these patients. In

addition, mutation analysis showed a significant decrease in TMB in

the high-risk group compared to the low-risk group, and this

difference may have an impact on patient survival. To further

verify the effect of receiving immunotherapy, we introduced the

IMVIgor210 cohort treated with PD-1/PD-L1 inhibitors as the

validation set. The results indicated that patients in the high-

risk group had a lower, but not significant, rate of objective

response (CR/PR) after ICI treatment. Patients tended to

perform differently on the immune phenotype according to

different risk scores. However, with the increase of risk score,

the immune phenotype of patients varies from “inflamed” to

“exclude” and then to “desert,” indicating a decline in the level

of immune infiltration and the effect of receiving

immunotherapy (Chen and Mellman, 2017).

Our study also provides potential drugs for target therapies.

We have identified 20 compounds targeting HAM-related

signature using cMAP as potential target drugs for OC

patients. These drugs include HDAC inhibitor, CDK inhibitor,

PLK inhibitor, mTOR inhibitor, MEK inhibitor, and so on. Of

concern, six of the 20 small molecule compounds we identified

act as histone deacetylation inhibitors (HDACIs). HDACIs are a

diverse group of compounds that vary in structure, bioactivity,

and specificity. By affecting transcription, HDACIs can halt the

cell cycle, inhibit DNA repair, and induce apoptosis and

acetylation of non-histones, leading to downstream changes in

gene expression (Lakshmaiah et al., 2014). On one hand,

dysregulation of transcription due to altered histone

acetylation patterns is a mechanism for cancer occurrence,

which is currently targeted by HDAC inhibitors; on the other

hand, the traditional treatment for ovarian cancer is generally

platinum-based therapy, while the high expression of HDAC

family members increases the resistance of patients to platinum

chemotherapy. Islam et al. (2017) have identified

HDAC10 inhibitors as potential therapeutic targets for

ovarian cancer, enhancing the efficacy of platinum drugs in

malignant ovarian tumors. In addition, studies have shown

that silencing HDAC1 by siRNA targeting leads to the

induction of xenograft tumors that are sensitive to cisplatin

therapy and can reduce drug resistance, which may be an

effective strategy to improve the efficacy of cisplatin therapy

(Liu et al., 2018). In the sample analysis of GSE30161, our results

verified this: high-risk patients had a significantly lower CR ratio

compared with low-risk patients due to higher HDAC

expression. Therefore, the combination of HDAC inhibitors

and platinum drugs may become one of the effective strategies

for the treatment of ovarian cancer.

In this study, multiple data sets were included in the model

construction and validation process to improve its accuracy, and

the practical application ability of the model was studied from the

perspectives of immunity, prognosis, and treatment. However,

there are some limitations to the study that need to be addressed.

For example, the lack of information on clinical characteristics of

patients with ovarian cancer, such as TNM classification, limits

our ability to include clinical characteristics in risk assessment;

Second, due to the relatively small amount of data on ovarian

cancer patients and the differences in data processing between

the data sets, it is difficult to validate the model with broader

data. The robustness of the risk scoring model needs to be

further evaluated in more cohorts. Additionally, our findings

require long-term in vivo and in vitro experiments to further

study and verify the specific mechanisms by which acetylation

modulators influence cancer development. More details about

the effect of histone regulation on cancer remain to be

explored.

In conclusion, based on Cox regression analysis of the

expression profile of OC patients, we constructed a prognostic

signature of ovarian cancer related to HAM genes, which can

provide a valuable reference for identifying high-risk groups of

ovarian cancer and guidance for prognostic analysis of ovarian

cancer patients. Subsequently, we completed the analysis of

immune infiltration, immune therapy, and mutation profiles

in high- and low-risk populations. Finally, our findings may

help identify more effective targeted drugs and treatment

strategies for ovarian cancer patients.
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