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Abstract
Background: The computation of accurate alignments of cDNA sequences against a genome is at
the foundation of modern genome annotation pipelines. Several factors such as presence of
paralogs, small exons, non-consensus splice signals, sequencing errors and polymorphic sites pose
recognized difficulties to existing spliced alignment algorithms.

Results: We describe a set of algorithms behind a tool called Splign for computing cDNA-to-
Genome alignments. The algorithms include a high-performance preliminary alignment, a
compartment identification based on a formally defined model of adjacent duplicated regions, and
a refined sequence alignment. In a series of tests, Splign has produced more accurate results than
other tools commonly used to compute spliced alignments, in a reasonable amount of time.

Conclusion: Splign's ability to deal with various issues complicating the spliced alignment problem
makes it a helpful tool in eukaryotic genome annotation processes and alternative splicing studies.
Its performance is enough to align the largest currently available pools of cDNA data such as the
human EST set on a moderate-sized computing cluster in a matter of hours. The duplications
identification (compartmentization) algorithm can be used independently in other areas such as the
study of pseudogenes.

Reviewers: This article was reviewed by: Steven Salzberg, Arcady Mushegian and Andrey Mironov
(nominated by Mikhail Gelfand).

Background
Spliced gene products available in the form of cDNA
sequences provide an experimental level of support for
gene models. It has been shown [1] that the availability of
large numbers of such sequences greatly improves the
quality of identification of gene structures, especially in
UTR regions which are beyond the application scope of
most ab initio gene-prediction methods. Accuracy of

spliced alignments is crucial in such areas as studies of
alternative splicing and regulatory elements.

Over the last decade, significant attention has been given
to development of tools to assist the spliced alignment
problem. A useful overview of such tools has been given
in [2]. Despite considerable progress in more recent tools,
various types of alignment errors are still observed. Such
errors include missing micro-exons, forced consensus
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splice signals and alignments stretching over several mem-
bers of tandem gene clusters. Another critical issue is the
performance of the algorithms.

We developed a tool called Splign for accurate and fast
alignment of spliced cDNA sequences against their
genomic counterparts. The process (Figure 1) starts with
computing local alignments between the input cDNA set
and the genome. The local alignments are used to identify
candidate locations on the genome for every cDNA. Every
location is then refined using an optimal alignment algo-
rithm specifically accounting for possible splice sites.

This general scheme has been exemplified in virtually
every spliced alignment method capable of aligning a
cDNA against a whole genomic assembly. Our approach
is different in that it uses a formally defined model of
same-strand duplications, which are found as a solution
of an optimization problem. Splign is very conservative in
its use of local alignments to seed the core splice refine-
ment algorithm, which tends not to bind the final align-
ment with preliminary alignments delivering non-unique
mappings. This also makes the algorithm more capable of
finding small exons which are often missed by other
methods. Finally, we explicitly list several important
alignment alternatives and assign the elementary scores of
the optimal alignment algorithm via a system of inequal-
ities assuring preferable alignment outcomes.

Results and Discussion
To assess the quality of alignments reported by Splign, we
compared it with five other spliced alignment programs:
Sim4 [3], Spidey [4], BLAT [5], GMAP [2], and SPA [6]
(Table 1). We used each of the programs to produce align-
ments of 218 641 human mRNA sequences with the refer-
ence human genome (build 36.3). The alignments were

then compared using different quality measures. In a sep-
arate test, we also aligned 1 683 827 EST sequences that
were expected to have same splicing forms as selected Ref-
Seq [7] mRNA sequences. The EST alignments were then
compared to the alignments of the corresponding RefSeq
mRNA sequences.

Identity-based comparison
Full-length mRNA sequences are high-quality transcripts
each representing a splicing variant of a gene. To assess the
quality of alignment of a cDNA against a genomic locus,
we introduced the following measures. Overall identity is
the number of matching residues, divided by length of the
alignment excluding possible introns. For the purpose of
this definition, cDNA bases that failed to align (except
those of the poly(A) tail, if any) are counted as deletions.
For example, if 62 out of the total of 100 bases of a cDNA
aligned perfectly and the other 38 bases did not align, the
overall identity is 62%.

If information about the coding region is available, it is
possible to introduce a measure accounting for frame
shifts. Frame shifts in a coding region's alignment are
caused by gaps whose length is not a multiple of three,
and usually indicate either an error in a cDNA or genomic
sequence, or incorrect alignment. In-frame identity is the
number of matching nucleotide residues aligned without
a frame shift, divided by the length of the coding region's
alignment excluding possible introns.

The presence of same-strand duplications often poses a
problem for spliced alignment algorithms. With the pos-
sibility of a sequencing error or a polymorphic site on the
genome, the alignment with the highest identity can
stretch across multiple duplicated regions. Compactness
of an alignment can be quantified with its span ratio,
which is the span of the alignment on the genome divided
by the length of the cDNA sequence.

Throughout our tests, the genome was represented as a
collection of chromosomes and unplaced scaffolds. Four
of the programs (BLAT, GMAP, SPA and Splign) are able
to align a cDNA against the whole genome. Sim4 and Spi-
dey require externally specified genomic sequence. We
found that running these two programs on full-length
human chromosomes will often cause them to crash.
Assuming that in practice users would most likely run
these two programs against genomic scaffolds, for every
cDNA we supplied Sim4 and Spidey with scaffolds where
Splign reported at least partial alignment.

Our set of mRNA sequences consisted of 218 641 human
mRNA sequences available at GenBank at the time of the
testing, with 24 273 of them being RefSeq mRNA
sequences.

The computation of spliced alignments with SplignFigure 1
The computation of spliced alignments with Splign.
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After having computed the alignments, we found that it
was not uncommon for the programs to report 3' exons
consisting mostly or entirely of 'A' residues, often con-
nected to the rest of the gene by a non-consensus intron
(we call an intron consensus if it has one of the following
donor/acceptor pairs: GT/AG, GC/AG, AT/AC). We sus-
pect that in many cases such alignment segments are in
fact poly(A) tails that should not have been aligned. Table
2 lists the numbers of mRNA sequences with alignments
featuring A-content of 75% or higher in their 3' segments.
The data shows that the approaches for recognizing and
trimming possible poly(A) tails lead to varying results
among the programs under comparison. When comput-
ing the alignment statistics the maximum tail of consecu-
tive 'A' residues was checked to allow one or two non-'A'
residues. If such a tail was found, the alignment was
trimmed to the start of the first all-'A' substring of length
five or longer. Any alignment beyond that point was then
ignored.

Tables 3 and 4 compares the number of sequences aligned
at various levels of the overall identity by Splign versus the
other tools. The data shows that at the higher identity lev-
els Splign was able to align more sequences than any other
tool. Table 5 lists the total time it took for every program
to compute the alignments for the full set of mRNA
sequences.

Although the full set of mRNA sequences is the most rep-
resentative, one may argue that the comparison based on
it could be biased. A fraction of mRNA sequences are
deposited to GenBank as complemented strand. Splign
can report both sense and anti-sense alignments for a sin-
gle mRNA which may give it an advantage over the tools
that report alignments in one direction, because an incor-
rectly directed alignment can have an identity higher than
the one in the correct direction. For queries aligning to
more than one place on the genome, strategies vary
among the tools, with some reporting all alignments
above certain quality threshold and others attempting to

rank the alignments and report a fixed number of the top-
ranking alignments. To minimize these differences, we
restricted the full set of mRNAs using the following condi-
tions:

• single alignment with 80% or higher overall identity

• sense maximal ORF is 900 bases or longer

• anti-sense maximal ORF is at least two times smaller

The conditions produced a subset consisting of 72 113
mRNA sequences and 13 883 RefSeq mRNA sequences
("Subset 1").

Tables 6 and 7 present the comparison data based on the
Subset 1 alignments. The data shows that at every identity
level Splign was able to align more sequences than any
other tool, most closely followed by SPA and GMAP.

The data in Tables 8 and 9 use in-frame identity to com-
pare the alignments produced by the methods for the Sub-
set 1. The data shows that at every level of identity, Splign
was able to align more sequences than the other tools. To
eliminate a possible concern that the higher in-frame
identity demonstrated by Splign alignments may be a
result of excessive preference for non-consensus splices,
we also counted the numbers of every splice type found in
the alignments produced by each of the programs (Table
10). The comparison reveals that Splign non-consensus
splice frequency is the second lowest, and the consensus
splice counts are very close to those produced by the two
other recent tools.

Compartment test
An acknowledged difficulty for a spliced alignment tool is
to properly localize an alignment in presence of nearby
same-strand duplications. In order to test how well each
tool handles the task, we created a set of mRNA sequences
with each sequence covered at least 1.5 times by same

Table 1: Programs used in the comparison

Sim4 Spidey BLAT GMAP SPA Splign

version - 1.40 34 2007-06-04 - 1.29
source time stamp 09/2003 06/2006 04/2007 06/2007 07/2007 08/2007

Table 2: The number of best alignments with A-content of 75% or higher in the 3' exon. The numbers are based on the alignments with 
the highest overall identity.

Sim4 Spidey BLAT GMAP SPA Splign

%% of all mRNAs 15.5 0.57 0.98 0.04 2.12 0.01
%% of RefSeq mRNAs 22.1 0.31 1.67 0.02 2.72 0.00
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strand Megablast hits to the same subject (a chromosome
or an unplaced scaffold), and the highest-identity align-
ment subject to the following conditions.

• same exon count among the methods

• sense direction

• at most one non-consensus splice

• the identity is 90% or higher

The conditions produced 9383 mRNA sequences ("Subset
2"). For every mRNA sequence in the set, its highest-iden-
tity alignment's span ratio has been compared among the
methods. Table 11 shows that Splign has the smallest
mean ratio and the second smallest median ratio. As with
the identity-based tests, trailing 'A' residues that were part
of alignments were trimmed prior to computing the statis-
tics. Had this not been done, the ratios for the methods
with higher fraction of alignments retaining Poly(A) tails
would have gone up.

Co-aligning EST test
Alignment of EST sequences is often more difficult due to
shorter sequence length and higher error rates. Yet for
most organisms, the bulk of transcript evidence comes in
the form of ESTs as they are less expensive to produce in a
high-throughput manner than full-length mRNA
sequences. Therefore, it is important for a spliced align-
ment program to be able to compute accurate alignments
of cDNA sequences with higher sequencing error rates
such as in ESTs. To measure how well different programs
cope with the task, the following test has been conducted.

We selected a subset of RefSeq mRNA sequences that align
uniquely across the genome with an identity of 99% or
higher, having at least two exons, and at least one co-
aligning EST, which yielded 13975 sequences. For each
sequence from this set, a list of EST sequences was com-
piled whose EST-to-mRNA alignment suggested the same
splicing form. This selection was done by running Megab-
last [8] on query EST sequences against a database of the
mRNA sequences and selecting ESTs with the number of
unaligned bases less than ten, the maximum gap length
less than four, and the overall alignment identity of 95%

Table 4: The number of RefSeq alignments at various levels of the overall identity. Fractions give the differences in the number of 
alignments by each method and Splign expressed as percentage of the total of sequences in the set.

80% 85% 90% 95% 99% 99.5% 99.9% 100%

Splign 24255 24254 24243 24218 23947 23420 19337 14898
Sim4 24242 24233 24201 24109 23566 22815 17774 12894

-0.05 -0.09 -0.17 -0.45 -1.57 -2.49 -6.44 -8.26
Spidey 23648 23491 23270 22972 22408 21789 17782 13488

-2.50 -3.14 -4.01 -5.13 -6.34 -6.72 -6.41 -5.81
BLAT 24240 24230 24201 24145 23701 23046 19043 14676

-0.06 -0.10 -0.17 -0.30 -1.01 -1.54 -1.21 -0.91
GMAP 24249 24242 24225 24198 23876 23294 19217 14513

-0.02 -0.05 -0.07 -0.08 -0.29 -0.52 -0.49 -1.59
SPA 24213 24202 24180 24148 23830 23303 19204 14698

-0.17 -0.21 -0.26 -0.29 -0.48 -0.48 -0.55 -0.82

Table 3: The number of the full set alignments at various levels of the overall identity. Fractions give the differences in the number of 
alignments by each method and Splign expressed as percentage of the total of sequences in the set.

80% 85% 90% 95% 99% 99.5% 99.9% 100%

Splign 212875 209895 203460 195939 182123 169058 107267 76542
Sim4 212533 208571 203016 195513 177784 162761 97812 69359

-0.16 -0.61 -0.20 -0.19 -1.98 -2.88 -4.32 -3.29
Spidey 199870 195159 190753 186356 172385 159021 100338 72225

-5.95 -6.74 -5.81 -4.38 -4.45 -4.59 -3.17 -1.97
BLAT 209899 206260 201207 194640 177345 163157 104338 74815

-1.36 -1.66 -1.03 -0.59 -2.19 -2.70 -1.34 -0.79
GMAP 208849 205793 202732 196734 180048 166488 105452 74975

-1.84 -1.88 -0.33 +0.36 -0.95 -1.18 -0.83 -0.72
SPA 203942 199548 195926 192595 180273 167815 105835 74911

-4.09 -4.73 -3.45 -1.53 -0.85 -0.57 -0.65 -0.75
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or higher. In such a way, the total of 1 683 827 ESTs were
selected. Initially, we estimated using the EST-to-mRNA
and (method-specific) mRNA-to-genomic alignments the
number of introns expected in the EST-to-genomic align-
ments. Then every EST from the list was aligned on the
genome using each of the methods, and the number of
introns exactly matching those found in the mRNA align-
ments was collected.

The results of this test are presented in Table 12. The data
shows that in terms of sensitivity, Splign produced a
higher number than any other tool except SPA, whose
fraction of identified introns was higher by 1.4%. How-
ever, the time it took to compute the EST alignments with
Splign (37 CPU hours) was nearly twenty times smaller
than that of SPA. The best specificity was demonstrated by
GMAP with almost 99.5% of introns matching those
found in the mRNA alignments, followed by Splign that
correctly aligned 98.9% of introns. Sim4, which is one of
the oldest programs, also demonstrated good specificity.

Although each mRNA sequence in this initial test was
required to have a high-identity alignment, for a number
of sequences different methods produced different align-
ments. To reduce the possibility that the initial EST test
might have been affected by the alignment errors intro-
duced by the methods in their mRNA alignments and
repeated in the EST alignments, we repeated the test with
an extra requirement that the set of introns must be the
same in the mRNA alignments produced by every
method. This brought down the number of mRNA
sequences to 7 923, and the number of EST sequences to
915 111. The results of the test are presented in the second
line of Table 13, and are in line with the results from the
initial test.

Conclusion
We developed a tool that is robust enough to produce
accurate cDNA-to-genomic alignments in a matter of
hours on a moderate-sized computing cluster for the larg-
est available cDNA data volumes such as the human or
mouse EST libraries. Splign has a powerful compartmen-
tization algorithm to identify and separate nearby same-
strand duplications. The program is tolerant to sequenc-
ing errors and polymorphic sites due to its use of the true
optimal alignment algorithm and a conservative applica-
tion of the preliminary local alignments.

There are three aspects that are novel in Splign compared
to other methods. First, we introduce a high-performance
method using index-to-index comparison for computing
preliminary local alignments. Second, a formally defined
model of compartments discriminating between gene and
exon duplication events is used to localize candidate
genomic regions for every input cDNA. Finally, the scores
used in the splice-aware optimal alignment algorithm are
obtained as a solution of a linear programming problem
reflecting selected types of target alignments. Although the
resulting affine gap scoring model employed in Splign is
less generic than probability-based scoring models such as
[6], it allows the computation of alignments of compara-
ble quality faster by an order of magnitude.

Splign has been evolving over the past five years. It is rou-
tinely used at NCBI to facilitate annotation of eukaryotic
genomes.

The Splign web site [9] provides access to the source code
in C++ and allows the download of pre-compiled Splign
and Compart binaries for several major platforms. The
site also has a job submission facility, where cDNA que-
ries can be aligned online against a genomic sequence or
a whole genome.

Methods
Preliminary sequence alignment
In this section we describe the algorithm for the computa-
tion of elementary alignments between a set of input
cDNA sequences and a genome from the same species
(Figure 2). The goal was to make the algorithm both sen-
sitive and fast when matching a large number of cDNA
sequences against a whole genome.

High sensitivity of the algorithm is achieved by using a
small word size and very light repeat filtering. During the
compartmentization each alignment is evaluated in the

Table 6: The number of the Subset 1 alignments at various levels 
of the overall identity. Fractions give the differences in the 
number of alignments by each method and Splign expressed as 
percentage of the total of sequences in the set.

85% 90% 95% 99% 99.5% 99.9% 100%

Splign 72047 71922 71568 68890 65666 43046 25931
Sim4 72013 71830 71316 68055 63919 39272 23249

-0.05 -0.13 -0.35 -1.16 -2.42 -5.23 -3.72
Spidey 71562 70833 69744 66128 62461 40456 24578

-0.67 -1.51 -2.53 -3.83 -4.44 -3.59 -1.88
BLAT 72010 71842 71393 67508 63319 41693 25357

-0.05 -0.11 -0.24 -1.92 -3.25 -1.88 -0.80
GMAP 72001 71843 71459 68446 64787 42263 25335

-0.06 -0.11 -0.15 -0.62 -1.22 -1.09 -0.83
SPA 71993 71823 71406 68578 65368 43043 25736

-0.07 -0.14 -0.22 -0.43 -0.41 0.00 -0.27

Table 5: Time to compute alignments for the full set of human 
mRNA sequences. The timing is based on a single instance 
running on Intel Xeon 2.33 GHz/8 GB Linux box.

Sim4 Spidey BLAT GMAP SPA Splign

CPU hours 856 698 8 12 2448 49
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context of compartments and kept only if found to be a
member of the globally optimal chain of alignments. If
some minimum level of query cDNA coverage by a com-
partment is employed, which is typical in practical appli-
cations, most spurious matches between a pair of
sequences are discarded even before the compartmentiza-
tion stage.

On the performance side, the algorithm benefits from uti-
lizing the information about the composition of the
cDNA sequences at the indexing of the genome, reducing
the size of the index. Indices produced by the algorithm
are stored in disk files to free memory for accumulation
and processing of matching words. The latter are found by
a linear-time comparison of the cDNA and genomic indi-
ces, during which the indices are accessed sequentially.
The algorithm performs ungapped extension of the align-
ments as it is sufficient for the compartmentization and
gaps in the final alignments are discovered using the target
function of the refinement stage.

The algorithm starts with scanning the genomic sequence
for repeats. Note that application of some form of repeat
masking is necessary to keep a local alignment tool of
choice from being overwhelmed with hits to repetitive
genomic segments. On the other hand, accuracy of solu-
tions produced by the compartmentization may suffer if
the set of local alignment is incomplete. Since it is possi-
ble for a repeated sequence to be part of an exon, we apply
a very light repeat filtering based on frequency counts of
sparse words. We first collect the counts of 14-mers with
relative positions 1, 2, 5 – 16 in 16-mers starting at every
fourth position in the genome. Then we set elements of a
repeat filtering bit vector (RFV) corresponding to 14-mers
within the 99.5 percentile. For every 16-base word parsed
during the cDNA indexing, the 14-base subsequence of
the word is extracted and used to check the corresponding

bit in the RFV to determine whether the word becomes a
key in the index. The choice of 14 for the purpose of com-
puting the number of word repetitions allows the entire
repetition count vector to occupy only 256 megabytes.
The repetition count vector is discarded as soon as the RFV
is initialized, with the latter occupying even smaller space.

The next step is the indexing of cDNA and genomic
sequences. The sequences are concatenated and encoded
using two bits per residue. The cDNA sequences are
indexed first, with each word checked against RFV using
the procedure described above. If the check is successful,
the underlying 32-bit value (key) is written alongside its
global coordinate. Such key/position pairs are accumu-
lated unless indexing another sequence would top a pre-
defined maximum index volume size. At that point the
pairs are sorted by keys and the index volume is saved on
the disk. The indexing continues until all sequences have
been parsed.

On the disk, the index is stored in two components. A
position component lists global coordinates of the keys
while the key component lists keys and offsets corre-
sponding to them in the position component. Similar
index representations have been used in a number of
other applications [2,10].

Different filtering vectors are used during the indexing of
the cDNA and the genomic sequences. RFV derived from
the genome is applied at the cDNA indexing to filter out
words that are over-represented in the genome. Similarly,
a participation vector (PV), which is a bit vector with bits
indicating presence of the keys in the cDNA index, is
applied at the indexing of the genome. The vector occu-
pies 512 megabytes in memory and is used to admit into
the genomic index only those keys that are found in the
cDNA index. Genomic words are extracted at every other
position of the genome. Combined with the continuous
sampling of cDNA sequences, this assures that every pair
of perfectly matching sequence segments of length seven-
teen or longer will be found.

As both indices have been created, word matching is done
very quickly through comparison of the key components
of the indices. Indeed, since the key components are
ordered by keys, finding each matching pair of keys is
achieved by synchronous scanning of the components.
For the same reason, the number of words corresponding
to a matching key on the cDNA and the genome is found
immediately. Matching words are recorded as pairs of glo-
bal coordinates for every pair of the cDNA and genomic
index volumes. Because of the way the index volumes are
constructed (above), matching words for every pair of
cDNA and genomic sequences are guaranteed to be con-
fined to a unique pair of index volumes. This is essential

Table 7: The number of the Subset 1 RefSeq alignments at 
various levels of the overall identity. Fractions give the 
differences in the number of alignments by each method and 
Splign expressed as percentage of the total of sequences in the 
set.

85% 90% 95% 99% 99.5% 99.9% 100%

Splign 13883 13880 13870 13781 13540 11345 8276
Sim4 13880 13873 13832 13615 13287 10521 7151

-0.02 -0.05 -0.27 -1.20 -1.82 -5.94 -8.10
Spidey 13765 13602 13379 13085 12802 10601 7587

-0.85 -2.00 -3.54 -5.01 -5.32 -5.36 -4.96
BLAT 13878 13866 13843 13680 13355 11180 8167

-0.04 -0.10 -0.19 -0.73 -1.33 -1.19 -0.79
GMAP 13879 13875 13864 13753 13481 11291 8066

-0.03 -0.04 -0.04 -0.20 -0.42 -0.39 -1.51
SPA 13878 13868 13855 13738 13502 11290 8174

-0.04 -0.09 -0.11 -0.31 -0.27 -0.40 -0.73
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for the compartmentization which must have all align-
ments between a pair of sequences available by the time it
starts processing the pair. The matching words are merged
along common diagonals and extended using the drop-off
approach [11].

We refer below to our elementary matching algorithm as
Compart matching, because the implementation of the
algorithm is embedded in the same software tool that
does the compartmentization. In the rest of this sub-sec-
tion we evaluate the repeat filtering step, the effect of
using the PV in Compart matching, and compare the
results of the compartmentization based on local align-
ments computed with different methods.

Filtering of repeated DNA sequences has been a subject of
much previous research. The most widely used repeat
masking tool, RepeatMasker [12], relies on an external
database of repetitive elements. A more recent tool, Win-
dowMasker [13], masks repetitive DNA segments using
only the genomic sequence itself. Having considered
using either of these tools to mask genomic repeats, we
eventually developed our own approach which proved to

be better suited for the task of cDNA-to-genomic prelimi-
nary alignment. Our goal was to keep the level of repeat
filtering moderate, because missing input local align-
ments can negatively impact accuracy of the compartmen-
tization algorithm. We prefer to use the term repeat
filtering when describing the algorithm in Compart
because, unlike RM or WM, it effectively tags whole words
rather than individual positions on the genome.

We evaluated the intensity of repeat filtering by compar-
ing the number of genomic words kept out of the index.
To do so, we disabled the PV and counted the number of
words with their corresponding bit set in RVF. In
sequences masked with RM or WM, only words with all
residues masked were counted. According to our tests
(Table 14), the repeat filtering in Compart resulted in sig-
nificantly fewer words filtered out, the least number of
words filtered out exclusively, and by far the best running
time.

Fewer repeated words filtered out may result in explosive
growth of alignments in a general-purpose local align-
ment algorithm. In Compart, however, only alignments

Table 9: The number of the Subset 1 RefSeq alignments at various levels of the in-frame identity. Fractions give the differences in the 
number of alignments by each method and Splign expressed as percentage of the total of sequences in the set.

80% 85% 90% 95% 99% 99.5% 99.9% 100%

Splign 13757 13747 13740 13733 13723 13688 12426 10323
Sim4 13214 13179 13145 13110 13044 12958 11662 9680

-3.91 -4.09 -4.29 -4.49 -4.89 -5.26 -5.50 -4.63
Spidey 13185 13176 13169 13162 13146 13089 11720 9706

-4.12 -4.11 -4.11 -4.11 -4.16 -4.31 -5.09 -4.44
BLAT 13507 13498 13491 13484 13473 13441 12271 10284

-1.80 -1.79 -1.79 -1.79 -1.80 -1.78 -1.12 -0.28
GMAP 13744 13733 13726 13718 13706 13671 12408 10307

-0.09 -0.10 -0.10 -0.11 -0.12 -0.12 -0.13 -0.12
SPA 13715 13706 13698 13691 13676 13635 12373 10275

-0.30 -0.30 -0.30 -0.30 -0.34 -0.38 -0.38 -0.35

Table 8: The number of the Subset 1 alignments at various levels of the in-frame identity. Fractions give the differences in the number 
of alignments by each method and Splign expressed as percentage of the total of sequences in the set.

80% 85% 90% 95% 99% 99.5% 99.9% 100%

Splign 67342 67241 67105 66766 65767 64938 50968 35839
Sim4 63968 63723 63465 62986 61668 60622 47820 34033

-4.68 -4.88 -5.05 -5.24 -5.68 -5.99 -4.37 -2.50
Spidey 65276 65182 65066 64766 63844 62867 48714 34451

-2.86 -2.86 -2.83 -2.77 -2.67 -2.87 -3.13 -1.92
BLAT 64017 63932 63817 63545 62747 62115 49946 35632

-4.61 -4.59 -4.56 -4.47 -4.19 -3.91 -1.42 -0.29
GMAP 66568 66463 66317 65956 64856 64058 50589 35680

-1.07 -1.08 -1.09 -1.12 -1.26 -1.22 -0.53 -0.22
SPA 66777 66669 66516 66152 65042 64186 50669 35679

-0.78 -0.79 -0.82 -0.85 -1.01 -1.04 -0.41 -0.22
Page 7 of 13
(page number not for citation purposes)



Biology Direct 2008, 3:20 http://www.biology-direct.com/content/3/1/20
composing compartments are kept beyond the compart-
mentization step which is a small fraction of the align-
ments generated internally.

The RFV is used at the indexing of the cDNA sequences,
which also initializes the PV. Table 15 lists the size of the
key component of the genomic index for human and
mouse as a percentage of what that size would be if the PV
was not used. A more compact genomic index has an
impact on computing time. In our experiment where
human mRNA sequences were aligned against the refer-
ence genome, the indexing (search) has slowed by a factor
of three (eleven) when the PV was disabled. The bulk of
search performance improvement comes from non-
redundancy of the index components, which eliminates
duplicate look-ups and dramatically improves CPU cache
line coherence.

Table 16 reports a test where compartments were pro-
duced based on alignments computed with Compart and
Megablast, with Megablast using the genomic sequence
masked with RepeatMasker or WindowMasker. To have
Megablast account for the masking, the genomic sequence
was used as the query. The option allowing Megablast to
extent alignments over masked regions has been selected.
All other Megablast options, including the word size of
28, have been set to their defaults. The table presents var-
ious mRNA sequence counts and the time spent to com-
pute local alignments and compartments. Use of Compart
resulted in more sequences in each category. It could have
been possible to improve sensitivity of Compart even fur-
ther by performing the extension of elementary matches
along adjacent diagonals, but we have not done so. Note
that local alignments for some mRNA sequences do not
form compartments with any of the genomic sequences,
which explains why the number of aligned mRNA
sequences (N1 and N2 in the table) is always smaller than
the number of sequences with at least one compartment
(N3).

A shortcoming of Compart matching algorithm is its reli-
ance on perfectly matching keys. As sequences get more
diverged (e.g. in cross-species alignments) the algorithm
becomes less sensitive. In those cases, tools not relying on

perfectly matching words, such as Megablast in discontig-
uous mode, will tend to provide better input for the com-
partmentization step.

Compartmentization
For many cDNA sequences, their local alignments against
the genome suggest more than one place from which
these sequences (or their orthologous counterparts, in
case of cross-species alignments) might have originated.
The goal of the compartmentization step is to filter and
partition the local alignments into subsets so that these
subsets will pinpoint every candidate location on the
genome. We use the term compartment to designate both
the alignment subsets and the genomic locations. After a
compartment is identified, a spliced alignment algorithm
can step in to produce a more accurate alignment of the
cDNA with the local genomic interval.

Compartments located on different chromosomes or dif-
ferent strands are trivially separated. For others, the task
can be more complex because of possible sequencing
errors, polymorphic sites and exon duplications. Various
approaches have been employed in other tools to identify
candidate genomic locations. In Spidey, a greedy algo-
rithm is used in which high-stringency Blast hits are sorted
by score and then iterated, possibly more than once. On
every iteration, each hit is either skipped or assigned to its
genomic window, based on whether the hit's coordinates
are linearly consistent with those of the other hits already
in the window. GMAP scans the ends of a cDNA in an
attempt to find pairs of highly-specific oligomers match-
ing into approximately the same location on the genome.
The latter is defined taking into the account factors such as
the allowed genomic expansion for a given length of the
cDNA sequence, concentration of matches and collinear-
ity of cDNA and genomic coordinates. SPA relies on BLAT
to perform the compartmentization step, however the rel-
evant algorithm is not described in the BLAT paper.

The compartmentization algorithm in Splign is based on
a formally defined model of compartments. Consider a
cDNA (query) sequence aligning in the sense direction
with the plus strand of a genomic (subject) sequence. We
call a high-scoring pair (HSP) a pair of intervals on the
query and subject sequences revealing a certain level of
similarity. Without a loss of generality, this exposition
assumes that HSPs are ungapped and perfect.

Table 11: Span ratios of Subset 2 alignments

Sim4 Spidey BLAT GMAP SPA Splign

median 4.179 4.201 4.234 4.378 4.218 4.190
mean 11.242 8.534 9.134 10.102 8.671 8.420

Table 10: Frequencies of splice sites in Subset 1 alignments

GT/AG GC/AG AT/AC non-consensus

Sim4 96.21 0.78 0.06 2.96
Spidey 95.72 0.67 0.09 3.52
BLAT 97.87 0.74 0.10 1.29
GMAP 98.74 0.75 0.12 0.38
SPA 98.52 0.74 0.11 0.62
Splign 98.66 0.75 0.11 0.48
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Consider two HSPs, , 0 ≤ l ≤ Lk,

where Lk are the lengths of the HSPs, k = i, j. We introduce

a binary relation over the set of HSPs to reflect the order
in which exons or their parts follow. Say that h(i) precedes
h(j) (h(i)  h(j)) if the following conditions hold:

where Imax is the upper limit on the length of introns and

is a diagonal coordinate from which h(j) may extend h(i) as
a part of the same or a different exon. The definition
allows overlapping of HSPs and accounts for a possible
deletion from the query which can be a result of evolution

or an artefact. Such introduced binary relation implies a
strict partial ordering over the full set H of HSPs.

For an arbitrary subset C = {h(1),...,h(M)} of H, define its
query coverage as the length of the part of the query covered
by HSPs from C:

Let's call C a compartment if the above binary relation
renders on C the structure of a totally ordered set:

The key to formalizing the compartmentization problem
is an observation that a proper organization of HSPs into
compartments {Ci} will maximize the cumulative query
coverage ∑Q(Ci), provided that each compartment main-
tains some minimal level of query coverage: Q(Ci) ≥ Qmin.
Indeed, biologically compartments represent gene copies
with every copy delivering its portion of the query cover-
age. While some exons may diverge significantly enough
to escape being detected by a local alignment tool of
choice, it may still be possible to identify a compartment
accurately as long as its alignment delivers the query cov-
erage above the threshold. In practice, we select Qmin as the
minimum of some fraction of the query's length and a
constant.

The following relation is introduced to reflect our model's
assumption that no two (same-strand) compartments cor-
responding to a query can overlap on the genome:

Call a sequence of HSPs v = {h(1),...,h(M)} valid if for every
i <j either h(i)  h(j), or h(i)  h(j), or both are true. A valid
sequence of HSPs can be viewed as a chain of non-over-
lapping compartments and assigned with a score:

The optimization target is then defined as

where VH is the set of all valid sequences over H. Let order
HSPs in H so that
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assuring that for every h(i) and h(i) such that h(i)  h(j) or h(i)

h(j), i is less than j. Let , is the set of

valid sequences over Hk and  is its best score. Then the

dynamic programming algorithm is described by the fol-
lowing recurrences.

As the target is evaluated, backtracking is used to restore

the compartments contributing to .

Refined sequence alignment
Every compartment is further refined with a more accurate
sequence alignment algorithm (SAA), which is a combi-
nation of the global and local alignment algorithms. The
use of the compartment's local alignments is two-fold.
First, they define an interval on the genomic sequence on
which to perform the alignment. Second, some of the
local alignments can be used to accelerate the algorithm
by dividing its dynamic programming space. Note that
one should be very conservative in choosing the align-
ments to be used as pivots for the SAA, in order to avoid
forcing the final alignment through one of alternatives

that were equally favorable during the compartmentiza-
tion. In Splign, only high-identity diagonal alignments
that provide a one-to-one mapping between the
sequences are selected. The last condition is verified by
checking for possible overlaps among all local alignments
between the two sequences. Each pivotal alignment is
trimmed at the ends to allow enough slack space for the
SAA to locate proper splice sites.

In the areas between the pivotal alignments, the global
alignment algorithm is applied. At the areas stretching to
the borders of the compartment, we use a variant of the
local alignment algorithm in which one of the align-
ment's ends is fixed at the pivot. In all cases, the following
scoring scheme is used:

Vij = max {Gij, Eij, Fij, Sij}

Gij = Vi-1,j-1 + Wdiag(i, j)

Eij = Ws + max {Ei,j-1, Vi,j-1 + Wg}

Fij = Ws + max {Fi,j-1, Vi,j-1 + Wg}

where Wdiag(i, j) is the substitution score, Wg and Ws are
the gap opening and extension scores, and Wintr(j - I, j) is
the score of the intron starting at genomic position j - I +
1 and ending at j. Assuming only two types of introns,
consensus and non-consensus, we denote below their
scores as Wc and Wnc.
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Table 13: Co-aligning EST test, based on mRNA-to-genomic alignments matching across the methods

Sim4 Spidey BLAT GMAP SPA Splign

Implied 1784663 1784663 1784663 1784663 1784663 1784663
Identified, as %% of Implied 1652062 1691136 1642759 1679932 1771713 1745535

92.6 94.8 92.0 94.1 99.3 97.8
Matching, as %% of Identified 1635634 1477759 1475183 1672383 1719549 1729834

99.0 87.4 89.8 99.6 97.1 99.1

Table 12: Co-aligning EST test. 'Implied' is the number of introns estimated from EST-to-mRNA and mRNA-to-genomic alignments. 
'Identified' is the number of introns found in EST-to-genomic alignments. 'Matching' is the number of introns in EST-to-genomic 
alignment matching those found in the mRNA-to-genomic alignments.

Sim4 Spidey BLAT GMAP SPA Splign

Implied 3472173 3419307 3417203 3419975 3425734 3419138
Identified, as %% of Implied 3174725 3249426 3150040 3219665 3407890 3352628

91.4 95.0 92.2 94.1 99.5 98.1
Matching, as %% of Identified 3128325 2813461 2810059 3202121 3294548 3314074

98.5 86.6 89.2 99.5 96.7 98.9
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Scoring schemes with affine gap penalties have been used
in many tools (e.g. [2,14,15]) and have the advantage that
algorithms using them can run in time and space propor-
tional to the product of the lengths of the sequences. An
important question is the choice of scores, as any particu-
lar score assignment defines the algorithm's preferences in
shaping various alignment details such splicing signals or
micro-exons. Our approach to assigning the scores was to
explicitly consider various types of alignment alternatives
and subject the scores to conditions reflecting what is per-
ceived as the most plausible choice in every alternative.

A list of such alternatives and their respective scoring con-
ditions is given in Table 17. Every line in the table is a sep-
arate alternative with A and B being mutually exclusive
choices. Provided that the scores satisfy the conditions
specified, it is straightforward to verify the following state-
ment. Let mA and mB be the number of mismatches in
alignments A and B, and Δ is a constant. Then for every mA
and mB such that mA - mB < Δ (mA - mB ≥ Δ), A will score
higher (lower) than B.

In addition to the conditions in Table 17, we required the
scores to satisfy

Wg, Ws, Wc, Wnc < 0; Wm > 0; Wc > Wnc

Since the termini are not fixed in the alignment, the fol-
lowing condition is used to control the minimum length

of perfectly matching terminal exons 

Finally, the following condition was applied to improve
consistency between the intron and gap scores:

|Wnc - Wg - Ws × Imin| → 0

This concludes the linear programming problem that we
used to compute the scores. Since quality of EST
sequences is generally lower than that of full-length
mRNA sequences, Splign scores for EST alignments are
computed using higher Δ constants. Using higher Δ con-
stants means that the identity around splice sites must be
higher for the algorithm to introduce less frequent align-
ment features such as non-consensus splices and micro-
exons.

Reviewers' comments
Reviewer's report I
Dr Steven Salzberg, University of Maryland, College Park,
MD, United States

This paper describes the program splign, which aligns
spliced transcripts (ESTs and cDNAs) to genomic DNA.
The program is very accurate and relatively fast, though
not the fastest available. The authors' experiments show
that for several large data sets, its performance (measured
as bases aligned, or % of transcripts aligned correctly) is
usually superior to several of the best alternative programs
out there. Overall Splign appears to be a robust program
with excellent accuracy, and a very useful "splice site
aware" alignment algorithm. It is already widely used and
will no doubt continue to be.

All my comments and suggestions have been addressed
satisfactorily.

Reviewer's report II
Dr Arcady Mushegian, Stowers Institute, Kansas City, KS,
United States

"A small fraction of mRNA sequences are deposited to
GenBank as complemented strand." – what is the evi-
dence that this fraction is small, is it higher for EST
projects than for full-length cDNA projects, and can the
proportion of the wrong strands be estimated? On the
other hand, what if both strands are transcribed, as recent
Affymetrix studies seem to suggest – any evidence of this
in the data, especially perhaps evidence of splicing in the
non-protein-coding strand?

Lmin
term( )

W W Lc m min
term> − × ( )

Table 15: Impact of the PV on the size of the index. N is the 
number of full-length mRNA sequences. R is the number of 
genomic index keys as a percentage of the number of distinct 
words on the unmasked genome.

Human 36.3 Mouse 37.1

mRNA N 214 749 240 299
R (%) 8.4 10.2

EST N 7 732 838 4 836 245
R (%) 38.6 27.2

Table 14: Filtering of genomic repeats by different methods. Q1 

is the fraction of masked words. Q2 is the fraction of words 
masked exclusively by the method. In case of RM and WM, a 
word was considered masked if all its bases were masked. The 
timing in each test was obtained using a single instance running 
on Intel Xeon 2.33 GHz/8 GB Linux box.

RepeatMasker WindowMasker Compart

Human Q1(%) 46.79 28.81 17.68
Q2(%) 31.03 12.23 5.41
time (min) 6077 131 7

Mouse Q1(%) 40.55 28.61 17.71
Q2(%) 25.24 12.41 5.46
time (min) 5955 117 6
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Author response
Indeed, we did not investigate the precise number of such
mRNA sequences and therefore shall remove 'small' from the
sentence. It was clear though that such sequences do exist. Some
of incorrectly oriented sequences can be detected by looking for
alignments in the original direction having multiple non-con-
sensus splices, that become all-consensus, high-identity align-
ments when reversed and complemented. We found 240 (0.1%
of the total) sequences satisfying the above condition. The asser-
tion that the presence of such sequences may bias the experi-
ment is even more valid if their fraction is bigger.

The suggestion that both strands of an mRNA can be tran-
scribed is very interesting and deserves a separate study. In our
full set, we did notice nine mRNAs with perfect, complete and
all-consensus alignment in both directions.

"Compartment test" – Something is missing in the
description of the assay: among 9383 mRNAs, how many
corresponded to the known areas of segment duplica-
tions?

Author response
It would have been possible to build a set of sequences for this
test by collecting mRNAs aligning to known areas of segment
duplications. In the test we chose a different approach, in which
we collected all mRNAs that were likely to align (at least par-
tially) at more than one place per subject per strand, based on
their blast hit coverage.

The answer to the asked question will of course depend on a spe-
cific list of known segment duplications. For example, using a
list of gene clusters available at NCBI, we extracted cluster

Table 17: Score selection. Wm (Wms) is the score for matching (mismatching) bases. Other notations are given in the text.

Alignment A Alignment B Conditions

a consensus intron and no indels a non-consensus intron and no indels

a consensus intron and an indel a non-consensus intron and no indels

two consensus introns and no indels a non-consensus intron and no indels

a consensus intron and no indels two consensus introns and no indels

two consensus introns and no indels a non-consensus intron and an indel

a consensus intron and no indels two consensus introns and an indel

Δ Δ1 11− < <−
−

Wc Wnc
Wm Wms

Δ Δ2 21+ <− − <
− + +

−
Wm

Wm Wms

Wc Wnc Wg Ws
Wm Wms

Δ Δ3 31 2− < <−
−

Wc Wnc
Wm Wms

Δ Δ4 41− < <−
−
Wc

Wm Wms

Δ Δ5 51
2

− < < −
− − −

− −
Wc Wnc Wg Ws

Wm Wms

Wm
Wm Wms

Δ Δ6 1 6+ − − <
+ −

− <
Wm

Wm Wms

Wg Ws Wc
Wm Wms

Table 16: Compartmentization based on local alignments computed using different methods. N1 is the number of mRNA sequences 
with 75% or higher coverage by alignments to any single chromosome or unplaced scaffold.N2 is the number of mRNA sequences with 
75% or higher coverage by high-identity alignments to any single chromosome or unplaced scaffold. N3 is the number of sequences for 
which at least one compartment was identified with the minimum compartment identity of 75%. The computing time was collected 
on Intel Xeon 2.33 GHz/8 GB Linux box.

MB/RM MB/WM Compart

Human 36.3 N1 232342 (94.95%) 234565 (95.86%) 238851 (97.61%)
N2 224054 (91.56%) 226293 (92.48%) 229101 (93.63%)
N3 231939 (94.79%) 234207 (95.71%) 236928 (96.82%)
time (min) 179 70 32

Mouse 37.1 N1 227831 (98.44%) 228681 (95.17%) 232245 (96.65%)
N2 222746 (92.70%) 223704 (93.09%) 226107 (94.09%)
N3 226964 (94.45%) 227895 (94.84%) 230478 (95.91%)
time (min) 372 59 29
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gene-associated accessions and found that 3398 (36%) acces-
sions from Subset 2 match the list. Using a list built with the
compartmentization algorithm resulted in 8923 (95%) match-
ing accessions. A third list, based on BLAT alignments, revealed
8215 (87%) accessions in common.

Reviewer's report III
Dr Andrey Mironov, Moscow State University, Moscow,
Russian Federation

The paper addresses an important problem, spliced align-
ment of mRNAs and ESTs to genomic sequence. The prob-
lem is of special interest in context of splicing analysis.
The existing algorithms of nucleotide spliced alignment
are not fast and accurate enough. The authors present a
new spliced alignment algorithm that involves indexing
words in the genome and mRNAs, repeats filtering, com-
parison of the indexes and creating compartments, refine-
ment using a dynamic programming procedure.

The "Subset 1" was created using a rather weak filter. Nev-
ertheless this subset is noticeably smaller than the full set.
What is the reason for this? What part of the filter provides
the strongest reduction?

Author response
The ORF-related restrictions accounted for about one third of
the reduction. For each of the other excluded sequences at least
one method reported more than one alignment with identity at
or above the threshold.
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