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Abstract: Environmental audio monitoring is a huge area of interest for biologists all over the world.
This is why some audio monitoring system have been proposed in the literature, which can be
classified into two different approaches: acquirement and compression of all audio patterns in
order to send them as raw data to a main server; or specific recognition systems based on audio
patterns. The first approach presents the drawback of a high amount of information to be stored in
a main server. Moreover, this information requires a considerable amount of effort to be analyzed.
The second approach has the drawback of its lack of scalability when new patterns need to be
detected. To overcome these limitations, this paper proposes an environmental Wireless Acoustic
Sensor Network architecture focused on use of generic descriptors based on an MPEG-7 standard.
These descriptors demonstrate it to be suitable to be used in the recognition of different patterns,
allowing a high scalability. The proposed parameters have been tested to recognize different behaviors
of two anuran species that live in Spanish natural parks; the Epidalea calamita and the Alytes obstetricans
toads, demonstrating to have a high classification performance.

Keywords: sensor network; habitat monitoring; audio monitoring

1. Introduction

Nowadays, there is a growing interest in studying the evolution of certain environmental
parameters associated with climate change. The scientific studies of the evidence of climate change
through animals is done through phenology [1]. A clear example of these effects can be observed in
animal behavior [2].

One of the most common methods to evaluate animal behavior is using an acoustic study.
It consists of recording and analyzing animal voices in an area of interest. These studies can help us to
understand key issues in ecology, such as the health status of an animal colony. Consequently, this is
an important research area in ethology.

With the purpose of acquiring animal sound patterns, ethologists have traditionally deployed
audio recording systems over the natural environment where their research was being developed.
However this procedure requires human presence in the area of interest at certain moments. To avoid
these events, some data loggers have been proposed in the literature [3,4]. Although they reduce
the monitoring effort, they still require collecting the acquired information in-situ. In this regard,
Banerjee et al. [5], Dutta et al. [6] and Diaz et al. [7] proposed different remotely accessible systems in
order to minimize the impact of the presence of human beings in the habitat that is being monitored.

Once the data is collected through any of the described systems, several audio processing
techniques have to be developed in order to extract useful information about the animals’ behavior.
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This task represents a heavy workload for biologists. Therefore, automated techniques have to be
considered. In this sense, some processing systems have been proposed in the literature. There are
many strategies that can be followed in order to extract features from the audio records. Some examples
are [8,9] where automatic audio detection and localization systems are described. Other examples
are [10,11], where the authors presented an automatic acoustic recognition system for frog classification;
Chunh et al. [12] proposes an automatic detection and recognition system for pig diseases, based on the
evaluation of Mel Frequency Cepstrum Coefficients; and Kim et al. [13] details an automatic acoustic
localization system that detect events using direct waveform comparison with acoustic patterns.

Automatic acoustic recognition systems in natural environments are not used only for animal
detection. There are other applications that are based on this scheme of information extraction. This is
the case of [14], which describes a detection and location system for an illegal presence in a natural
park. This system is based on the calculation of the differences between the time of arrival of the
sound waves emitted by multiple microphones. However, all of these ad-hoc solutions are specific
for an application. Consequently, they cannot be scaled well to study other phenomena, such as the
recognition of a new animal or a new behavior.

To overcome these limitations, this paper proposes a different approach based on the use of the
MPEG-7 descriptors. MPEG-7 [15] is a multimedia content description standardized by ISO and IEC
as the ISO/IEC 15938 standard. MPEG-7 was designed initially to propose a family of multimedia
descriptors that allow a fast and efficient search for material that is of interest to the user.

In this paper, the MPEG-7 low level audio descriptors [16] are called primary descriptors. There are
some studies that have demonstrated that these audio descriptors are suitable to be used to detect
audio patterns over not well defined or variable scenarios [17], such as music identification [18], voice
diseases [19], speech emotion recognition [20] or bird detection [21].

One important audio characteristic of animal voices is reverberation which can be used in animal
detection and recognition. However, the basic primary descriptors do not depict these characteristics
well. Due to that and taking into account applications for animal monitoring, we propose the addition
of other parameters to characterize reverberations. These parameters are called secondary descriptors
and are based on long-term analysis of the variations of primary descriptors.

Therefore, we propose the use of a Wireless Acoustic Sensor Network (WASN) to monitor
animals’ voices. In the proposed architecture, primary descriptors are only sent through the networks,
reducing the required bandwidth. Thanks to that, it is possible to use Low-Power Wireless radio
communication devices, improving the network lifetime. Furthermore, the base station only requires
storing primary and secondary descriptors, saving a high amount of dedicated storage space for long
term environmental analysis. This information is usually enough to solve animals’ song recognition
problem, as is described in Section 3.

The proposed recognition algorithm allows us to search and detect animal voices, even for animals
not initially considered. In this regard, an adequate classifier must be selected and used.

The proposed distributed monitoring architecture has been mainly designed to be spread out
in Spanish natural parks. This is the case of Doñana Natural Park, a park that is internationally well
known for its research in the application of novel sensor technologies for environmental monitoring [22].
In this way, the proposed descriptors have been tested using a Spanish anuran audio database,
obtaining promising results in the detection of common anuran species that live in these environments.
This fact makes the work of the biologists easier, letting them avoid tedious tasks such as audio
collection and analysis of large sets of audio patterns.

This work has been done in collaboration with the Doñana Biological Station and the National
Museum of Natural Sciences in Madrid, Spain. According to our results, the proposed classifier can
not only be used to distinguish an individual of Spanish species among other ones, it even detects
different behaviors of the same species with accuracy. These results can be even obtained only using a
small group of descriptors.
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The rest of the paper is organized as follows: Sections 2 and 3 describe the architecture of
the proposed system for audio monitoring and its audio descriptors. These descriptors have been
evaluated in a real case study with real anuran sounds in Section 4. Finally, Section 5 sums up the
conclusions, final remarks and presents future work.

2. Acquisition Architecture of the Recognition System

Wireless Acoustic Sensor Networks (WASNs) represent a new paradigm for acoustic signal
acquisition. They typically consist of nodes with microphones, signal processing and communication
capabilities. WASNs find use in several applications, such as hearing aids, ambient intelligence,
hands-free telephony, and acoustic monitoring [23].

WASN has several advantages. For example, this type of network improves the coverage area in
comparison with single recording devices due to the limited operative area of a microphone. Thanks to
this, this technology allows us to monitor large areas of interest, such as big natural parks like Doñana.
It can also be solved using microphone arrays, but the deployment cost of a WASN is generally lower
than the deployment cost of a microphone arrays.

Moreover, the redundancy of the acquired information that appears in WASNs adds extra
advantages to the recognition systems. In a WASN it is possible to use pattern classifiers that consider
information from multiple acoustic nodes to improve the pattern recognition and localization in
environmental applications [24].

All these reasons inspired the use of a WASN for animals’ voice recognition in environmental
monitoring scenarios. In this case, a system with the architecture depicted in Figure 1 is proposed. As it
can be seen, it is based on two different devices: the Acoustical Nodes (i.e., the smart measurement
devices) and the Base Station, which collaborates amongst them to solve the animals’ voice recognition
problem. Both types of devices are described briefly in the following subsections.
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2.1. Wireless Acoustic Nodes

The proposed acoustic nodes, are based on a small low-power ARM architecture, with a
radio communication module and an audio interface. This node and the enclosure for its use in
environmental applications is depicted in Figure 2.
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Essentially, this acoustic node uses a low-cost development board based on ARM Cortex A7 with
SIMD (NEON) instruction support, which can efficiently execute audio processing. This development
board is credit card sized, with low power consumption. It has 1 GB of RAM and can execute a fully
functional Linux OS. The board also includes multiple I/O ports that can be used to connect external
sensors, such as microphones and communication interfaces.

In this way, the proposed radio module is based on the IEEE802.15.4 standard [25]. This radio
transceiver is very common in Wireless Sensor Network (WSN) nodes, following the reduction of
its power consumption. Moreover, this standard is able to use the 6LoWPAN stack (an IPv6-based
specification especially designed for low power consumption radios), which is also used to implement
a communication layer [26]. This implementation allows multi-hop communication, which extends
the basic communications amongst the nodes (in the 100–300 m range).

The use of a WASN has some drawbacks, mainly, the maximum bandwidth available and the
power consumption of the radio device. This is why it is necessary to reduce, as much as possible, the
amount of information sent by the radio transceiver.

Sending the entire raw audio pattern using wireless communications typically requires the use
of high bandwidth radio transceivers, such as IEEE 802.11 ones. However, these radio transceivers
have large power consumption. Instead of using these kinds of devices, this application proposes
sending a reduced amount of data per each pattern, based on the primary descriptors described below.
Thanks to this feature, we can use these low power radio devices in this application.

Dealing with the audio interface being used, we have selected a USB soundcard connected to
an environmental microphone, capturing its surrounding sound. In acoustic monitoring, the type of
microphone and acquisition system will be selected according to the animals under study. However,
due to its limited acquisition frequencies [27], in most common cases of terrestrial observations, it is
enough to use audio devices that can only sense within the human audible range. This is the case in
anuran surveillance, with voices in the 20–20,000 Hz range [28].

If only one microphone is used in an environmental monitoring application, it needs to be highly
sensitive. It needs to be very linear and it requires a complex calibration [29]. This is why these
microphones are expensive (over $200). Furthermore, we have to consider the cost of its protection to
work in harsh scenarios.

Fortunately, this restriction is relaxed if an array or a network of different microphones is used,
due to the redundancy of the information that appears in different nodes. Thanks to that, it is possible
to use low-cost electret microphones [30] in WASNs. Figure 3 depicts the frequency response of some
of these low cost (less than $20) microphones. As it can be seen, even being cheaper, they have a good
frequency response in the range required for our application.
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2.2. Base Station

The base station (BS), also called the information service, is a PC-based device with two
communication modules: one to acquire information from the wireless acoustic sensor network,
and another to allow researchers to obtain the gathered information. Therefore, this device acts
typically as a database, where the nodes save the information, and the user can retrieve it as needed.

However, in the proposed animal voice recognition system, the required information is not the
stored one. As described in the processing architecture, we use a classifier in the BS to retrieve the
audio voice recognition service. It increases the computational requirements of the base station, but
allows us to detect voices of animals not considered at the moment of the deployment.

3. Processing Architecture of the Recognition System

The processing architecture of the animal voice detection system is depicted in Figure 4. In this
implementation, audio patterns are acquired from the monitoring area by the acoustic sensors and
processed locally to obtain primary descriptors in wireless acoustic nodes.
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After that, these primary descriptors are sent to the BS through the wireless radio transceiver of
the nodes. Then, when the BS receives this data, secondary parameters are obtained. Only primary
and secondary descriptors are stored in the database, where it can be used by a classifier for animal
voice detection. The next subsections describe briefly the main blocks of the processing architecture:

3.1. Filtering

The main objective of the filtering stage consists of reducing the amount of noise in the patterns.
This goal is obtained using a band-pass filter that eliminates frequencies of the acquired audio that
do not contain relevant information. This filter can be adjusted for each application. For most animal
voice analysis, in the human audible range, a 0.3–10 kHz band-pass is a good tradeoff between noise
elimination and information loss.

3.2. Primary Descriptors

This subsystem is responsible for obtaining the primary descriptors. These descriptors receive the
name of Low Level Descriptors (LLDs) and they are defined in MPEG-7 specification.
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According to this specification, LLDs can be obtained from the audio spectrogram. It consists of a
time–frequency analysis based on obtaining the amplitude (in dB) of the frequency response of each
frame. In this case, the specifications recommend using a temporal window of 10 ms as a frame.

As shown in Figure 5, the spectrograms are commonly depicted as an X-Y level graph, where X is
the time, Y the frequency and the darkness of the image represents the relative amplitude of the power
of the signal.
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This spectrogram can be used by a trained user to distinguish animal audio patterns (in a
human manual processing step). Nevertheless, LLDs can be used by an automatic system (without
human intervention) to obtain similar conclusions. In our research, 18 primary descriptors have
been considered. The cost associated with sending the information expressed with these descriptors
represents, in the worst case (using single precision floating point), a data payload of only 72 bytes
each 10 ms, instead of the 882 bytes per 10 ms required to send a standard 44.1 kHz raw audio pattern.

Therefore, this way of representing the information provides a huge data bandwidth reduction,
especially if we consider that these parameters can be expressed using only 2 bytes, with a fixed point
representation. This feature makes this kind of representation suitable for being used in low power
radio modules with restricted bandwidth, as the ones used in typical WSN nodes (IEEE 801.15.4) [31].
LLDs characterize spectrograms with the following parameters:

3.2.1. Frame Power

This parameter, expressed in dB, is obtained as the maximum energy of the frame, with respect to
its minimum. Two different frame power indicators are defined in MPEG-7 specification:

‚ Relevant Power (PR): The relevant spectral power of the frame, defined in a frequency range. It is
usually used normalized to the maximum power of the sound. By default, a 0.5–5 kHz band is
used, due to the fact that most useful audio information for the human ear is in this range.

‚ Total Power (Pt): The normalized total spectral power, considering all the spectral dynamic ranges
of the frame.

If the previous filter of the architecture is well fitted, both indicators may offer similar results.
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3.2.2. Frame Power Centroid (CP)

In a particular frame, the power centroid briefly represents the shape of the frequency spectrum.
The centroid offers information about the frequencies where most of the energy of the frame is
distributed. It can be obtained as shown in Equation (1):

CP “

ř

i r fi¨ Pis
ř

i Pi
(1)

where fi is the frequency of the spectrogram, and Pi the acoustic power of the associated frequency.

3.2.3. Spectral Dispersion (DE)

It represents approximately the shape of the frequency spectrum of a frame. It can be obtained as
shown in Equation (2):

DE “

g

f

f

e

ř

i

”

`

fi ´ Cp
˘2
¨ Pi

ı

ř

i Pi
(2)

3.2.4. Spectrum Flatness (Pl)

It represents the deviation of the audio spectrum in relation to a flat spectrum (i.e., a white noise).
It can be obtained with Equation (3):

Pl “

a

ś

i Pi
1
n
ř

i Pi
(3)

3.2.5. Harmonicity Ratio (Ra)

Ra is the ratio of harmonic power to total power. According to MPEG-7 specifications, it can be
obtained from the autocorrelation of the audio signal s pnq into the frame, as expressed in Equation (4):

Ra “ max
k

¨

˝

ř

j s pjq ¨ pj´ kq
b

ř

j s pjq2 ¨
ř

j s pj´ kq2

˛

‚ (4)

where k is the length of the frame.

3.2.6. Fundamental Frequency (Pitch)

The fundamental frequency (or sound pitch) is the frequency that best describes the periodicity of
a signal. It can be obtained with the Linear Prediction Coding (LPC) algorithm [32]. LPC, models the
spectral power as sum of the polynomial A pzq defined by Equation (5):

A pzq “ 1´
ÿp

k“1

”

ak¨ z
´k

ı

(5)

where the polynomial degree p represents the model precision. The coefficients ak represent
the formants of the audio signal, i.e., the spectral maximum produces by the audio resonances.
According to [32], these coefficients can be obtained reducing the error between the polynomial
prediction and the spectral power of the audio frame using a minimum least squares estimation.

For the sound s pnq the error function ε pnq is obtained according to Equation (6):

ε pnq “ s pnq ´
ÿp

k“1
aks pn´ kq (6)

For ε pnq, the autocorrelation function is obtained by Equation (7):

ϕ pkq “
ÿ`8

m“´8
ε pmq ε pm` kq (7)
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Using this information, the Pitch can be defined as the first maximum of the ϕ pkq
autocorrelation function.

Due to the execution complexity of LPC a tradeoff between time of computation and accuracy is
necessary. According to our tests, a polynomial of size 30 is enough to obtain Pitch estimations with
good accuracy.

3.2.7. Upper Limit of Harmonicity (Fla)

As defined in Section 5.3.13.3.1 of the MPEG standard [33], this is the frequency beyond which
the spectrum cannot be considered harmonic. It can be obtained using the comb filter of Equation (8):

c pjq “ s pjq ´
´

ÿm`n´1

j“m
rs pjq ¨ s pj´ Kqs {

ÿm`n´1

j“m

”

s pj´ Kq2
ı¯

¨ s pj´ Kq (8)

where s pnq is the audio signal and K is the delay related to Ra (the Harmonicity Ratio).
Considering P p f q and P1 p f q as the spectral power of s pnq and the filtered signal c pjq, the ratio for

each frequency is defined as Equation (9):

α p flimq “
ÿ fmax

f“ flim
P1 p f q {

ÿ fmax

f“ flim
P p f q (9)

Using it, Fla can be obtained as the maximum frequency where α p flimq is higher than a threshold,
0.5 in this case, as is commonly used.

3.2.8. Harmonic Peaks

The harmonic peaks are the n highest peaks of the spectrum located around the multiple of the
fundamental frequency of the signal. The terms that surround the fundamental frequency are used in
order to take into account the slight variations of harmonicity of some sounds.

MPEG-7 describes harmonic peaks that we propose to form the following descriptors:

‚ Frequency of the harmonic peaks (FrFi).
‚ Bandwidth of the harmonic peaks (AbFi).

Both parameters can be obtained using the aforementioned LPC algorithm. In most practical
scenarios, it is usual to consider the three first harmonic peaks to characterize the frame.

Figure 6 depicts the results of an LPC analysis of two different frames. The red shape is the
original audio spectrum and the blue shape represents the LPC algorithms. Blue and red bands are the
bandwidth of the harmonic peaks, whose frequency is depicted as a vertical blue line.
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For εሺ݊ሻ, the autocorrelation function is obtained by Equation (7): φሺkሻ = ∑ εሺmሻ εሺm + kሻାஶ୫ୀିஶ   (7)

Using this information, the ܲ݅ܿݐℎ  can be defined as the first maximum of the φሺkሻ 
autocorrelation function. 

Due to the execution complexity of LPC a tradeoff between time of computation and accuracy is 
necessary. According to our tests, a polynomial of size 30 is enough to obtain ܲ݅ܿݐℎ estimations with 
good accuracy. 

3.2.7. Upper Limit of Harmonicity (ܨ௟௔) 

As defined in Section 5.3.13.3.1 of the MPEG standard [33], this is the frequency beyond which 
the spectrum cannot be considered harmonic. It can be obtained using the comb filter of Equation (8): ܿሺ݆ሻ = ሺ݆ሻݏ − ൫∑ ሾݏሺ݆ሻ · ሺ݆ݏ − ሻሿ௠ା௡ିଵ௝ୀ௠ܭ ∑ ሾݏሺ݆ − ሻଶሿ௠ା௡ିଵ௝ୀ௠ൗܭ ൯ · ሺ݆ݏ − ሻ  (8)ܭ

where ݏሺ݊ሻ is the audio signal and ܭ is the delay related to 	ܴ௔ (the Harmonicity Ratio). 
Considering ܲሺ݂ሻ and ܲᇱሺ݂ሻ	 as the spectral power of ݏሺ݊ሻ and the filtered signal ܿሺ݆ሻ, the 

ratio for each frequency is defined as Equation (9): αሺ ୪݂୧୫ሻ = ∑ ܲᇱሺ݂ሻ௙೘ೌೣ௙ୀ௙ౢ౟ౣ ∑ ܲሺ݂ሻ௙೘ೌೣ௙ୀ௙ౢ౟ౣൗ   (9)

Using it, ܨ௟௔  can be obtained as the maximum frequency where αሺ ୪݂୧୫ሻ  is higher than a 
threshold, 0.5 in this case, as is commonly used. 

3.2.8. Harmonic Peaks 

The harmonic peaks are the ݊ highest peaks of the spectrum located around the multiple of the 
fundamental frequency of the signal. The terms that surround the fundamental frequency are used 
in order to take into account the slight variations of harmonicity of some sounds. 

MPEG-7 describes harmonic peaks that we propose to form the following descriptors: 

• Frequency of the harmonic peaks (FrFi). 
• Bandwidth of the harmonic peaks (AbFi). 

Both parameters can be obtained using the aforementioned LPC algorithm. In most practical 
scenarios, it is usual to consider the three first harmonic peaks to characterize the frame. 

(a) (b)

Figure 6. Example of results obtained with LPC analysis. (a) ݐ = 0.80 ௙݂ = ሾ36	, 810	, 682ሿ	ݖܪ; (b) ݐ =2.00	 ௙݂ = ሾ1316, 2191, 647ሿ	ݖܪ. 
Figure 6. Example of results obtained with LPC analysis. (a) t “ 0.80 f f “ r36 , 810 , 682s Hz;
(b) t “ 2.00 f f “ r1316, 2191, 647s Hz .
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3.2.9. Harmonic Centroid (CA)

It is a weighted average that selects a frequency that represents the harmonic peaks of the frame.
It can be obtained with Equation (10):

CH “

řn f
i“1 r fi¨ vis
řn f

i“1 vi
(10)

where fi is the ith frequency of the harmonic peak and vi its peak value.

3.2.10. Harmonic Spectral Deviation (DeA)

It is computed as the deviation between harmonic peaks and the signal spectrum of the frame.
It can be obtained with Equation (11):

DeA “ max
k

¨

˝

řn f
i“1

ˇ

ˇ

ˇ
log pviq ´ log

´

1
3 ¨

ř1
k“´1 rvi ` ks

¯
ˇ

ˇ

ˇ

řn f
i“1 log pviq

˛

‚ (11)

3.2.11. Harmonic Spectral Spread (DiA)

It is computed as the typical deviation between harmonics peaks and the harmonic centroid.
It can be obtained with Equation (12):

DiA “
1

Ca
¨

g

f

f

f

e

řn f
i“1

”

vi
2¨ p fi ´ Caq

2
ı

řn f
i“1 vi

2
(12)

3.2.12. Harmonic Spectral Variation (VA)

It is obtained as a normalized correlation between the harmonic peaks of two adjacent frames.
It can be obtained with Equation (13):

VA “ 1´

řn f
i“1

“

vi,j¨ vi,j´1
‰

řn f
i“1

b

vi,j
2¨
řn f

i“1

b

vi,j´1
2

(13)

where vi,j is the amplitude of the ith harmonic of the frame j.

3.3. Secondary Descriptors

One shortcoming in the use of MPEG-7 LLDs for animal voice detection is that they do not
consider reverberation effects. This is due to the reduced size of the frame (only 10 ms), which is
smaller than the duration of these effects. However, many animal characteristic acoustic patterns have
an important reverberation component, which can be used to distinguish between species.

To describe these effects we propose the use of secondary descriptors. These descriptors are
obtained with a methodology based on the same methodology used with the primary descriptors.
The dispersion between longer time frames is analyzed. These time frames are called micro-segments
and have a duration of 100 ms (i.e., 10 frames). This time is chosen considering that, audio delays
higher than 100 ms are identified by human being as echo, instead of a reverberation.

We define these secondary descriptors as the interquartile range of each one of the primary
parameters, in a 100 ms micro-segment.

According this procedure, we obtained the next secondary parameters:

‚ Dispersion of relevant Power (PR~).
‚ Dispersion of total Power (Pt~).
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‚ Dispersion of centroid of frame power (CP~).
‚ Dispersion of spectral dispersion (DE~).
‚ Dispersion of spectrum flatness (Pl~).
‚ Dispersion of harmonicity ratio (Ra~).
‚ Dispersion of fundamental frequency (Pitch~).
‚ Dispersion of upper limit of harmonicity (Fla~).
‚ Dispersion of Frequency of the harmonic peaks (FrFi~).
‚ Dispersion of Bandwidth of the harmonic peaks (AbFi~).
‚ Dispersion of harmonic centroid (CA~).
‚ Dispersion of harmonic spectral deviation (DeA~).
‚ Dispersion of harmonic spectral spread (DiA~).
‚ Dispersion of harmonic spectral variation (VA~).

The set of secondary descriptors does not need to be computed (and sent) by the acquisition
system. Due to the fact that they are obtained based on variations of primary descriptors, they can be
obtained by the BS before storing the information in the storage server.

Figure 7 depicts examples with the values of all proposed parameters in two different samples:
an Epidalea calamita (natterjack toad) and an Alytes obstetricans (common midwife toad) one. In this
figure, the red circles represent the current value of each parameter in a particular frame, while the
vertical line indicates its range during a full segment of the audio file.
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On the other hand, the color of the axis indicates the units of the parameters. As it can be seen,
red ones are defined in Hertz, while green ones are in percentages.

This example graphically shows that the proposed parameters have very different range and
values for different audio samples. Therefore, they can be effectively used by an automatic classification
system in order to distinguish different patterns.

3.4. Data Storage

This subsystem is dedicated to storing the primary and secondary descriptors. This information
must be tagged with a timestamp, and can be stored in a regular SQL database.

3.5. Classifier

This subsystem plays an important role in the whole system. It is responsible for the
implementation of the classification method. Its main goal is to classify the audio patterns (i.e.,
its descriptors) into one of the proposed classes. In this sense, hundreds of supervised classifiers have
been proposed in the literature. The selection for the best method is a decision that has to be done
considering the characteristics of the problem to solve [34]. However, in our real case analysis, even
simple classifiers offer good class separations using the aforementioned descriptors.

4. A Case Study: Anuran classification system

The proposed animal audio detection descriptors have been evaluated considering the different
behavior of two anuran species: Alytes obstetricans (Figure 8a) and Epidalea calamita (Figure 8b).
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Ethology studies focused on the anuran species, such as the described ones, are especially
interesting for the biologist. The reason for this interest is based on the fact that in some amphibian
species, climate change and UV radiation have important effects on their population (largely
determined by their habitat) [1,37]. More concretely, an interesting phenomenon can be observed in
anurans (frogs and toads). These kinds of amphibians present peaks in the timing of reproductive
calling (songs), depending on each species and temperature evolution [38]. This is why an anuran
classifier is used as a case study of the proposed descriptors.

4.1. Sound Database Information

In order to analyze the performance of the proposed descriptors, this research has based its
evaluation on a relevant database of anuran songs. This database is composed by a set of audio
samples of Alytes obstetricans and Epidalea calamita provided by “Fonozoo: Fonoteca Zoológica del Museo
Nacional de Ciencias Naturales”, a Spanish phonotheque based on recordings of animal sounds [39].
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This organization provided a scientific collection of animal sounds. Fonozoo was created with the aim
of supporting the study of acoustic communication in animals.

The collection includes more than 45,000 sound recordings belonging to more than 12,000 different
species, all of which makes Fonozoo a valuable tool in the systematic study of animal behavior.
The main goal of using a public audio database is that these files can be used by other researchers all
over the world for comparative performance analysis. In the case of the studied anurans, the collection
is composed of 63 audio samples, according to the characteristics described in Table 1.

Table 1. Analysis of the sound collections.

Caption Vocalization Files

Epidalea calamita
standard 20
chorus 3

oviposit 10

Alytes obstetricans standard 29
distress call 1

This collection of anuran audio files offers a total of 6053 s of recorded sounds, with a mean
duration of 96 s and a median of 53 s. Therefore, our test collection has 605,300 frames, where each
frame has a total amount of 36 associated values that are its primary and secondary descriptors.

As can be seen, the number of chorus vocalization samples of Epidalea calamita toads is not enough
to train a system. Moreover, it sounds similar to the standard vocalization. Due to this, both cases are
going to be considered as the same classification category.

In the case of the Alytes obstetricans toads, there are not enough distress call vocalization samples
to train a system. Due to this, in the test of the proposed descriptor, we have considered the next
number of samples by categories:

‚ Type 1: 23 samples of Epidalea calamita toad with standard or chorus vocalization.
‚ Type 2: 10 samples of Epidalea calamita toad with oviposit vocalization.
‚ Type 3: 30 samples of Alytes obstetricans toad with standard or distress call vocalization.

Due to the fact that the samples have been obtained from environmental scenarios, not only
animal vocalization is recorded. In fact, there is a high percentage of background sound, composed of
wind, rain, traffic, human voices, and so forth. Therefore, there are intervals of time in each sample
that do not correspond with animal vocalization, and which need to be detected and rejected by the
classification system. With this purpose, a fourth type of audio has been considered, that corresponds
with noise, i.e., sounds in which we are not interested in.

4.2. Classification Results

Supervised classifier techniques require the use of sound models for each class. These models are
required in the training and adjusting phase of the classifier. In this case, two files have been chosen as
a pattern from both Epidalea calamita and Alytes obstetricans toads with standard vocalization, and one
file for Epidalea calamita toad with oviposit vocalization. These models have been selected empirically,
looking for files in which the sound is easily distinguishable. In this case, files “0501” and “0707” from
Fonozoo collection are chosen as type 1 pattern, “0503” as type 2, and “1325” and “1330” as type 3.

Once the classification criterion has been selected, it is necessary to evaluate its value. In this
sense, a classification can only offer good accuracy if there exists a surface in the input parameters (i.e.,
the descriptors) space, where the different classes can be isolated completely or with a reduced error.
This feature can be observed in Figure 9, where the value of each parameter (centroid and dispersion
versus power in this example) for each frame is summarized. A color code has been chosen to indicate
its class type. Blue for type 1 (Epidalea calamita toad with standard or chorus vocalization), green for
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type 2 (Epidalea calamita toad with oviposit vocalization), red for type 3 (Alytes obstetricans toad with
standard or distress call vocalization) and purple for type 4 (noise).
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It is important to take into account that although there are 36 parameters (18 primary and
18 secondary), it is not necessary to impose the use of all of them in the classifier task. Furthermore,
in order to improve the response time, it is better to choose a representative subgroup of descriptors as
inputs for the classifier in function of the voice animal to be recognized. In this case, we empirically
chose the next descriptors for the recognition of the different voices of the Epidalea calamita and the
Alytes obstetricans toads:

‚ Harmonicity ratio (Ra).
‚ Bandwidth of the first harmonic peaks (AbF1).
‚ Dispersion of total Power (Pt~).

As it can be seen, only three descriptors are used, two primary and one secondary. Under these
conditions, the following classifiers have been tested:

4.2.1. Minimum Distance Classifier

The minimum distance classifier [40] is one of the simplest, classic classification algorithms.
In spite of its simplicity, it offers good accuracy in many situations. Some animal voice classification
systems, such as [11] for anuran species, are based on this classifier.
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The classification is based on obtaining the distance dij between the input vector to classify i
with each one of the representative class j. This distance can be obtained with the Euclidean distance,
according to Equation (14):

dij “

c

ÿP

k“1

”

xik ´ xjk

ı2
(14)

where xik is the value of the k-th parameter in the i-th frame.
According to it, the input can be classified as the class that minimizes the distance with it.

However, the units of each parameter of the proposed system are clearly different. Therefore, a
parameter normalization is needed. In this case, we propose the use a of spread range of Rk for each
parameter, which can be obtained as Equation (15) describes:

Rk “ max
i
pxikq ´min

i
pxikq (15)

Therefore, the normalized distance ndij can be obtained according to Equation (16):

ndij “

d

ÿP

k“1

„xik ´ xjk

Rk

2
(16)

If this classifier is applied to each frame of an audio pattern, the final classification of the audio
sample can be obtained as the most likely class to appear in the pattern. Moreover, it can be used as
a qualify indicator Q. If we consider na as the number of frames correctly classified, and nj the total
number of frames, Q can be obtained as expressed by Equation (17):

Q “
nA
ř

j nj
(17)

Figure 10 depicts the classification distance from each frame of the “0560” sample to the four
classes. Blue indicates type 1 (Epidalea calamita toad with standard or chorus vocalization), green for
type 2 (Epidalea calamita toad with oviposit vocalization), red for type 3 (Alytes obstetricans toad with
standard or chorus vocalization) and purple for type 4 (noise). The top band of the figure indicates the
minimum distance class. As can be seen, most patterns are classified correctly. In this example the
quality indicator is 84.36%.
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The classification results, obtained with all the frames, are depicted in Figure 11, where
the quality indicator Q, has been represented. In this figure the blue area indicates type 1
(Epidalea calamita toad with standard or chorus vocalization), green area type 2 (Epidalea calamita toad
with oviposit vocalization) and red type 3 (Alytes obstetricans toad with standard or chorus vocalization).
Vertical colored lines indicate the estimated classification. Therefore, a pattern corresponding to a file
is correctly classified if its line color matches the band color.
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As it can be seen, correctly classified patterns have high Q values. Then, Q can be used to
determine a confidence degree in the classification result.

Figure 12 depicts the performance of the minimum distance classifier, according to the results
obtained with the audio collection. As it can be seen, even a simple classifier as the minimum distance
offers an acceptable classification result.
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4.2.2. Modified Maximum Likelihood Classification

Maximum likelihood classification [41] is another classic supervised classification algorithm
which has been widely used in the literature. This classification algorithm is divided into two stages:
training and execution.
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The training stage is executed only once, as a previous step to classification. In this stage the
statistical information to execute the classification algorithm is obtained. In the case of the maximum
likelihood classification consists of generating several probability density functions fθ pxkq for each
one of the θ classes to be detected. fθ pxkq is a multivariable function that is going to be used to obtain
a numeric probability for each class and frame to analyze in the execution stage.

In this case, we propose using a Gaussian mixture distribution (GMD) [42] of two Gaussians as
fθ pxkq, obtained from the audio models. It is depicted in Figure 13, where the blue line indicates class
type 1 (Epidalea calamita toad with standard or chorus vocalization); green type 2 (Epidalea calamita
toad with oviposit vocalization); red type 3 (Alytes obstetricans toad with standard or distress call
vocalization) and purple type 4 (noise). Continuous lines depict raw data from the models, while
dotted lines are the GMD ones.
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In execution time, maximum likelihood classification uses these fθ pxkq functions to obtain the
probability of each frame to be one of the proposed θ classes. To do that, this algorithm uses the
likelihood of the descriptors of a frame, in relation to the classes to recognize L pθ |x q. It can be obtained
using the Expression (18):

L pθ |x q “ P px| θq “ fθ pxq (18)

This expression give us a numeric likelihood of each class for all the frames in a sample to analyze.
But to reduce the calculus complexity in maximum likelihood classification, the log of the likelihood
V pθ |x q is commonly used. It can be done with the Equation (19):

V pθ |x q “ log rL pθ |x qs “ log rP px| θqs “ log r fθ pxqs (19)

In the modified maximum likelihood algorithm, we propose using to classify the differential
likelihood Dij instead of V pθ |x q. Dij of a frame i is the difference of the likelihood of belonging to
that class j (type 1 to 3), rather than the likelihood it being noise r (type 4). It can be obtained with the
Equation (20):

Dij ” V
`

θj
ˇ

ˇxi
˘

´V pθr|xiq “ log
“

fθj pxiq
‰

´ log r fθr pxiqs (20)

In the proposed algorithm, the temporal evolution of Dij of a sample to analyze is smoothed out
using a size 10 moving average filter to reduce spurious changes in Dij evolution. For classification
purposes, only the maximum of Dij for each frame is considered. Figure 14 summarizes the results of
this step for the “0560” file, an Epidalea calamita example. As it can be seen, in this step most of the
frames are yet to be correctly classified.

To increase the detection accuracy, only filtered Dij higher than a threshold β are considered
for classification proposes. β is adjusted empirically at 30% of the relative maximum of the sample
(approx. 0.5 for this example). Figure 15 summarizes the result of this step for the “0560” file. As it can
be seen, in this case all the frames higher than the threshold are correctly classified.
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To estimate the class θ of the audio sample, a qualifier indicator Qθ is defined, according to
Equation (21):

Qθ “
Aθ

ř

j Aj
(21)

Qθ does not use only the maximum of the smoothed Dij count, but the area Aθ of the curve higher
than the threshold β, According to our analysis, it increases the classification accuracy. Considering
this information, the final estimation of the class of the sample is the one with the maximum Qm

indicator, according to Equation (22):
Q “ max

j

`

Qj
˘

(22)

As summarized, the proposed modified maximum likelihood classificatory is based on a
log r fθ pxqs functions obtained from the model of the defined four classes θ. Using this information,
the algorithm consist of the execution of the next steps:

‚ Obtain Dij “ log
“

fθj pxq
‰

´ log r fθr pxqs for the three possible classes of sound.
‚ Filter Dij with a size 10 moving average filter.
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‚ Select the class for each frame, as the maximun Dij for each class j, if its value is higher than the
threshold β. Otherwise the frames are discarded from the classification.

‚ Obtain the final class estimation as the class with maximum area over the threshold β.

The classification results obtained with all the frames, using this classification method is depicted
in Figure 16. In this figure, the blue area indicates type 1 (Epidalea calamita toad with standard or
chorus vocalization), green area type 2 (Epidalea calamita toad with oviposit vocalization) and red
type 3 (Alytes obstetricans toad with standard or distress call vocalization). Vertical color lines indicate
the estimated classification. Therefore, a pattern is correctly classified if its line color matches the
band color.
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As it can be seen, most of the correctly classified patterns have high Q values. Therefore, Q can be
used to determine a confidence degree in the classification result.

Figure 17 depicts the performance of the modified maximum likelihood classifier, according to
the results obtained with the audio collection. As it can be seen, this classifier offers a very good
classification, with a success rate higher than 98%.
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5. Conclusions and Future Work

This paper describes a classification architecture for animal voice recognition. The main goal
of the proposed architecture is first to reduce biologists’ effort to manually classify audio patterns,
and second, to provide a method that can be used to classify classes not previously considered.
This classification architecture is based on the use of MPEG-7 low level descriptors, plus a family of
derived descriptors used to detect animal voice reverberations. These descriptors have been tested in
real scenarios detecting anuran voices stored in a public sound database.

The obtained results allow us to conclude that the proposed generic descriptors, using adequate
classifiers, can be used to classify animal voices with a high degree of accuracy. In addition, the
proposed architecture does not have the most common drawbacks of audio classification architectures.

The future work that is being considered by the authors focuses on two strategies: first, the
deployment of this animal voice detection system in several natural environments; and secondly, the
development of other classifiers using the proposed descriptors.
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