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1  | INTRODUC TION

Breast cancer is one of the most frequently diagnosed malignan‐
cies and a leading cause of cancer death among females around the 
world, accounting for 24% of diagnosed cancer and 15% of cancer 
death in females. According to Global Cancer Statistics 2018, there 
will be nearly 2.1  million new cases diagnosed globally, with ap‐
proximately 62 000 deaths. The incident rates of breast cancer in‐
creased in most developing countries during last decades, resulting 

from a combination of social and economic factors, including the 
postponement of childbearing, obesity and physical inactivity.1 In 
the developed countries, the incidence of breast cancer is mark‐
edly higher. Nearly 60% of deaths occur in the developing coun‐
ties. It is a major health burden in both developed and developing 
countries. Prognosis of patients with breast cancer has been im‐
proved as a result of recent advances of radiotherapy, hormone 
therapy, chemotherapy and immunotherapy. However, quite a few 
patients diagnosed and treated at early stages will unfortunately 
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Abstract
Breast cancer is one of the most frequently diagnosed malignancies and a leading 
cause of cancer death among females. Multiple molecular alterations are observed in 
breast cancer. LncRNA transcripts were proved to play important roles in the biology 
of tumorigenesis. In this study, we aimed to identify lncRNA expression signature 
that can predict breast cancer patient survival. We developed a 10‐lncRNA signa‐
ture‐based risk score which was used to separate patients into high‐risk and low‐risk 
groups. Patients in the low‐risk group had significantly better survival than those in 
the high‐risk group. Receiver operating characteristic analysis indicated that this sig‐
nature exhibited excellent diagnostic efficiency for 1‐, 3‐ and 5‐year disease‐relapse 
events. Moreover, multivariate Cox regression analysis demonstrated that this 10‐
lncRNA signature was an independent risk factor when adjusting for several clinical 
signatures such as age, tumour size and lymph node status. The prognostic value of 
risk scores was validated in the validation set. In addition, a nomogram was estab‐
lished and the calibration plots analysis indicated the good performance and clinical 
utility of the nomogram. In conclusion, our results demonstrated that this 10‐lncRNA 
signature effectively grouped patients at low and high risk of disease recurrence.
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suffer from locoregional or distant tumour recurrence months or 
years later.2,3

Breast cancer is a heterogeneous disease, and it is widely ac‐
knowledged that inheritance plays important roles in the initiation 
and progression of breast cancer. Multiple molecular alterations 
are observed in breast cancer. It was reported that 5%‐10% of 
breast cancer cases resulted from hereditary and genetic factors, 
such as inherited mutations and family history.1 BRCA mutations 
occur in 20% triple‐negative breast cancer patients, whereas in 
the general population, the mutations of BRCA are less common. 
To date, BRCA1 and BRCA2 mutations are currently detected to 
assess the risk of inherited breast cancer.4

In order to predict recurrence and mortality of breast can‐
cer, previous studies stratified patients into high‐ and low‐risk 
groups based on their histopathological features, including tu‐
mour size, lymph node status and grade.5 While because of mo‐
lecular differences, clinical outcomes are largely different even 
in patients with histologically similar tumours.6 During the past 
decade, molecular studies demonstrated that there were at least 
four molecular subtypes of breast cancer: luminal, basal, human 
epidermal growth factor receptor 2 (HER2)‐enriched and normal‐
like. These subtypes exhibit different histopathological features 
and treatment sensitivities.7 Patients with luminal breast cancer 
often have a better prognosis, whereas those with HER2‐en‐
riched or basal‐like types have a poorer prognosis. For HER2‐
positive breast cancers, the monoclonal antibody, trastuzumab 
and the dual tyrosine dual kinase inhibitor, lapatinib, were ap‐
proved.8-11 Because of the heterogeneity of breast cancer, multi‐
ple gene prognostic signatures could provide further prognostic 
information, and several molecular prognostic profiles have been 
validated for clinical use.12 The 21‐genes score (Oncotype DX) 
calculates a recurrence score and divides breast tumours into 
low‐, intermediate‐ and high‐risk groups to estimate the likeli‐
hood of distant recurrence in tamoxifen‐treated patients with 
oestrogen receptor‐positive breast cancer.13-15 The Amsterdam 
70‐gene signature accurately grouped patients into low or high 
risk to predict distant metastases and deaths.16,17 Detection of 
these biomarkers alone or in combination assists early diagnosis, 
therapeutic strategies determination and prognosis prediction 
after treatment.

Analysis of mammalian transcriptomes demonstrated that 
more than 50% of transcripts have no protein‐coding potential. 
Long non‐coding RNA (lncRNA) is a subset of these non‐coding 
transcripts >200 nucleotides.18 Accumulating evidence indicated 
that lncRNAs were involved in cancer progression. In breast can‐
cer, several lncRNAs were associated with the prognosis and indi‐
cated their potential roles in prediction of clinical outcome.

In the present study, we constructed a multi‐lncRNA‐based 
signature and developed a nomogram to predict the relapse‐free 
survival (RFS) survival of patients with breast cancer. Our find‐
ings suggested that this multi‐lncRNA‐based signature could be 
used as an effective prognostic predictor for patients with breast 
cancer.

2  | MATERIAL S AND METHODS

2.1 | Data processing and differentially expressed 
lncRNAs screening

The GSE21653 data set was downloaded from the GEO database 
(https​://www.ncbi.nlm.nih.gov/geo/) which contains 266 breast 
cancer cases. This data set was based on GPL570 platform ([HG‐
U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array). 
Patients without complete information of size, lymph node status, 
grade, oestrogen receptor status, progesterone receptor status, 
HER2 and survival status were excluded from this study. A total of 
227 patients (71 with recurrence disease and 156 without recur‐
rence) were selected for further analysis. Probes were annotated by 
the annotation files. Robust Multi‐array Average (RMA) algorithm 
in affy package in R was used to pre‐process the gene expression 
profile data. After background correction, quantile normalization 
and probe summarization, the expression value of each gene was 
compared between recurrence samples and recurrence‐free ones to 
identify differentially expressed lncRNAs (DELs) by Linear Models 
for Microarray Data (LIMMA) package. P‐value <.05 and |log2 fold‐
change (FC)| > 2 were set as the cut‐off criteria to select genes for 
further analysis.

2.2 | Construction of the lncRNA‐based 
prognostic signature

After screening out the DELs, we carried out univariate Cox re‐
gression analysis to identify prognostic lncRNAs. A P value <.05 
was considered as significant. Lasso‐penalized Cox regression 
was then performed to narrow the lncRNAs for prediction of the 
RFS.19 The LASSO Cox regression model was analysed using the 
‘glmnet’ package. LASSO shrinks all regression coefficients to‐
wards zero and sets the coefficients of many irrelevant features 
exactly to zero base on the regulation weight λ. The optimal λ was 
chosen according to minimum cross‐validation error in 10‐fold 
cross‐validation. Finally, a multivariate Cox regression analysis 
was conducted to assess the contribution of a lncRNA as an inde‐
pendent prognostic factor for patient survival. A stepwise method 
was employed to select the best model, and a risk score was calcu‐
lated with the coefficients weighted by the penalized Cox model 
in the training set. The optimal cut‐off of risk score was obtained 
using ‘survminer’ package in R. All patients were classified into 
either high‐risk or low‐risk group based on the optimal cut‐off of 
risk score.

2.3 | Construction of the nomogram

A nomogram was constructed using the ‘rms’ R package. Calibration 
plots were performed to assess the prognostic accuracy of the 
nomogram. The predicted outcomes and observed outcomes of the 
nomogram were presented in the calibrate curve, and the 45° line 
represents the best prediction.

https://www.ncbi.nlm.nih.gov/geo/
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2.4 | External data validation

To further validate the predictive value of the signature, we analysed 
the data set GSE19615 and GSE20685 with a total of 115 and 327 
cases, respectively. These two data sets were based on platform 
GPL570 ([HG‐U133_Plus_2] Affymetrix Human Genome U133 Plus 
2.0 Array).

2.5 | Statistical analysis

To investigate the prognostic accuracy of multi‐lncRNA‐based clas‐
sifier, time‐dependent receiver operating characteristic (ROC) analy‐
sis was performed using the ‘survivalROC’ R package. Relapse‐free 
survival was analysed based on Kaplan‐Meier method, and the log‐
rank test was performed to assess the statistical significance of the 
differences between different groups. Cox regression model was 
used to analyse multivariable survival analysis. Hazard ratios (HR) 
with their respective 95% confidence intervals were obtained. A P 
value <.05 was considered statistically significant, and all tests were 
two‐sided. All statistical tests were performed with R software 
(Version 3.5.0).

2.6 | Gene set enrichment analysis

A total of 227 breast cancer samples in GSE21653 were divided into 
two groups (high risk vs low risk) according to the optimal cut‐off 
of risk scores. In order to identify the significantly alerted Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathways, we per‐
formed gene set enrichment analysis (GSEA) between the high‐risk 

and low‐risk groups using the Java GSEA implementation. Annotated 
gene set c2.cp.kegg.v6.2.symbols.gmt (Version 6.2 of the Molecular 
Signatures Database) was chosen as the reference gene set. FDR 
<0.05 was chosen as the cut‐off criteria.

3  | RESULTS

3.1 | Analysis of DELs

A flow chart of the analysis procedure was developed to describe our 
study (Figure 1). In the presented study, 71 disease‐relapse samples 
and 156 disease‐relapse free samples in the data set of GSE21653 
were analysed. Based on the cut‐off criteria of P‐value <.05 and |log2 
fold‐change (FC)| > 2, a total of 30 DELs were identified, including 
nine up‐regulated and 21 down‐regulated DELs. Univariate Cox re‐
gression analysis was performed to identify prognostic lncRNAs. 
The patients were stratified into high expression and low expression 
groups according to optimal cut‐off of each lncRNA. The 19 lncRNAs 
significantly associated with the RFS were considered as prognostic 
lncRNAs for further analysis.

3.2 | Patient characteristics

The clinicopathologic characteristics of patients in the training 
set were shown in Table S1. The median follow‐up in training set 
was 5.04  years (low‐risk group) and 3.02  years (high‐risk group). 
In the validation set GSE19615, median follow‐up was 5.9  years 
(low‐risk group) and 4.3  years (high‐risk group). In the validation 
set GSE20685, median follow‐up was 8.1  years (low‐risk group) 

F I G U R E  1  Flow chart and 10‐time cross‐validation for tuning parameter selection. A, Flow chart indicating the process used to select 
target genes included in the analysis. B, Ten‐time cross‐validation for tuning parameter selection in the lasso model. C, LASSO coefficient 
profiles of the 19 prognostic lncRNAs. A vertical line is drawn at the value chosen by 10‐fold cross‐validation
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and 6.75  years (high‐risk group). Fifty‐seven (63.3%, training set), 
12 (33.3%, validation set GSE19615) and 52 (37.3%, validation set 
GSE20685) patients in the high‐risk group developed relapse during 
the follow‐up period.

3.3 | Identification of a multi‐lncRNA‐
based signature

After primary filtration of univariate Cox regression which identi‐
fied 19 lncRNAs significantly associated with the RFS, a Lasso‐pe‐
nalized Cox analysis with 10‐fold cross‐validation was performed 
to narrow the lncRNAs for prediction of the RFS. As a result, 17 
lncRNAs were identified. Subsequently, a stepwise multivariate 
Cox regression analysis was conducted, and 10 lncRNAs were fi‐
nally identified as prognostic lncRNAs to build a predictive model. 
This predictive model was defined as the linear combination of 

the expression levels of the 10 lncRNAs weighted by their rela‐
tive coefficient in the multivariate Cox regression model, as risk 
score = (−1.02 × expression of CADM3‐AS1) + (0.91 × expression of 
HAGLR) + (−1.19 × expression of LINC00293) + (−1.79 × expression 
of LINC00910) + (−2.09 × expression of LINC01187) + (0.62 × ex‐
pression of MIR210HG)  +  (−0.57  ×  expression of PDZRN3‐
AS1) + (1.83 × expression of RGMB‐AS1) + (1.30 × expression of 
TMEM161B‐AS1)  +  (−0.28  ×  expression of ZBED5‐AS1). Among 
these 10 prognostic lncRNAs, HAGLR, MIR210HG, RGMB‐AS1 
and TMEM161B‐AS1 showed positive coefficients in the Cox 
regression analysis, indicating their high expression levels for 
shorter RFS. CADM3‐AS1, LINC00293, LINC00910, LINC01187, 
PDZRN3‐AS1 and ZBED5‐AS1 showed negative coefficients, sug‐
gesting that their high expression levels were associated with bet‐
ter RFS. These results were consistent with the previous univariate 
Cox regression analysis (Figure 2). The optimum cut‐off score was 

F I G U R E  2  Univariate Cox regression analysis of the ten prognostic lncRNAs in the signature. A, HAGLR. B, MIR210HG. C, RGMB‐AS1. 
D, TMEM161B‐AS1. E, CADM3‐AS1. F, LINC00293. G, LINC00910. H, LINC01187. I, PDZRN3‐AS1. J, ZBED5‐AS1

F I G U R E  3   Validation of prognostic risk score model in training set. A, Time‐dependent receiver operating characteristic curves of the 
10‐lncRNA signature. B, Kaplan‐Meier survival analysis of the 10‐lncRNA signature
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generated by using ‘survminer’ package in R via the maximally se‐
lected rank statistics. Patients with a risk score of −6.63 or higher 
were in the high‐risk group, and the others were in the low‐risk 
group. Patients in the lower‐risk group had significantly better 
DFS than those in the high‐risk group (Figure 3). The prognos‐
tic accuracy of the 10‐lncRNA‐based signature was assessed by 
calculating the AUCs of a time‐dependent ROC curve at 1, 3 and 
5 years. Higher AUC indicated better prognostic performance. In 
the training set, AUCs of the 10‐lncRNA‐based signature were 
0.702, 0.841 and 0.852 at 1‐, 3‐ and 5‐year survival times, respec‐
tively, indicating that the prognostic model had a high sensitivity 
and specificity (Figure 3). Multivariate Cox proportional hazards 
regression analysis demonstrated that the 10‐lncRNA signature 
was an independent risk factor when adjusting for the classical 
clinicopathologic factors (Table S2). When the patients were strat‐
ified by clinicopathological risk factors, the 10‐lncRNA signature 
was still a statistically significant prognostic model for patients in 
the high‐risk group with poorer prognosis (Figure 4).

3.4 | Validation of the signature

To further assess the predictive value of this 10‐lncRNA signature, 
two external validation sets (GSE19615 and GSE20685) were used 
to validate our results. According to the 10‐lncRNA‐based signa‐
ture identified above, patients with breast cancer in these two val‐
idation sets were divided into a high‐ and a low‐risk groups (based 
on the threshold of −6.63). Compared with the high‐risk ones, 
significantly higher survival rates were observed in the low‐risk 
group (Figure 5), which was consistent with the results from the 
training set. ROC curve indicated good prognostic performance 
in both GSE19615 and GSE20685. In GSE19615, AUCs at 3 years 
were the same as that at 5  years, and no patients relapsed dur‐
ing the 2 years. Multivariate Cox proportional hazards regression 
analysis also demonstrated that the 10‐lncRNA signature was an 
independent risk factor (Table S2).

3.5 | Nomogram development

To predict the recurrence probability of patients with breast cancer 
using a quantitative method, we constructed a nomogram that in‐
tegrated both the 10‐lncRNA‐based signature and the conventional 
clinicopathological factors (Figure 6A) to predict 3‐ and 5‐year DFS 
probability. Calibration plots indicated that the nomogram had good 
accuracy as an ideal model both in training set and validation set 
(Figure 6B‐G).

3.6 | Gene set enrichment analysis

To identify the significant changes of biological pathways between 
high‐ and low‐risk groups, the GSEA was performed. Based on the 
cut‐off criteria of FDR <0.05, three significantly altered pathways 
were selected: cell cycle pathway, oxidative phosphorylation path‐
way and JAK/STAT signalling pathway (Figure 7).

4  | DISCUSSION

Breast cancer accounts for most frequent malignant tumours and 
cancer death in females around the world. Quite a few patients 
still suffer from locoregional or distant tumour recurrence even 
after combined therapies. Inheritance modulates the develop‐
ment of breast cancer, and various genetic changes were found 
to regulate breast cancer initiation and progression. In breast can‐
cer, lncRNA transcripts were proved to play important roles in the 
biology of tumorigenesis, whereas the prognostic significance of 
lncRNAs was not well investigated. So far, many biomarkers have 
been identified for the diagnosis and treatment of breast cancer. 
However, most of these studies only focused on one or a few 
genes, and few systemic investigations were carried out for clini‐
cal application of these genes.

In the presented study, we constructed and validated a 
10‐lncRNA‐based signature (HAGLR, MIR210HG, RGMB‐
AS1, TMEM161B‐AS1, CADM3‐AS1, LINC00293, LINC00910, 
LINC01187, PDZRN3‐AS1 and ZBED5‐AS1) to predict RFS for 
patients with breast cancer. The GSE21653 data set was used to 
identify DELs between disease‐relapse samples and disease‐re‐
lapse free ones. After univariate, Lasso and multivariate Cox anal‐
ysis, we eventually selected 10 lnRNAs to construct a multi‐gene 
signature for prognosis prediction. This 10‐lcnRNA signature was 
assessed in the training set. Patients in the low‐risk group had 
significantly better survival than those in the high‐risk group. 
ROC analysis showed that this signature exhibited excellent diag‐
nostic efficiency for the 1‐, 3‐ and 5‐year disease‐relapse event. 
Moreover, using multivariate Cox regression model, the 10‐ln‐
cRNA signature was proved to be an independent risk factor when 
adjusting for several clinical signatures such as age, tumour size 
and lymph node status. When patients were stratified by clinico‐
pathological features, the 10‐lncRNA‐based signature remains a 
strong prognostic model. Similar results were also observed in the 
external validation set. These results demonstrated that this 10‐
lncRNA signature could successfully categorize patients into high‐
risk and low‐risk groups with different RFS and was an effective 
prognostic indicator for patients with breast cancer.

To date, several nomograms and prognostic models have 
been constructed to predict the prognosis of patients with 
breast cancer. Rouzier developed and validated a nomogram, 
which was based on oestrogen receptor status, clinical stage, 
histologic grade and number of pre‐operative chemotherapy 
cycles to predict distant metastasis‐free survival.20 Cheng et al 
developed a robust 4‐gene signature (SRPK1, PCCA, PRLR and 
FBP1) to predict distant relapse‐free survival (DRFS) for patients 
with HER2‐negative breast cancer following taxane and anthra‐
cycline‐based chemotherapy. It was proved to be more accurate 
than other clinical signatures, such as tumour size, lymph node 
invasion and TNM stages.21 Liu et al22 constructed a lncRNA 
signature to predict ER‐positive breast cancer metastasis fol‐
lowing tamoxifen treatment, but the sample size was limited in 
this study. A 42‐gene classifier was also constructed to predict 
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F I G U R E  4  Kaplan‐Meier survival analysis for patients according to the 10‐lncRNA‐based signature stratified by clinicopathological risk 
factors. A, B, Tumour size. C, D, Lymph node status. E, F, Tumour grade. G, H, Age
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ER‐positive breast cancer recurrence.23 The Oncotype DX (21 
genes), the Amsterdam 70‐gene signature (70 genes) and the Risk 
of Recurrence Score (ROR, 50 genes) derived from PAM50 are 
the three most commonly used molecular prognostic profiles. 
However, their clinical applicability was restricted because of 
high cost. Previous studies have constructed prognostic models 
using lasso and multivariate Cox regression analysis. Long et al 
established a four‐gene‐based prognostic model to predict over‐
all survival in patients with hepatocellular carcinoma. The four‐
gene‐based prognostic model was constructed based on 356 
hepatocellular carcinoma patients obtained from TCGA and was 
validated using only one external data set (78 patients).19 And 
DNA methylation sites were also used for construction of models 
to predict survival of patients. Dong et al constructed a model 
using three risk categories (low risk, intermediate risk and high 
risk) to predict the overall survival of patients with hepatocel‐
lular carcinoma based on 134 methylation sites. Cox regression, 
SVM‐RFE and FW‐SVM algorithms were used to screen out dif‐
ferentially methylated sites. And this study was performed based 

on TCGA (training set) and GSE77269 (validation set), the sample 
size of our study was limited, and large‐scale cohort studies are 
needed.24 In this study, we constructed a signature involving only 
10 lncRNAs. Multivariate Cox regression demonstrated that the 
prognostic value of the 10‐lncRNA signature was independent of 
age, tumour size and lymph node status. A nomogram was then 
developed to integrate both the 10‐lncRNA‐based signature and 
clinicopathological risk factors to accurately predict the likeli‐
hood of RFS in patients with breast cancer. Calibration plots in‐
dicated that the actual RFS corresponded closely with predicted 
RFS, suggesting our nomogram had good predictive performance 
both in the training and validation sets.

HAGLR, also known as HOXD‐as1, was involved in the occur‐
rence and progression of variate types of human tumours, including 
bladder cancer, hepatocellular carcinoma, prostate cancer, gastric 
cancer, neuroblastoma and lung cancer.25-31 In prostate cancer, 
HOXD‐AS1 recruited WDR5 to mediate histone H3 lysine 4 tri‐meth‐
ylation, thus promoting cell proliferation, chemo‐resistance and cas‐
tration resistance.28 In ovarian cancer, HOXD‐AS1 was reported to 

F I G U R E  5   Validation of 10‐lncRNA signature in validation sets. A, Time‐dependent receiver operating characteristic (ROC) curves of 
the 10‐lncRNA signature in GSE19615. B, Kaplan‐Meier survival analysis of the 10‐lncRNA signature in GSE19615. C, Time‐dependent ROC 
curves of the 10‐lncRNA signature in GSE20685. D, Kaplan‐Meier survival analysis of the 10‐lncRNA signature in GSE20685
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competitively bind to miR‐608 to regulate the expression of frizzled 
family receptor 4 (FZD4) and to enhance proliferation, migration and 
invasion capabilities of ovarian cancer cells.32 MIR210HG was signifi‐
cantly up‐regulated in glioma tissues than tumour‐adjacent normal 
tissues. The serum levels of MIR210HG levels were also significantly 
higher in glioma patients compared with healthy controls.33 Based 
on public database analysis, MIR210HG served as a biomarker or a 
therapeutic target in colorectal adenocarcinoma.34 RGMB‐AS1 was 
reported to play important roles in lung cancer progression, the ex‐
pression levels of which were significantly correlated with differenti‐
ation, TNM stage and lymph node metastasis. RGMB‐AS1 promoted 
cell proliferation, migration and invasion capabilities of lung cancer 

and thyroid papillary cancer.35,36 RGMB‐AS1 was down‐regulated 
as an independent favourable prognostic factor for hepatocellular 
carcinoma patients.37 The biological function of the remaining ln‐
cRNAs (TMEM161B‐AS1, CADM3‐AS1, LINC00293, LINC00910, 
LINC01187, PDZRN3‐AS1 and ZBED5‐AS1) in our signature has not 
been investigated in previous studies; thus, further studies are re‐
quired to investigate the underlying molecular mechanisms of these 
diagnostic lncRNAs.

The high‐throughput platforms for genomic analysis pro‐
vided promising tools in medical oncology with great clinical ap‐
plications. Although it is difficult to use such a large number of 
genes for clinical application, accumulating studies indicated that 

F I G U R E  6   Nomogram to predict risk of cancer recurrence. A, Nomograms to predict risk of cancer recurrence. B, 3‐y nomogram 
calibration curves of training set. C, 5‐y nomogram calibration curves of training set. D, 3‐y nomogram calibration curves of validation set 
GSE19615. E, 5‐y nomogram calibration curves of validation set GSE19615. F, 3‐y nomogram calibration curves of validation set GSE20685. 
G 5‐y nomogram calibration curves of validation set GSE20685
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lncRNAs were involved in cancer progression. The prognostic sig‐
nificance of lncRNAs has not been well investigated. In the pre‐
sented study, we developed a prognostic signature based on 10 
lncRNAs expression and constructed a novel nomogram to predict 
the RFS. These findings might lead to the development of a cheap 
molecular test and suitable in the clinical routine. Although the 
nomogram demonstrated an accurate survival prediction, several 
limitations should not be ignored. The sample size of our study 
was limited, and large‐scale cohort studies are performing to in‐
vestigate the prognostic value of this 10‐lncRNA signature. As 
only the patients who had complete information were included in 
our study, there might be a selection bias in the primary cohort. 
Several predictors, such as radiotherapy and Ki‐67 index, were not 
analysed. In addition, the biological functions of the 10 lncRNAs 
in breast cancer progression are to be revealed. Our study only 
included the data set based on GPL570 platform, not represent‐
ing all possible lncRNAs. The underlying mechanisms of these ln‐
cRNAs in our signature remain largely unclear. Further in vivo and 
in vitro studies are required to confirm the exact molecular mech‐
anisms of these diagnostic genes.

In conclusion, our results demonstrated that the 10‐lncRNA 
signature effectively grouped patients at low and high risk of dis‐
ease relapse. Thereby, it may be a useful predictive tool with a 
good prospect of clinical application for patients with node‐posi‐
tive breast cancer.
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