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1  | INTRODUC TION

Breast cancer is one of the most frequently diagnosed malignan‐
cies and a leading cause of cancer death among females around the 
world, accounting for 24% of diagnosed cancer and 15% of cancer 
death in females. According to Global Cancer Statistics 2018, there 
will be nearly 2.1 million new cases diagnosed globally, with ap‐
proximately 62 000 deaths. The incident rates of breast cancer in‐
creased in most developing countries during last decades, resulting 

from a combination of social and economic factors, including the 
postponement of childbearing, obesity and physical inactivity.1 In 
the developed countries, the incidence of breast cancer is mark‐
edly higher. Nearly 60% of deaths occur in the developing coun‐
ties. It is a major health burden in both developed and developing 
countries. Prognosis of patients with breast cancer has been im‐
proved as a result of recent advances of radiotherapy, hormone 
therapy, chemotherapy and immunotherapy. However, quite a few 
patients diagnosed and treated at early stages will unfortunately 
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Abstract
Breast cancer is one of the most frequently diagnosed malignancies and a leading 
cause	of	cancer	death	among	females.	Multiple	molecular	alterations	are	observed	in	
breast cancer. LncRNA transcripts were proved to play important roles in the biology 
of tumorigenesis. In this study, we aimed to identify lncRNA expression signature 
that	can	predict	breast	cancer	patient	survival.	We	developed	a	10‐lncRNA	signa‐
ture‐based risk score which was used to separate patients into high‐risk and low‐risk 
groups. Patients in the low‐risk group had significantly better survival than those in 
the high‐risk group. Receiver operating characteristic analysis indicated that this sig‐
nature exhibited excellent diagnostic efficiency for 1‐, 3‐ and 5‐year disease‐relapse 
events.	Moreover,	multivariate	Cox	regression	analysis	demonstrated	that	 this	10‐
lncRNA signature was an independent risk factor when adjusting for several clinical 
signatures such as age, tumour size and lymph node status. The prognostic value of 
risk scores was validated in the validation set. In addition, a nomogram was estab‐
lished and the calibration plots analysis indicated the good performance and clinical 
utility of the nomogram. In conclusion, our results demonstrated that this 10‐lncRNA 
signature effectively grouped patients at low and high risk of disease recurrence.
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suffer from locoregional or distant tumour recurrence months or 
years later.2,3

Breast cancer is a heterogeneous disease, and it is widely ac‐
knowledged that inheritance plays important roles in the initiation 
and	 progression	 of	 breast	 cancer.	Multiple	molecular	 alterations	
are observed in breast cancer. It was reported that 5%‐10% of 
breast cancer cases resulted from hereditary and genetic factors, 
such as inherited mutations and family history.1 BRCA mutations 
occur in 20% triple‐negative breast cancer patients, whereas in 
the general population, the mutations of BRCA are less common. 
To date, BRCA1 and BRCA2 mutations are currently detected to 
assess the risk of inherited breast cancer.4

In order to predict recurrence and mortality of breast can‐
cer, previous studies stratified patients into high‐ and low‐risk 
groups based on their histopathological features, including tu‐
mour size, lymph node status and grade.5	While	because	of	mo‐
lecular differences, clinical outcomes are largely different even 
in patients with histologically similar tumours.6 During the past 
decade, molecular studies demonstrated that there were at least 
four molecular subtypes of breast cancer: luminal, basal, human 
epidermal growth factor receptor 2 (HER2)‐enriched and normal‐
like. These subtypes exhibit different histopathological features 
and treatment sensitivities.7 Patients with luminal breast cancer 
often have a better prognosis, whereas those with HER2‐en‐
riched	 or	 basal‐like	 types	 have	 a	 poorer	 prognosis.	 For	 HER2‐
positive breast cancers, the monoclonal antibody, trastuzumab 
and the dual tyrosine dual kinase inhibitor, lapatinib, were ap‐
proved.8‐11 Because of the heterogeneity of breast cancer, multi‐
ple gene prognostic signatures could provide further prognostic 
information, and several molecular prognostic profiles have been 
validated for clinical use.12 The 21‐genes score (Oncotype DX) 
calculates a recurrence score and divides breast tumours into 
low‐, intermediate‐ and high‐risk groups to estimate the likeli‐
hood of distant recurrence in tamoxifen‐treated patients with 
oestrogen receptor‐positive breast cancer.13‐15 The Amsterdam 
70‐gene signature accurately grouped patients into low or high 
risk to predict distant metastases and deaths.16,17 Detection of 
these biomarkers alone or in combination assists early diagnosis, 
therapeutic strategies determination and prognosis prediction 
after treatment.

Analysis of mammalian transcriptomes demonstrated that 
more than 50% of transcripts have no protein‐coding potential. 
Long non‐coding RNA (lncRNA) is a subset of these non‐coding 
transcripts >200 nucleotides.18 Accumulating evidence indicated 
that lncRNAs were involved in cancer progression. In breast can‐
cer, several lncRNAs were associated with the prognosis and indi‐
cated their potential roles in prediction of clinical outcome.

In the present study, we constructed a multi‐lncRNA‐based 
signature and developed a nomogram to predict the relapse‐free 
survival	 (RFS)	 survival	 of	 patients	with	breast	 cancer.	Our	 find‐
ings suggested that this multi‐lncRNA‐based signature could be 
used as an effective prognostic predictor for patients with breast 
cancer.

2  | MATERIAL S AND METHODS

2.1 | Data processing and differentially expressed 
lncRNAs screening

The	GSE21653	data	 set	was	downloaded	 from	 the	GEO	database	
(https ://www.ncbi.nlm.nih.gov/geo/) which contains 266 breast 
cancer cases. This data set was based on GPL570 platform ([HG‐
U133_Plus_2]	 Affymetrix	 Human	 Genome	 U133	 Plus	 2.0	 Array).	
Patients without complete information of size, lymph node status, 
grade, oestrogen receptor status, progesterone receptor status, 
HER2 and survival status were excluded from this study. A total of 
227 patients (71 with recurrence disease and 156 without recur‐
rence) were selected for further analysis. Probes were annotated by 
the	 annotation	 files.	 Robust	Multi‐array	 Average	 (RMA)	 algorithm	
in affy package in R was used to pre‐process the gene expression 
profile data. After background correction, quantile normalization 
and probe summarization, the expression value of each gene was 
compared between recurrence samples and recurrence‐free ones to 
identify	differentially	expressed	 lncRNAs	 (DELs)	by	Linear	Models	
for	Microarray	Data	(LIMMA)	package.	P‐value <.05 and |log2 fold‐
change	(FC)|	>	2	were	set	as	the	cut‐off	criteria	to	select	genes	for	
further analysis.

2.2 | Construction of the lncRNA‐based 
prognostic signature

After screening out the DELs, we carried out univariate Cox re‐
gression analysis to identify prognostic lncRNAs. A P value <.05 
was considered as significant. Lasso‐penalized Cox regression 
was then performed to narrow the lncRNAs for prediction of the 
RFS.19	The	LASSO	Cox	regression	model	was	analysed	using	the	
‘glmnet’	 package.	 LASSO	 shrinks	 all	 regression	 coefficients	 to‐
wards zero and sets the coefficients of many irrelevant features 
exactly to zero base on the regulation weight λ. The optimal λ was 
chosen according to minimum cross‐validation error in 10‐fold 
cross‐validation.	 Finally,	 a	 multivariate	 Cox	 regression	 analysis	
was conducted to assess the contribution of a lncRNA as an inde‐
pendent prognostic factor for patient survival. A stepwise method 
was employed to select the best model, and a risk score was calcu‐
lated with the coefficients weighted by the penalized Cox model 
in the training set. The optimal cut‐off of risk score was obtained 
using ‘survminer’ package in R. All patients were classified into 
either high‐risk or low‐risk group based on the optimal cut‐off of 
risk score.

2.3 | Construction of the nomogram

A nomogram was constructed using the ‘rms’ R package. Calibration 
plots were performed to assess the prognostic accuracy of the 
nomogram. The predicted outcomes and observed outcomes of the 
nomogram were presented in the calibrate curve, and the 45° line 
represents the best prediction.

https://www.ncbi.nlm.nih.gov/geo/
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2.4 | External data validation

To further validate the predictive value of the signature, we analysed 
the	data	set	GSE19615	and	GSE20685	with	a	total	of	115	and	327	
cases, respectively. These two data sets were based on platform 
GPL570	([HG‐U133_Plus_2]	Affymetrix	Human	Genome	U133	Plus	
2.0 Array).

2.5 | Statistical analysis

To investigate the prognostic accuracy of multi‐lncRNA‐based clas‐
sifier, time‐dependent receiver operating characteristic (ROC) analy‐
sis was performed using the ‘survivalROC’ R package. Relapse‐free 
survival	was	analysed	based	on	Kaplan‐Meier	method,	and	the	log‐
rank test was performed to assess the statistical significance of the 
differences between different groups. Cox regression model was 
used to analyse multivariable survival analysis. Hazard ratios (HR) 
with their respective 95% confidence intervals were obtained. A P 
value <.05 was considered statistically significant, and all tests were 
two‐sided. All statistical tests were performed with R software 
(Version 3.5.0).

2.6 | Gene set enrichment analysis

A	total	of	227	breast	cancer	samples	in	GSE21653	were	divided	into	
two groups (high risk vs low risk) according to the optimal cut‐off 
of risk scores. In order to identify the significantly alerted Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathways, we per‐
formed	gene	set	enrichment	analysis	(GSEA)	between	the	high‐risk	

and	low‐risk	groups	using	the	Java	GSEA	implementation.	Annotated	
gene	set	c2.cp.kegg.v6.2.symbols.gmt	(Version	6.2	of	the	Molecular	
Signatures	Database)	was	 chosen	 as	 the	 reference	 gene	 set.	 FDR	
<0.05 was chosen as the cut‐off criteria.

3  | RESULTS

3.1 | Analysis of DELs

A flow chart of the analysis procedure was developed to describe our 
study	(Figure	1).	In	the	presented	study,	71	disease‐relapse	samples	
and	156	disease‐relapse	free	samples	in	the	data	set	of	GSE21653	
were analysed. Based on the cut‐off criteria of P‐value <.05 and |log2 
fold‐change	(FC)|	>	2,	a	total	of	30	DELs	were	identified,	 including	
nine	up‐regulated	and	21	down‐regulated	DELs.	Univariate	Cox	re‐
gression analysis was performed to identify prognostic lncRNAs. 
The patients were stratified into high expression and low expression 
groups according to optimal cut‐off of each lncRNA. The 19 lncRNAs 
significantly	associated	with	the	RFS	were	considered	as	prognostic	
lncRNAs for further analysis.

3.2 | Patient characteristics

The clinicopathologic characteristics of patients in the training 
set	were	 shown	 in	 Table	 S1.	 The	median	 follow‐up	 in	 training	 set	
was 5.04 years (low‐risk group) and 3.02 years (high‐risk group). 
In	 the	 validation	 set	 GSE19615,	 median	 follow‐up	 was	 5.9	 years	
(low‐risk group) and 4.3 years (high‐risk group). In the validation 
set	 GSE20685,	 median	 follow‐up	 was	 8.1	 years	 (low‐risk	 group)	

F I G U R E  1  Flow	chart	and	10‐time	cross‐validation	for	tuning	parameter	selection.	A,	Flow	chart	indicating	the	process	used	to	select	
target	genes	included	in	the	analysis.	B,	Ten‐time	cross‐validation	for	tuning	parameter	selection	in	the	lasso	model.	C,	LASSO	coefficient	
profiles of the 19 prognostic lncRNAs. A vertical line is drawn at the value chosen by 10‐fold cross‐validation
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and	 6.75	 years	 (high‐risk	 group).	 Fifty‐seven	 (63.3%,	 training	 set),	
12	 (33.3%,	validation	set	GSE19615)	and	52	 (37.3%,	validation	set	
GSE20685)	patients	in	the	high‐risk	group	developed	relapse	during	
the follow‐up period.

3.3 | Identification of a multi‐lncRNA‐
based signature

After primary filtration of univariate Cox regression which identi‐
fied	19	lncRNAs	significantly	associated	with	the	RFS,	a	Lasso‐pe‐
nalized Cox analysis with 10‐fold cross‐validation was performed 
to	narrow	the	 lncRNAs	for	prediction	of	the	RFS.	As	a	result,	17	
lncRNAs	 were	 identified.	 Subsequently,	 a	 stepwise	 multivariate	
Cox regression analysis was conducted, and 10 lncRNAs were fi‐
nally identified as prognostic lncRNAs to build a predictive model. 
This predictive model was defined as the linear combination of 

the expression levels of the 10 lncRNAs weighted by their rela‐
tive coefficient in the multivariate Cox regression model, as risk 
score	=	(−1.02	×	expression	of	CADM3‐AS1)	+	(0.91	×	expression	of	
HAGLR)	+	(−1.19	×	expression	of	LINC00293)	+	(−1.79	×	expression	
of	LINC00910)	+	(−2.09	×	expression	of	LINC01187)	+	(0.62	×	ex‐
pression	 of	 MIR210HG)	 +	 (−0.57	 ×	 expression	 of	 PDZRN3‐
AS1)	+	(1.83	×	expression	of	RGMB‐AS1)	+	(1.30	×	expression	of	
TMEM161B‐AS1)	 +	 (−0.28	 ×	 expression	 of	 ZBED5‐AS1).	 Among	
these	 10	 prognostic	 lncRNAs,	 HAGLR,	 MIR210HG,	 RGMB‐AS1	
and	 TMEM161B‐AS1	 showed	 positive	 coefficients	 in	 the	 Cox	
regression analysis, indicating their high expression levels for 
shorter	RFS.	CADM3‐AS1,	 LINC00293,	 LINC00910,	 LINC01187,	
PDZRN3‐AS1	and	ZBED5‐AS1	showed	negative	coefficients,	sug‐
gesting that their high expression levels were associated with bet‐
ter	RFS.	These	results	were	consistent	with	the	previous	univariate	
Cox	regression	analysis	(Figure	2).	The	optimum	cut‐off	score	was	

F I G U R E  2  Univariate	Cox	regression	analysis	of	the	ten	prognostic	lncRNAs	in	the	signature.	A,	HAGLR.	B,	MIR210HG.	C,	RGMB‐AS1.	
D,	TMEM161B‐AS1.	E,	CADM3‐AS1.	F,	LINC00293.	G,	LINC00910.	H,	LINC01187.	I,	PDZRN3‐AS1.	J,	ZBED5‐AS1

F I G U R E  3   Validation of prognostic risk score model in training set. A, Time‐dependent receiver operating characteristic curves of the 
10‐lncRNA	signature.	B,	Kaplan‐Meier	survival	analysis	of	the	10‐lncRNA	signature
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generated by using ‘survminer’ package in R via the maximally se‐
lected	rank	statistics.	Patients	with	a	risk	score	of	−6.63	or	higher	
were in the high‐risk group, and the others were in the low‐risk 
group. Patients in the lower‐risk group had significantly better 
DFS	 than	 those	 in	 the	 high‐risk	 group	 (Figure	 3).	 The	 prognos‐
tic accuracy of the 10‐lncRNA‐based signature was assessed by 
calculating	the	AUCs	of	a	time‐dependent	ROC	curve	at	1,	3	and	
5	years.	Higher	AUC	indicated	better	prognostic	performance.	In	
the	 training	 set,	 AUCs	 of	 the	 10‐lncRNA‐based	 signature	 were	
0.702, 0.841 and 0.852 at 1‐, 3‐ and 5‐year survival times, respec‐
tively, indicating that the prognostic model had a high sensitivity 
and	 specificity	 (Figure	 3).	Multivariate	Cox	 proportional	 hazards	
regression analysis demonstrated that the 10‐lncRNA signature 
was an independent risk factor when adjusting for the classical 
clinicopathologic	factors	(Table	S2).	When	the	patients	were	strat‐
ified by clinicopathological risk factors, the 10‐lncRNA signature 
was still a statistically significant prognostic model for patients in 
the	high‐risk	group	with	poorer	prognosis	(Figure	4).

3.4 | Validation of the signature

To further assess the predictive value of this 10‐lncRNA signature, 
two	external	validation	sets	(GSE19615	and	GSE20685)	were	used	
to validate our results. According to the 10‐lncRNA‐based signa‐
ture identified above, patients with breast cancer in these two val‐
idation sets were divided into a high‐ and a low‐risk groups (based 
on	 the	 threshold	 of	 −6.63).	 Compared	 with	 the	 high‐risk	 ones,	
significantly higher survival rates were observed in the low‐risk 
group	 (Figure	5),	which	was	consistent	with	the	results	 from	the	
training set. ROC curve indicated good prognostic performance 
in	both	GSE19615	and	GSE20685.	In	GSE19615,	AUCs	at	3	years	
were the same as that at 5 years, and no patients relapsed dur‐
ing	the	2	years.	Multivariate	Cox	proportional	hazards	regression	
analysis also demonstrated that the 10‐lncRNA signature was an 
independent	risk	factor	(Table	S2).

3.5 | Nomogram development

To predict the recurrence probability of patients with breast cancer 
using a quantitative method, we constructed a nomogram that in‐
tegrated both the 10‐lncRNA‐based signature and the conventional 
clinicopathological	factors	(Figure	6A)	to	predict	3‐	and	5‐year	DFS	
probability. Calibration plots indicated that the nomogram had good 
accuracy as an ideal model both in training set and validation set 
(Figure	6B‐G).

3.6 | Gene set enrichment analysis

To identify the significant changes of biological pathways between 
high‐	and	low‐risk	groups,	the	GSEA	was	performed.	Based	on	the	
cut‐off	 criteria	 of	 FDR	<0.05,	 three	 significantly	 altered	 pathways	
were selected: cell cycle pathway, oxidative phosphorylation path‐
way	and	JAK/STAT	signalling	pathway	(Figure	7).

4  | DISCUSSION

Breast cancer accounts for most frequent malignant tumours and 
cancer death in females around the world. Quite a few patients 
still suffer from locoregional or distant tumour recurrence even 
after combined therapies. Inheritance modulates the develop‐
ment of breast cancer, and various genetic changes were found 
to regulate breast cancer initiation and progression. In breast can‐
cer, lncRNA transcripts were proved to play important roles in the 
biology of tumorigenesis, whereas the prognostic significance of 
lncRNAs	was	not	well	investigated.	So	far,	many	biomarkers	have	
been identified for the diagnosis and treatment of breast cancer. 
However, most of these studies only focused on one or a few 
genes, and few systemic investigations were carried out for clini‐
cal application of these genes.

In the presented study, we constructed and validated a 
10‐lncRNA‐based	 signature	 (HAGLR,	 MIR210HG,	 RGMB‐
AS1,	 TMEM161B‐AS1,	 CADM3‐AS1,	 LINC00293,	 LINC00910,	
LINC01187,	 PDZRN3‐AS1	 and	 ZBED5‐AS1)	 to	 predict	 RFS	 for	
patients	with	breast	cancer.	The	GSE21653	data	set	was	used	to	
identify DELs between disease‐relapse samples and disease‐re‐
lapse free ones. After univariate, Lasso and multivariate Cox anal‐
ysis, we eventually selected 10 lnRNAs to construct a multi‐gene 
signature for prognosis prediction. This 10‐lcnRNA signature was 
assessed in the training set. Patients in the low‐risk group had 
significantly better survival than those in the high‐risk group. 
ROC analysis showed that this signature exhibited excellent diag‐
nostic efficiency for the 1‐, 3‐ and 5‐year disease‐relapse event. 
Moreover,	 using	 multivariate	 Cox	 regression	 model,	 the	 10‐ln‐
cRNA signature was proved to be an independent risk factor when 
adjusting for several clinical signatures such as age, tumour size 
and	lymph	node	status.	When	patients	were	stratified	by	clinico‐
pathological features, the 10‐lncRNA‐based signature remains a 
strong	prognostic	model.	Similar	results	were	also	observed	in	the	
external validation set. These results demonstrated that this 10‐
lncRNA signature could successfully categorize patients into high‐
risk	and	 low‐risk	groups	with	different	RFS	and	was	an	effective	
prognostic indicator for patients with breast cancer.

To date, several nomograms and prognostic models have 
been constructed to predict the prognosis of patients with 
breast cancer. Rouzier developed and validated a nomogram, 
which was based on oestrogen receptor status, clinical stage, 
histologic grade and number of pre‐operative chemotherapy 
cycles to predict distant metastasis‐free survival.20 Cheng et al 
developed	 a	 robust	 4‐gene	 signature	 (SRPK1,	 PCCA,	 PRLR	 and	
FBP1)	to	predict	distant	relapse‐free	survival	(DRFS)	for	patients	
with HER2‐negative breast cancer following taxane and anthra‐
cycline‐based chemotherapy. It was proved to be more accurate 
than other clinical signatures, such as tumour size, lymph node 
invasion	 and	 TNM	 stages.21 Liu et al22 constructed a lncRNA 
signature to predict ER‐positive breast cancer metastasis fol‐
lowing tamoxifen treatment, but the sample size was limited in 
this study. A 42‐gene classifier was also constructed to predict 



6780  |     TANG eT Al.

F I G U R E  4  Kaplan‐Meier	survival	analysis	for	patients	according	to	the	10‐lncRNA‐based	signature	stratified	by	clinicopathological	risk	
factors.	A,	B,	Tumour	size.	C,	D,	Lymph	node	status.	E,	F,	Tumour	grade.	G,	H,	Age
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ER‐positive breast cancer recurrence.23 The Oncotype DX (21 
genes), the Amsterdam 70‐gene signature (70 genes) and the Risk 
of	 Recurrence	 Score	 (ROR,	 50	 genes)	 derived	 from	PAM50	 are	
the three most commonly used molecular prognostic profiles. 
However, their clinical applicability was restricted because of 
high cost. Previous studies have constructed prognostic models 
using lasso and multivariate Cox regression analysis. Long et al 
established a four‐gene‐based prognostic model to predict over‐
all survival in patients with hepatocellular carcinoma. The four‐
gene‐based prognostic model was constructed based on 356 
hepatocellular carcinoma patients obtained from TCGA and was 
validated using only one external data set (78 patients).19 And 
DNA methylation sites were also used for construction of models 
to predict survival of patients. Dong et al constructed a model 
using three risk categories (low risk, intermediate risk and high 
risk) to predict the overall survival of patients with hepatocel‐
lular carcinoma based on 134 methylation sites. Cox regression, 
SVM‐RFE	and	FW‐SVM	algorithms	were	used	to	screen	out	dif‐
ferentially methylated sites. And this study was performed based 

on	TCGA	(training	set)	and	GSE77269	(validation	set),	the	sample	
size of our study was limited, and large‐scale cohort studies are 
needed.24 In this study, we constructed a signature involving only 
10	lncRNAs.	Multivariate	Cox	regression	demonstrated	that	the	
prognostic value of the 10‐lncRNA signature was independent of 
age, tumour size and lymph node status. A nomogram was then 
developed to integrate both the 10‐lncRNA‐based signature and 
clinicopathological risk factors to accurately predict the likeli‐
hood	of	RFS	in	patients	with	breast	cancer.	Calibration	plots	in‐
dicated	that	the	actual	RFS	corresponded	closely	with	predicted	
RFS,	suggesting	our	nomogram	had	good	predictive	performance	
both in the training and validation sets.

HAGLR, also known as HOXD‐as1, was involved in the occur‐
rence and progression of variate types of human tumours, including 
bladder cancer, hepatocellular carcinoma, prostate cancer, gastric 
cancer, neuroblastoma and lung cancer.25‐31 In prostate cancer, 
HOXD‐AS1	recruited	WDR5	to	mediate	histone	H3	lysine	4	tri‐meth‐
ylation, thus promoting cell proliferation, chemo‐resistance and cas‐
tration resistance.28	In	ovarian	cancer,	HOXD‐AS1	was	reported	to	

F I G U R E  5   Validation of 10‐lncRNA signature in validation sets. A, Time‐dependent receiver operating characteristic (ROC) curves of 
the	10‐lncRNA	signature	in	GSE19615.	B,	Kaplan‐Meier	survival	analysis	of	the	10‐lncRNA	signature	in	GSE19615.	C,	Time‐dependent	ROC	
curves	of	the	10‐lncRNA	signature	in	GSE20685.	D,	Kaplan‐Meier	survival	analysis	of	the	10‐lncRNA	signature	in	GSE20685
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competitively bind to miR‐608 to regulate the expression of frizzled 
family	receptor	4	(FZD4)	and	to	enhance	proliferation,	migration	and	
invasion capabilities of ovarian cancer cells.32	MIR210HG	was	signifi‐
cantly up‐regulated in glioma tissues than tumour‐adjacent normal 
tissues.	The	serum	levels	of	MIR210HG	levels	were	also	significantly	
higher in glioma patients compared with healthy controls.33 Based 
on	public	database	analysis,	MIR210HG	served	as	a	biomarker	or	a	
therapeutic target in colorectal adenocarcinoma.34	RGMB‐AS1	was	
reported to play important roles in lung cancer progression, the ex‐
pression levels of which were significantly correlated with differenti‐
ation,	TNM	stage	and	lymph	node	metastasis.	RGMB‐AS1	promoted	
cell proliferation, migration and invasion capabilities of lung cancer 

and thyroid papillary cancer.35,36	 RGMB‐AS1	was	 down‐regulated	
as an independent favourable prognostic factor for hepatocellular 
carcinoma patients.37 The biological function of the remaining ln‐
cRNAs	 (TMEM161B‐AS1,	 CADM3‐AS1,	 LINC00293,	 LINC00910,	
LINC01187,	PDZRN3‐AS1	and	ZBED5‐AS1)	in	our	signature	has	not	
been investigated in previous studies; thus, further studies are re‐
quired to investigate the underlying molecular mechanisms of these 
diagnostic lncRNAs.

The high‐throughput platforms for genomic analysis pro‐
vided promising tools in medical oncology with great clinical ap‐
plications. Although it is difficult to use such a large number of 
genes for clinical application, accumulating studies indicated that 

F I G U R E  6   Nomogram to predict risk of cancer recurrence. A, Nomograms to predict risk of cancer recurrence. B, 3‐y nomogram 
calibration curves of training set. C, 5‐y nomogram calibration curves of training set. D, 3‐y nomogram calibration curves of validation set 
GSE19615.	E,	5‐y	nomogram	calibration	curves	of	validation	set	GSE19615.	F,	3‐y	nomogram	calibration	curves	of	validation	set	GSE20685.	
G	5‐y	nomogram	calibration	curves	of	validation	set	GSE20685
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lncRNAs were involved in cancer progression. The prognostic sig‐
nificance of lncRNAs has not been well investigated. In the pre‐
sented study, we developed a prognostic signature based on 10 
lncRNAs expression and constructed a novel nomogram to predict 
the	RFS.	These	findings	might	lead	to	the	development	of	a	cheap	
molecular test and suitable in the clinical routine. Although the 
nomogram demonstrated an accurate survival prediction, several 
limitations should not be ignored. The sample size of our study 
was limited, and large‐scale cohort studies are performing to in‐
vestigate the prognostic value of this 10‐lncRNA signature. As 
only the patients who had complete information were included in 
our study, there might be a selection bias in the primary cohort. 
Several	predictors,	such	as	radiotherapy	and	Ki‐67	index,	were	not	
analysed. In addition, the biological functions of the 10 lncRNAs 
in breast cancer progression are to be revealed. Our study only 
included the data set based on GPL570 platform, not represent‐
ing all possible lncRNAs. The underlying mechanisms of these ln‐
cRNAs	in	our	signature	remain	largely	unclear.	Further	in	vivo	and	
in vitro studies are required to confirm the exact molecular mech‐
anisms of these diagnostic genes.

In conclusion, our results demonstrated that the 10‐lncRNA 
signature effectively grouped patients at low and high risk of dis‐
ease relapse. Thereby, it may be a useful predictive tool with a 
good prospect of clinical application for patients with node‐posi‐
tive breast cancer.
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