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�
 ABSTRACT 

Patient-derived xenografts (PDX) model human intra- and 
intertumoral heterogeneity in the context of the intact tissue of 
immunocompromised mice. Histologic imaging via hematoxylin 
and eosin (H&E) staining is routinely performed on PDX sam-
ples, which could be harnessed for computational analysis. Prior 
studies of large clinical H&E image repositories have shown that 
deep learning analysis can identify intercellular and morphologic 
signals correlated with disease phenotype and therapeutic re-
sponse. In this study, we developed an extensive, pan-cancer 
repository of >1,000 PDX and paired parental tumor H&E im-
ages. These images, curated from the PDX Development and 
Trial Centers Research Network Consortium, had a range of 
associated genomic and transcriptomic data, clinical metadata, 
pathologic assessments of cell composition, and, in several cases, 
detailed pathologic annotations of neoplastic, stromal, and ne-
crotic regions. The amenability of these images to deep learning 

was highlighted through three applications: (i) development of a 
classifier for neoplastic, stromal, and necrotic regions; (ii) de-
velopment of a predictor of xenograft-transplant lymphoproli-
ferative disorder; and (iii) application of a published predictor of 
microsatellite instability. Together, this PDX Development and 
Trial Centers Research Network image repository provides a 
valuable resource for controlled digital pathology analysis, both 
for the evaluation of technical issues and for the development of 
computational image–based methods that make clinical predic-
tions based on PDX treatment studies. 

Significance: A pan-cancer repository of >1,000 patient-de-
rived xenograft hematoxylin and eosin–stained images will fa-
cilitate cancer biology investigations through histopathologic 
analysis and contributes important model system data that ex-
pand existing human histology repositories. 

Introduction 
The high clinical failure rate of cancer therapies is often attrib-

uted to the lack of tumor heterogeneity in preclinical models (1). 
This concern has motivated the increased use of patient-derived 
xenografts (PDX), in which a fresh human tumor biopsy is 

implanted subcutaneously or orthotopically in the flank of an im-
munodeficient mouse. The level of immunodeficiency is impacted 
by mouse strain, including nude, nonobese diabetic (NOD), NOD/ 
severe combined immunodeficient (NOD/SCID), NOD/SCID/IL2 
receptor gamma null (NSG), and SCID-beige mice (2). If the 
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implantation successfully establishes the model in the P0 mouse, the 
tumor can be passaged in future generations (P1, P2, etc.). After 
being sufficiently expanded, the model may be used for preclinical 
drug trials, and these have successfully predicted therapeutic out-
come in patients (2). 

PDXs have been shown to recapitulate phenotypes of their human 
progenitors along other dimensions as well. For example, PDX models 
exhibit metastatic patterns similar to those of their progenitors (https:// 
pdxportal.research.bcm.edu; bioRxiv 2023.02.15.528735; ref. 3). Fur-
thermore, PDX mRNA expression profiles correlate with those of their 
progenitors (4, 5), and these can be stably maintained for at least 15 
generations (6). Similar consistency between PDX and human has been 
demonstrated for copy number alterations across 21 passages (7) and 
for methylation profiles (8). Finally, PDXs retain the invasive histologic 
phenotype of their matched progenitor, as reflected in staining with 
hematoxylin and eosin (H&E; https://pdxportal.research.bcm.edu; bio-
Rxiv 2023.02.15.528735; refs. 6, 8). 

This latter finding raises the intriguing possibility that recent 
successes applying deep learning (DL) for whole-slide (WSI) anal-
ysis of H&E images in human clinical samples (9) will be applicable 
to PDXs, as well. DL-based analyses of human data are capable of 
predicting metastases (10), gene mutations (11) and expression (12), 
survival (13), cancer types (14), molecular (15), clinical (16), and 
histologic (17) tumor subtypes, and response to both chemotherapy 
(18) and immune checkpoint inhibitors (19). Much of the ground- 
breaking work in the field leverages convolutional neural networks 
(CNN), in which convolutional layers slide over two- or three- 
dimensional image patches to mathematically summarize them and 
are thus particularly suited to spatial processing (20). Other ap-
proaches have been applied to biomedical image analysis, including 
autoencoders, which learn a latent representation of the input that 
can optimally reconstruct it (21), and generative adversarial net-
works (GAN), in which two networks are trained simultaneously— 
one to generate images and a second to discriminate between those 
generated images and real images (22). Most recently, transformers 
have gained in popularity owing to their improved performance and 
ability to capture long-range dependencies (23). DL approaches can, 
in principle, assess the complexity of spatial interactions between 
cancer, stromal, and immune cells reflected in H&E images, thus 
moving beyond cancer cell-intrinsic, univariate gene biomarkers. 
For example, DL methods were able to associate tumor-infiltrating 
lymphocyte spatial structure with survival and differentiate malig-
nant breast tumor samples from benign breast biopsies based on 
stromal signatures (24). 

The explosive growth of DL-based applications in digital pa-
thology has been made possible by extensive, public repositories of 
human H&E images, such as The Cancer Genome Atlas (TCGA), 
The Cancer Imaging Archive, and the Imaging Data Commons. No 
similar resource exists for PDX images. Here, we describe a large- 
scale repository of >1,000 PDX and >100 matched patient tumor 
H&E images, along with expansive genomic, transcriptomic, clini-
cal, and pathologic annotations. The images were curated as part of 
the NCI’s PDX Development and Trial Centers Research Network 
(PDXNet) program, aimed at collaborative model development and 
preclinical testing of targeted therapeutic agents. Thumbnails and 
clinical metadata of the images, along with the raw genomic and 
transcriptomic data, are available on the PDXNet portal (25). The raw 
images are hosted on the Seven Bridges Cancer Genomics Cloud 
(CGC; www.cancergenomicscloud.org; ref. 26), in which they are 
publicly accessible (https://cgc.sbgenomics.com/u/brian.white/pdxnet- 
image-repository). We present several use cases demonstrating the 

ways in which the application of DL to PDX images in this repository 
can classify (i) neoplastic, stromal, and necrotic regions; (ii) xenograft- 
transplant lymphoproliferative disorder (XTLD) cases; and (iii) 
microsatellite instability (MSI) samples. The repository should facilitate 
monitoring of potential divergence between a PDX and its human 
progenitor during passaging (27) and exploration of questions im-
portant to PDX models, such as the impact of human cell turnover 
within the xenografts (28). We expect this PDXNet image repository to 
be valuable for controlled digital pathology analysis and development 
of novel computational methods based on spatial behaviors within 
patient-derived cancer tissues. 

Materials and Methods 
H&E image repository 

Images were collected from Baylor College of Medicine (BCM), 
Huntsman Cancer Institute, MD Anderson Cancer Center 
(MDACC), The Wistar Institute (WISTAR), Washington University 
in St Louis (WUSTL), and The Jackson Laboratory (JAX). They are 
organized hierarchically according to these sites (Supplementary 
Figs. S1 and S2), as further described in Supplementary Methods. 

The images and all associated transcriptomic and genomic data, 
metadata, and annotations are hosted on the Seven Bridges CGC 
(www.cancergenomicscloud.org; ref. 26), linked according to their 
respective identifiers (Supplementary Tables S1 and S2). The CGC 
colocalizes data and computational resources, including those with 
graphics processing units, in the cloud to enable efficient analysis. 
We have implemented the major components of our processing 
pipeline, namely, quality control and tissue mask generation with 
HistoQC and cell segmentation and phenotyping with HoVer-Net, 
as publicly available “apps”—effectively containers that can be au-
tomatically distributed across computational cloud resources for 
parallel processing of images. All analysis and processing for this 
study were performed on the CGC. Execution of HoVer-Net is 
computationally intensive, and it benefited from graphics processing 
units available on the CGC. All genomic and transcriptomic data are 
hosted on the PDXNet portal (25). 

Regional annotation 
A board-certified pathologist (TS) annotated tumor, stromal, and 

necrotic regions. Regions were labeled using QuPath (version 0.3.0-rc1). 
More specifically, a region comprised of at least 50% of a particular 
cell type when viewed at 20� resolution was annotated with that 
cell type. 

Whole-exome sequencing–derived homologous 
recombination deficiency, tumor mutational burden, and 
microsatellite instability annotations 

Homologous recombination deficiency (HRD), tumor mutational 
burden (TMB), and MSI annotations were downloaded from the 
PDXNet portal on September 12, 2023 and were generated from 
whole-exome sequencing (WES) data, as previously described (25) 
and further detailed in Supplementary Methods. 

HistoQC 
Prior to downstream analysis (e.g., with HoVer-Net or Inception 

v3), H&E image quality control (QC) and tissue mask generation 
were performed using HistoQC (29), a tool for artifact detection in 
digital pathology slides. Per-dataset configuration and QC results 
are provided in Supplementary Tables S3 and S4 and in Supple-
mentary Methods. 
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HoVer-Net 
Cell nuclei were segmented and phenotyped as neoplastic, ne-

crotic, connective, inflammatory, nonneoplastic epithelial, and un-
labeled using HoVer-Net (30). HoVer-Net is a CNN that exploits 
information encoded within the vertical and horizontal distances of 
nuclear pixels relative to their centers of mass to simultaneously 
segment and classify nuclei. Here, HoVer-Net–predicted inflam-
matory cells are reported as immune. Connective cells are generally 
reported as stromal, except in correlating with pathologist assess-
ment, in which stromal cells are taken to be those predicted by 
HoVer-Net as either connective or inflammatory. HoVer-Net was 
run using the pretrained PanNuke model. 

Histology-based Digital Staining 
As an alternative to HoVer-Net, the Mask-RCNN Histology- 

based Digital (HD) Staining (HD-Staining; 31) was applied to seg-
ment and phenotype nuclei within a single lung H&E image. HD- 
Staining has proven effective in classifying a rich set of cell types, 
including a tripartite separation of immune cells into macrophages, 
red blood cells, and a broader immune category. Tissue segmenta-
tion was first performed using Otsu thresholding followed with 
morphologic dilation and erosions (32). A 256 � 256 pixel window 
was slid over the 20� H&E image with a step size of 226 pixels. Cell 
nuclei were then simultaneously segmented and classified as tumor, 
stroma, lymphocyte, red blood cell, macrophage, and karyorrhexis 
(31). Only the nuclei with centroids located within the central 226 �
226 pixel area were kept to minimize the edge effect. 

Inception v3 
A total of 2,048 features of 512 � 512 pixel tiles at 20� resolution 

(0.50 μm per pixel) were computed as the outputs of the average 
pooling layer of the Inception v3 CNN pretrained on ImageNet, as 
previously described (33). 

Labeling tiles with tissue, region, and HoVer-Net information 
Tissue masks, regional annotations, and HoVer-Net output were 

all summarized at the level of 512 � 512 pixel, nonoverlapping tiles 
at 20� magnification, so as to conform to those outputs by Incep-
tion v3 here and in our previous studies (33). All images were 
provided at 20�magnification, except those contributed by WUSTL 
and WISTAR, which were provided at 40� magnification. Re-
gardless, derived masks, annotations, Inception features, and 
HoVer-Net results were scaled to 20� magnification, in which they 
were overlapped as described in Supplementary Methods. 

Whole-genome duplication calculation 
Whole-genome duplication (WGD) status for each PDX sample 

was inferred from WES data. Sequenza was used to calculate the 
allele-specific copy number, purity, and ploidy from matched 
tumor–normal samples. A permutation test was implemented for 
significance of being WGD given an allelic specific copy number 
profile and different ploidy and P value cut-offs were applied to call 
WGD (P value ≤ 0.001 with ploidy ≤3; P value ≤ 0.05 with ploidy ¼4; 
or all samples with ploidy ≥5). 

Correlation with pathologic assessment 
Fractions of phenotyped cell types predicted by HoVer-Net were 

correlated with those provided through pathologic assessment for 
neoplastic, stromal, and necrotic cells. Unlike in other analyses, in 
particular prediction of tissue regions, stromal cells were here 
considered those predicted to be either inflammatory/immune or 

connective cells by HoVer-Net. We assessed tumor types with at 
least seven PDX samples and performed the correlation only over 
PDX (and not human progenitor) samples. We estimated the 
fraction of cells of a given (pheno)type predicted by HoVer-Net as 
the ratio of the total area of that cell type within the slide to the total 
tissue area of the slide, both properly scaled (e.g., from the 1.5�
magnification applied by HistoQC in generating the tissue mask and 
as described above). We report weighted Pearson correlations to 
account for the statistical nonindependence of multiple slides from 
the same patient. In particular, we assign to each slide a weight 
proportional to the inverse of the number of slides from that patient 
and use these as input to cov.wt in R. 

Tissue region prediction 
Tissue regions were predicted at the tile level using a random 

forest classifier trained on proportion and counts of each HoVer- 
Net–predicted cell type and the total number of cells and evaluated 
using fivefold cross-validation with the ranger R package. Tiles 
were filtered to ensure at least 50% overlap with the tissue mask or 
at least 50% overlap with one of the annotated regions. Folds were 
defined at the patient level, independently within each site [BCM, 
MDACC, and Patient-Derived Models Repository (PDMR)], and 
stratified by diagnosis [breast cancer, lung adenocarcinoma, and 
squamous cell lung cancer (LUSC)] using createFolds in the caret 
R package. In total, slides from 41 patients were used for training 
and evaluation. 

During training, tiles were weighted so as to give equal weight 
across diagnoses, across sites within a diagnosis, across human pro-
genitors within a site/diagnosis pair, and across tiles within a human 
progenitor. Weighting was performed independently for each of the 
five folds (i.e., weights assigned to all but the one held-out fold) as well 
as across the entire dataset. Model training was performed indepen-
dently for each fold and also for the entire dataset using ranger with 
the weights passed to the case.weights argument and with probability ¼
TRUE, mtry ¼ NULL, and importance ¼ “impurity”. Held-out tiles 
were predicted using the corresponding model (i.e., trained on the 
four non held-out folds), and a confusion matrix was generated 
comparing them with their pathologist annotations. Furthermore, 
accuracy, precision, recall, and specificity of the predictions relative to 
the pathologist ground truth were calculated using the yardstick R 
package. Precision, recall, and specificity were calculated with esti-
mator ¼ “macro_weighted.” 

HoVer-Net–based XTLD prediction 
XTLD status was predicted at the tile level using a random forest 

classifier trained on the proportion of each HoVer-Net–predicted 
cell type, and not individual cell type or total cell counts, and 
evaluated using fivefold cross-validation with the ranger R package, 
similar to as described in “Tissue region prediction.” Specifically, 
slides were filtered so as to be derived from PDX (and not human 
progenitor) samples diagnosed with XTLD or LUSC. To reduce 
technical variability, within each site, slides were filtered so as to be 
digitized by the most frequently used scanner at that site. The 
scanner was identified by extracting the tiff.ImageDescription 
property field from the WSI using OpenSlide in python and then 
parsing its identifier from the ‘ScanScope ID ¼’ string within the 
image description. These were filtered to retain only those with 
>99% overlap with the tissue mask. Only one slide was retained per 
human progenitor, favoring XTLD slides over LUSC slides from the 
same human progenitor and then retaining that with the most tiles. 
Folds and tile weights were defined using the same procedure as 
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described in “Tissue region prediction,” except relative to sites 
PDMR and MDACC and to diagnoses XTLD and LUSC. Training 
and evaluation of a random forest model was also performed as 
described in the “Tissue region prediction,” with the exception that 
only cell type proportions and not counts were used as features. 
Furthermore, this was treated as a “weakly supervised” problem, in 
which tiles were labeled according to the diagnosis of the entire slide 
(i.e., XTLD or LUSC). Reported variable importance was accessed 
from the variable.importance field of the model returned by ranger 
function and trained on the entire dataset (rather than on individual 
folds). ROC curves and AUCs were calculated using the pROC R 
library by first generating a “roc” object using the roc function, by 
plotting the curve using ggroc, and by calculating the AUC 
using auc. 

Inception v3–based XTLD prediction 
XTLD status was predicted at the tile level using a random forest 

classifier trained on the 2,048 tile-level features computed by In-
ception v3 and evaluated using fivefold cross-validation with the 
ranger R package, exactly as described in the “HoVer-Net–based 
XTLD prediction,” except as noted here. In particular, to ensure a 
fair comparison across methods, the same folds used to train and 
evaluate the HoVer-Net–based XTLD classifier were used in train-
ing and evaluating the Inception v3–based XTLD classifier. The 
same tile filtering and weighting procedure was used as described in 
“HoVer-Net–based XTLD prediction,” though the included tiles 
and their weights differed. 

The Inception v3–based model trained on all (MDACC and 
PDMR) XTLD and LUSC data was applied to the held-out JAX 
XTLD and LUSC images. This was done in a blinded fashion, with 
the labels only revealed after predictions were made. Tiles from JAX 
images were filtered to retain only those with >99% overlap with the 
tissue mask. Representative tiles were selected as those with high (or 
low) value for the Inception v3 feature with highest variable im-
portance, feature 1895. This was done by ordering the tiles by in-
creasing feature 1895 value, retaining only one tile per human 
progenitor, and selecting the five tiles with largest value. A similar 
procedure was repeated to select tiles with low values. 

MSI prediction 
MSI status was predicted using nine pretrained models downloaded 

from https://zenodo.org/record/5151502. As previously described (34), 
these models were trained by excluding one of nine datasets—DACHS, 
DUSSEL, MECC, QUASAR, RAINBOW, TCGA, UMM, YORKSHIRE, 
or MUNICH. We report either predictions for each model indepen-
dently or as the mean prediction across all models, as indicated. Our 
python prediction code (MSIpred-revised.py) is based on that provided 
by the authors of the original manuscript at https://github.com/ 
KatherLab/preProcessing.git. Briefly, we processed WSI images at 20�
resolution into 512 � 512 pixel tiles without overlap. Individual tiles 
passing quality control (Canny edge detection as implemented in py-
thon’s OpenCV library) were normalized by applying the Macenko 
method (35) and the template image (https://github.com/jnkather/ 
DeepHistology/blob/master/subroutines_normalization/Ref.png) orig-
inally used in training the models. Normalized tiles were resized to 
224 � 224 pixels using INTER_CUBIC interpolation in OpenCV and 
passed to the models for prediction. 

Enrichment of microsatellite stable (MSS) labels near the low end of 
sorted median values over tiles (of mean predicted MSI probabilities 
over the nine models) was calculated using the fgsea package in R. In 
particular, we invoked fgseaSimple with parameters nperm ¼ 1000, 

gseaParam ¼ 0, and scoreType ¼ “neg.” Setting gseaParam ¼ 0 has 
the effect of considering only the ordering of the values in calcu-
lating the enrichment score, rather than their magnitudes. Setting 
scoreType ¼ “neg” has the effect of considering enrichment of MSS 
samples near the low end of predicted MSI probabilities (i.e., near 
the high end of predicted MSS probabilities). 

Data availability 
Raw H&E images, metadata, HistoQC output, HoVer-Net output, 

and Inception features are hosted on the Seven Bridges CGC 
(www.cancergenomicscloud.org) at https://cgc.sbgenomics.com/u/ 
brian.white/pdxnet-image-repository. Scripts in the GitHub repository 
https://github.com/TheJacksonLaboratory/pdxnet-image-analysis- 
aacr2022 were used to generate the figures (Supplementary Table 
S5) and tables (Supplementary Table S6). Genomic, transcriptomic, 
and clinical metadata hosted on the PDXNet portal may be accessed 
at https://portal.pdxnetwork.org/, with data download described 
under About > Data Access. All other raw data are available upon 
request from the corresponding author. 

Results 
A pan-cancer, multi-institutional repository links histology 
images to clinical annotations, pathologic assessments, and 
genomic and transcriptomic data 

The PDXNet repository consists of 1,094 H&E images from 351 
PDX models (Supplementary Tables S7 and S8; see Supplementary 
Methods). They represent 37 cancer types, including colon adeno-
carcinoma (242 PDX images from 58 models), pancreatic ductal 
adenocarcinoma (PDAC; 119 PDX images from 41 models), breast 
cancer (a category encompassing ductal carcinoma in situ, lobular 
carcinoma in situ, invasive breast carcinoma, invasive lobular car-
cinoma, and breast cancer not otherwise specified; 91 PDX images 
from 74 models), lung adenocarcinoma (78 PDX images from 22 
models), LUSC (76 PDX images from 23 models), and skin cuta-
neous melanoma (SKCM; 58 PDX images from 24 models; Fig. 1A; 
Supplementary Fig. S3; Supplementary Tables S9 and S10). 

Images were generated at five PDX Development and Trial 
Centers within PDXNet—BCM, Huntsman Cancer Institute, 
MDACC, WISTAR, and WUSTL—as well as at the NCI PDMR and 
JAX. Metadata were collected from these sites and aggregated from 
existing portals hosted at BCM (https://pdxportal.research.bcm.edu; 
bioRxiv 2023.02.15.528735) and PDMR (https://pdmr.cancer.gov/). 
These metadata include sample type (PDX or human progenitor), 
mouse strain, engraftment site (e.g., subcutaneous or mammary fat 
pad), diagnosis, primary cancer site, sex, age, race, and ethnicity 
(Supplementary Table S7). Background PDX strains are predomi-
nantly NSG (n ¼ 221 models), occasionally SCID-beige (n ¼ 40), 
and rarely others (n ¼ 2). Most PDX images are from early pas-
sages, with those from P0, n ¼ 210; P1, n ¼ 389; and P2, n ¼ 214 
predominating over those from later passages (>P2, n ¼ 194; 
Fig. 1B). 

The repository facilitates analyses both between PDX models and 
their human progenitors and across data modalities. It pairs images 
from 139 PDX models with those from 128 unique progenitors 
(Fig. 1A; Supplementary Table S11). Of these, cancer diagnoses with 
images from at least four unique, paired progenitors include breast 
cancer, colon adenocarcinoma, LUSC, lung adenocarcinoma, non-
rhabdomyosarcoma soft tissue sarcoma (a category encompassing 
noninfantile fibrosarcoma, gastrointestinal stromal tumor, non-
uterine leiomyosarcoma, malignant peripheral nerve sheath tumor, 
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and synovial sarcoma), SKCM, and rectal adenocarcinoma 
(Fig. 1C). The repository includes images from mice that were 
treated therapeutically, whose human progenitor was treated ther-
apeutically, or that are completely treatment-näıve. Diagnoses 
having at least two treated PDXs or PDXs derived from at least two 
treated progenitors include colon adenocarcinoma, PDAC, breast 
cancer, lung adenocarcinoma, LUSC, SKCM, and colorectal cancer 
(Fig. 1D). 

H&E images are linked to transcriptomic and genomic data and 
derived results, hosted on the PDXNet portal (25): 151 models are 
characterized by RNA sequencing (RNA-seq) and 250 by WES; 
progenitors from 48 models are profiled by RNA-seq and from 51 
models by WES (Fig. 1A; Supplementary Tables S10 and S11). PDX 
models and progenitors from PDMR are annotated with HRD and 
MSI statuses, as well as TMB, derived from WES data (see Materials 
and Methods; Fig. 1A; Supplementary Tables S10 and S11). Addi-
tionally, most images include pathologic assessment of tumor stage 
(n ¼ 890) and slide-level proportions of cancer, stromal, and ne-
crotic regions (n ¼ 866; Fig. 1A; Supplementary Table S7). Tumor 
volume was profiled longitudinally following therapeutic treatment 
for a limited number of models (Fig. 1A; Supplementary Table S10). 

Pathologist cell-type estimates allow the evaluation of nuclei 
segmentation and classification 

To further characterize the images, we applied HoVer-Net, a 
nuclei segmentation and classification method trained on human 
H&E images (30), to the PDX images. HoVer-Net classifies nuclei as 
neoplastic, stromal (“connective”), necrotic, immune (“inflamma-
tory”), nonneoplastic epithelial, or other. We first observed that 
tumor-predicted nuclei were larger in PDX samples with WGD than 
in samples with diploid genomes (Supplementary Fig. S4), consis-
tent with prior studies of TCGA H&E images (36). Next, to ap-
proximate a pathologist’s estimate of tissue content, we derived a 
slide-level estimate of neoplastic, stromal, and necrotic tissue con-
tent by aggregating predicted nuclei-level area within each nuclei 
class (see Materials and Methods). HoVer-Net–based slide-level 
estimates generally correlated well for neoplastic (median weighted 
Pearson correlation r ¼ 0.54), stromal (r ¼ 0.54), and necrotic (r ¼
0.70) cells across diagnoses (colon adenocarcinoma, colorectal 
cancer, and PDAC) and datasets (PDMR and WUSTL; Fig. 2A–D; 
Supplementary Fig. S5A–S5C). Collectively, these analyses suggest 
that nuclei segmentation and classification methods trained on 
human H&E images are applicable to PDX H&E images, as well. 

Figure 1. 
PDXNet image repository captures heterogeneity 
across tumor types, passages, and treatment sta-
tus and pairs human and PDX histology images 
with pathologic assessment and genomic and 
transcriptomic data. A, Top, distribution of the 
number of PDX models with H&E images by cancer 
diagnosis. Fraction of PDX models of a given di-
agnosis paired with HRD and MSI status, slide-level 
pathologic assessment (Path), WGD predictions, 
and RNA-seq, Middle, TMB, tumor volume, and 
WES data. Bottom, fraction of PDX models with 
paired human data of the indicated modality. B, 
Distribution of PDX images by passage. C, Counts 
of images for those derived from human progeni-
tor/PDX pairs, restricted to diagnoses with at least 
four such progenitors. B and C, Bar charts are 
colored according to the contributing site as indi-
cated in A. D, Distribution of PDX images across 
diagnoses with at least two treated PDXs or at 
least two treated progenitors. BLCA, bladder can-
cer; HNSC, head and neck squamous carcinoma; 
NRSTS, nonrhabdomyosarcoma soft tissue sar-
coma; Rx, treatment. 
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Pathologist pixel-level annotations enable training of a 
regional classifier 

To spatially contextualize slide-level correlations between predicted 
and assessed cell type proportions, a board-certified pathologist 
manually annotated cancer epithelium (“tumor”), stroma, and ne-
crotic regions within H&E images of LUSC (n ¼ 15), lung adeno-
carcinoma (n ¼ 18), and breast cancer (n ¼ 8; Fig. 3A–F). We labeled 
tiles according to their intersection with these annotations and found 
that, as expected, tumor tiles were predominantly composed of cells 
classified as neoplastic in the lung datasets (Supplementary Fig. S6). 
Consistently, the spatial organization of predicted tumor cells closely 
resembled pathologist annotations (Fig. 3A). Breast cancer exhibited 
a different pattern, with most tumor tiles composed of a mix of 
neoplastic and stromal cells (Supplementary Fig. S6). Lung stromal 
tiles harbored predicted neoplastic, immune, and stromal cells, 
whereas breast stromal tiles were predominantly composed of stromal 
cells. Finally, necrotic tiles had levels of predicted necrotic cells in 

excess of those of other tiles in both tumor types, despite the addi-
tional presence of a larger proportion of neoplastic and immune cells 
in lung cancer and an appreciable proportion of stromal cells in breast 
cancer. These apparent differences between breast and lung sample 
cellular composition may be partially explained by experimental and 
technical artifacts—in particular, we observed lighter hematoxylin 
staining in the breast H&E images and a concomitant incidence of 
unsegmented, incorrectly segmented, and misclassified nuclei relative 
to lung images (Supplementary Fig. S7A and S7B). To begin to ad-
dress true cellular heterogeneity within the stromal and necrotic re-
gions, we applied a second nuclei segmentation and phenotyping 
approach, HD-Staining (31), to a PDX lung sample (Fig. 3B). The 
spatial pattern of HD-Staining phenotypes was broadly similar to that 
predicted by HoVer-Net—though HD-Staining’s prediction of mac-
rophages within one necrotic area was more fine-grained than the 
immune prediction of HoVer-Net and the two disagreed about the 
immune content within one stromal region. 

Figure 2. 
Cell segmentation and classification trained on human data correlate with pathologist estimates of cell-type proportions in PDX samples. A and B, Correlation of 
pathologist (x-axis) and HoVer-Net–based slide-level estimates (y-axis) for neoplastic (left), stromal (middle), and necrotic (right) cell proportions in colorectal 
cancer (A) and PDAC (B) from WUSTL. Each point corresponds to an individual image and PDX (i.e., no replication). C, Weighted Pearson correlations of 
pathologist and HoVer-Net–based estimates of neoplastic, stromal, and necrotic cell proportions in colon adenocarcinoma, colorectal cancer, and PDAC in the 
PDMR and WUSTL datasets. All PDX strains are NSG. Colorectal cancer not otherwise specified, for example, as colon adenocarcinoma or rectal adenocarcinoma. 
Correlations are computed over images, inversely weighted by the number of H&E images from each patient (see Materials and Methods). 
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The localization of particular cell types within morphologic re-
gions has clinical implications. For example, tumor–stromal inter-
actions have been associated with disease progression and 
chemotherapy resistance in breast cancer (37). Although regional 
annotations facilitate correlative studies with clinical phenotypes, 
the manual burden in generating them is high. In our studies, a 
pathologist expended approximately 20 hours per sample demar-
cating high-resolution tumor, stromal, and necrotic regions within 
it, in detail (see Materials and Methods). 

To alleviate this annotation burden, we instead sought to predict 
tumor, stroma, and necrotic regions within H&E images. We first 

profiled each tile according to the fraction (Fig. 3C) and count 
(Supplementary Fig. S8A–S8D) of each HoVer-Net–predicted cell 
type within it. Consistent with our previous results, we observed 
that these tile-level cell-type profiles were region- and cancer type– 
specific. We used the profiles as features and applied fivefold cross- 
validation at the level of patients/progenitors to train a random 
forest that probabilistically predicted regions using the features. 
Prediction of pathologist annotations was strong (Fig. 3D; accuracy 
and macroweighted precision, recall, and specificity in the range 
0.87–0.89), and predictions correctly recapitulated irregular region 
boundaries (Fig. 3E and F). Furthermore, prediction performance 

Figure 3. 
Regional classifier predicts cancer epithelium (“tumor”), stroma, and necrotic areas based on nuclei classification. A and B, Cell phenotypes predicted by HoVer- 
Net (A) or HD-Staining (B) within a PDX lung tumor. C, Labeled tiles (orange, necrosis; blue, stroma; black, tumor) represented according to the cellular fraction 
that is predicted by HoVer-Net to be neoplastic, necrotic, immune, or stromal. D, Top, confusion matrix comparing pathologist-provided tile labels with 
corresponding prediction from the random forest (RF) HoVer-Net classifier. Results shown for held-out set following fivefold cross-validation, with folds defined 
according to the patient/progenitor (see Materials and Methods). Bottom, image and tile count used for cross-validation stratified by diagnosis and site. E, 
Pathologist regional annotations. F, Random forest HoVer-Net–based classifier predictions of regions (within 512 � 512 pixel tiles). necros, necrotic; neopla, 
neoplastic; nolabe, unlabeled; no-neo, nonneoplastic epithelial; RBC, red blood cell. 
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was consistently high for all regions across cancer types, datasets, 
and individual samples. In particular, the median probability of a 
tile being assigned to the correct region was >50% for each of the 

four samples in the lung PDMR dataset. This was also the case for 8 
out of 10 lung stromal regions and 11 of 12 lung tumor regions in 
the MDACC dataset, as well as for 6 of 7 breast tumor regions and 4 

Figure 4. 
XTLD can be computationally predicted from H&E images using segmented and classified cells or DL features. A and B, H&E images of LUSC (A) and XTLD (B). 
Each image from a distinct human progenitor. Images at 20� resolution. Scale bars, 50 µm. C, Image and tile count used for cross-validation stratified by 
diagnosis and site. D and E, HoVer-Net–based classifier performance. D, Distribution of tile-level XTLD probability predicted by random forest trained using 
HoVer-Net–derived features, according to the PDX image (x-axis), from an LUSC (red) or XTLD (blue) sample in the MDACC (solid line) or PDMR (dashed line) 
dataset. Results shown for held-out set following fivefold cross-validation, with folds defined according to the patient/progenitor (see Materials and Methods). E, 
Confusion matrix showing tile-level concordance between HoVer-Net–based classification (rows) and annotation (columns). F and G, Inception-based classifier 
performance, as in D and E, respectively, but with predictions from a random forest trained using Inception features. H, Distribution of tile-level XTLD probability 
predicted by random forest trained using Inception features, according to the PDX image (x-axis), from LUSC (red) or XTLD (blue) samples in JAX external 
validation dataset. Each image is from a distinct human progenitor. Samples are ordered by median XTLD prediction probability over tiles in D, F, and H. All PDXs 
are NSG mice. 
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of 5 breast necrosis regions in the BCM dataset (Supplementary Fig. 
S9A–S9C). Significantly, the classifier achieved this strong, pan- 
tissue classification performance despite the experimental variability 
observed in the H&E images (Supplementary Fig. S7A and S7B). 

An H&E-based classifier identifies XTLD 
During development of PDX models in immunocompromised 

hosts, such as NSG mice, proliferation of atypical human lym-
phocytes at the implantation site can overtake or limit the growth 
of the human tumor cells. Such XTLDs (predominantly B-cell type 
lymphomas) are frequent, occurring at rates that exceed 10% in 
some transplanted cancer types (38), with variability across cancer 
types (39). Cases of XTLD masquerading as a bona fide xenograft 
can waste significant effort in xenograft treatment studies. XTLD 
can be detected during a QC assessment of the generated model 
using IHC directed at human pan-immune (CD45) or B-cell 
(CD20) markers. It has also been detected and predicted based on 
expression differences between Epstein–Barr virus–associated 
lymphoma samples and nonlymphoma samples (40). Neverthe-
less, for laboratories that do not routinely perform IHC during a 
QC step and for legacy models without such evaluations, XTLD 
remains a concern. 

We therefore sought to develop an XTLD classifier applicable to 
H&E images generated during a standard pathologic assessment of 
NSG PDX models. We reasoned that the higher ratio of epithelial 
tumor cells to small lymphocytes in LUSC (Fig. 4A) relative to 
XTLD (Fig. 4B) would be detectable via cell segmentation and 
classification. Indeed, we observed that the proportion of segmented 
immune cells was elevated in XTLD samples relative to LUSC 
samples in the MDACC (P ¼ 4.6 � 10�4) and PDMR (P ¼ 0.08) 
datasets (Supplementary Fig. S10A). Furthermore, the median cell 
cross-sectional area of LUSC samples was higher than XTLD sam-
ples in MDACC and for three of five LUSC samples in PDMR 
(Supplementary Fig. S10B). 

Despite the associations between XTLD and both immune cell 
proportion and cell size, the orderings induced by these two metrics 
imperfectly segregate XTLD and LUSC samples. Hence, we attempted 
a more general classification at the image tile level by representing each 
tile according to its cell classification–derived proportions of neo-
plastic, stromal, necrotic, and immune cells, i.e., excluding the count- 
based features used in the regional classifier. We used these tile-level 
representations and fivefold cross-validation to train a random forest 
to predict XTLD status, similar to our approach above in predicting 
region labels (Fig. 4C–E). Tile-level prediction performance was strong 
(Fig. 4E), with the distribution of tile-level XTLD probabilities skewed 
toward one for tiles from XTLD images and toward zero for those 
from LUSC images (Supplementary Fig. S11A) and with a tile-level 
AUC of 0.87 (Supplementary Fig. S11B). We defined a sample-level 
prediction probability as the median prediction probability over tiles in 
the sample. The resulting predictions were correct (i.e., >0.5) for 29 of 
33 samples (Fig. 4D) and sample-level AUCs (Supplementary Fig. 
S11C), precision, recall, specificity, and accuracy (Supplementary Fig. 
S11D) were between 0.82 and 0.94. As expected, immune proportions 
were more important than neoplastic and necrotic cell proportions and 
of similar importance to stromal cell proportions in predicting XTLD 
(Supplementary Fig. S12). 

To improve upon sample-level prediction, we next sought to 
generalize our classifier beyond its four biologically inspired, but 
constrained, feature inputs. For this purpose, we extracted 2,048 DL 
features from each tile using an Inception v3 network pretrained on 

ImageNet (14, 41). These features were then input to a random forest 
classifier and the classifier was trained using fivefold cross-validation 
and the same assignment of tiles to folds as employed for the HoVer- 
Net–based classifier. The Inception-based classifier improved perfor-
mance over the HoVer-Net–based model (Fig. 4F and G). At the tile- 
level, it had a more pronounced skew of predicted probabilities to-
ward their correct assignments (Supplementary Fig. S11E) and a 
higher tile-level AUC (0.96; Supplementary Fig. S11F) than the 
HoVer-Net–based classifier. At the sample-level, the Inception-based 
classifier showed improved AUC (>0.99; Supplementary Fig. S11G), 
precision, recall, specificity, and accuracy (0.94–1.00; Supplementary 
Fig. S11H). In aggregate, it correctly predicted 32 of 33 samples 
(Fig. 4F). In particular, the only sample misclassified by the 
Inception-based model (99354) was also misclassified by the HoVer- 
Net–based model, whereas the three additional samples misclassified 
by the HoVer-Net–based model (99772, 97322, and TC 916 P0M1) 
were correctly classified by the Inception-based model. Additionally, 
the Inception-based model perfectly classified six samples in an ex-
ternal validation dataset (Fig. 4H). 

To interpret the information encoded by Inception that drives 
classification performance (33), we examined feature 1895, the feature 
with highest variable importance in the random forest model (Sup-
plementary Fig. S13A and S13B). We observed that this single feature 
segregated tiles in XTLD cases (high feature value) from those in 
LUSC cases (low feature value; Supplementary Fig. S13C). A montage 
of tiles suggest that feature 1895 encodes cellular density and/or cell 
size (or something correlated with these)—those with high feature 
1895 value (Fig. 5A) are dense in (small, round) lymphocytes or 
necrotic regions, whereas those with low value (Fig. 5B) have fewer, 
large cells and admixed stroma. 

A pretrained H&E-based classifier identifies MSI in human 
progenitor and PDX model samples 

To assess the applicability of our repository as an external valida-
tion set for evaluating published models, we applied a suite of pre-
trained MSI predictors (34) to colon adenocarcinoma human 
progenitor (Fig. 6A; Supplementary Fig. S14) and PDX (Fig. 6B; 
Supplementary Fig. S15) samples. The authors collected nine datasets 
of H&E images and trained nine different CNN (ResNet)-based 
models by excluding one of the datasets. We calculated the mean 
predicted MSI probability over these nine models and then ordered 
the samples based on the median value over tiles of their mean pre-
dicted MSI probabilities. MSS samples generally have lower median 
values than MSI samples in both human progenitor (Fig. 6A; sample- 
level AUC ¼ 1; enrichment P ¼ 0.13) and PDX (Fig. 6B; sample-level 
AUC ¼ 0.93; enrichment P ¼ 2.00 � 10�3) samples. Although MSI 
and MSS samples are interleaved near the high end of the predicted 
value spectrum, the concentration of MSS samples at the low end is 
consistent with the authors’ intent that their models can be used as 
prescreening tools to rule out MSI. Furthermore, we find concordance 
between human progenitor and PDX sample predictions. For example, 
the two human progenitor samples with high MSS predictions 
(i.e., with lowest median MSI predictions), 944381 and 782815, have 
corresponding PDX samples within the quarter of predicted most stable 
PDX samples. Conversely, the highest predicted MSI human progeni-
tor, 947758, has a corresponding PDX sample amongst the quarter 
predicted highest MSI PDX samples. Nevertheless, the impact of dataset 
heterogeneity is reflected in the divergent predictions across models 
that were trained on different, but overlapping, subsets of data (Sup-
plementary Figs. S14 and S15). 

2068 Cancer Res; 84(13) July 1, 2024 CANCER RESEARCH 

White et al. 



Discussion 
We presented a repository of >1,000 H&E images of PDX samples 

and their human progenitors. All images are clinically annotated, many 
have paired expression and genomic data, and several have associated 
neoplastic, stromal, and necrotic regions manually segmented by a 
board-certified pathologist. To the best of our knowledge, this is the 

first, large-scale, publicly accessible set of PDX-derived images. As a 
demonstration of the utility of this resource, we provided three use 
cases: (i) development of a tumor-associated region classifier; (ii) de-
velopment of a classifier of XTLD—the unintended outgrowth of hu-
man lymphocytes, rather than the epithelial tumor cells, at the 
xenograft implantation site; and (iii) application of a published, pre-
trained MSI classifier (34). 

Figure 5. 
Inception encodes morphologic fea-
tures useful in predicting XTLD. A, 
Tiles with large values of Inception 
feature 1895. The tile with the larg-
est value is shown for each of four 
samples (noted above tile) with 
highest values, all of which are 
XTLD cases. B, Tiles with small 
values of Inception feature 1895. 
The tile with the smallest value is 
shown for each of four samples 
(noted above tile) with smallest 
values, all of which are LUSC cases. 
All PDXs are NSG mice. Images at 
20� resolution. Scale bars, 50 µm. 

Figure 6. 
MSI can be computationally predicted from PDX samples using a human-trained model. Distribution of tile-level MSI probability predicted using a published 
model (34) from human progenitor (A) or PDX (B) model H&E images derived from MSI (red) or MSS (blue) samples. All progenitor samples in A have 
corresponding derived PDX samples in B. Samples ordered by median (mean over models) MSI prediction over tiles. 
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The repository will enable others to explore key biological 
questions, many specifically relevant to or suited to analysis in 
PDXs: (i) What morphologic features of human tumors are reca-
pitulated in PDXs? (ii) Stromal cells and cancer-associated fibro-
blasts, in particular, have been implicated in disease largely through 
their highly varied mediation of tumor/immune cell interactions 
(42). Do they retain this or some other function in immunocom-
promised mice? How are answers to these impacted by passaging, 
with early passages still harboring human immune and stromal cells 
and with murine cancer-associated fibroblasts replacing their hu-
man counterpart over time and passages (28)? Addressing these 
would be facilitated by placing immune and stromal cells in the 
context of the tumor core, periphery, or exterior using our regional 
classifier. (iii) Automated grading of a variety of epithelial cancers, 
such as breast (43) and colon (44) can be achieved through DL- 
based analysis of H&E images. Is tumor grade similarly imprinted 
on PDX sample morphology? If so, it should be possible to use the 
H&E images in our repository to predict their associated tumor 
stage and/or grade annotations. (iv) Chemotherapy-treated breast 
samples exhibit morphologic differences relative to treatment-näıve 
samples, including enlarged tumor cell nuclei (45). Are such dif-
ferences observed across tumor types and in PDX models? (v) Ge-
netic mutations (11) and gene expression (12) have been predicted 
from H&E using DL approaches. The (bulk) WES and RNA-seq 
data paired with histology images in our repository would provide 
labels for transcriptome-wide studies in PDX samples. What gene 
mutations and expression patterns can be predicted? Do they vali-
date published results (12)? Are the associated, predictive mor-
phologic signatures preserved across tumor types? (vi) We have 
previously observed mouse strain–specific tumor growth rates, 
which were characterized by different cellular densities and phe-
notypic composition using HoVer-Net (46). Specifically, the 
smallest tumors showed high contrast in stromal density at the 
tumor periphery versus the tumor central region, whereas the 
largest tumors were observed to show higher degree of stromal 
infiltration. Do related cellular or morphologic features correlate 
with response to drug treatment, as reflected in the repository’s 
tumor volume data? 

H&E image color variability observed across institutions and 
laboratories (47) may be caused by differences between stain batches 
and manufacturers, staining and fixation protocols, and tissue 
thickness (48), as well as differences across imaging parameters, 
including scanner models and image magnification. These site- 
specific effects adversely impact downstream DL-based classification 
(49) and confound prediction of survival, mutations, and tumor 
stage (50). The resulting lack of generalizability is a significant 
barrier to clinical deployment of these approaches (51). Several 
classes of color normalization attempt to address this issue: (i) 
template color matching maps summary statistics or histograms of 
RGB values in a reference image to those in a reference image (52); 
(ii) color deconvolution represents each of the H&E dyes as a “stain 
vector” and substitutes a reference stain vector for the corre-
sponding target vector (35); and (iii) generative adversarial network 
approaches transfer strain distributions from a reference dataset 
(rather than single image) to a target dataset (53). Our repository 
has considerable variability across the dimensions impacting image 
color, with six sites contributing data generated at two resolutions 
(20� and 40�) from different scanner models across multiple years. 
As such, it offers ample opportunity to compare color normalization 
approaches that may be combined with phenotypic and treatment 
response data for PDXs. 

Our region and XTLD classifiers were developed primarily using 
fivefold cross-validation. As such, they may be limited in their 
generalizability across datasets, including relative to the stain vari-
ability mentioned above. We have partially mitigated this concern 
through a small, external validation of the XTLD classifier. Re-
gardless, these proof-of-principle classifiers demonstrate the meth-
odologic domain of our repository. Furthermore, our application of 
pretrained MSI models demonstrates its relevance for external val-
idation of published and third-party tools. Indeed, we showed the 
impact of dataset heterogeneity on these models, in which results 
were sensitive to their training datasets despite the fact that any two 
of these datasets included seven of eight cohorts in common. 

The region and XTLD classifiers were trained on features engi-
neered from cells segmented and classified by one particular 
algorithm—HoVer-Net. As a demonstration of the general appli-
cability of our annotated images, we applied a second approach, 
HD-Staining, to a lung sample (31). Intriguingly, we observed sig-
nificant differences between HoVer-Net– and HD-Staining– 
predicted cell types within stromal and necrotic regions annotated 
by our pathologist. These region-level annotations make possible a 
more systematic comparison of HoVer-Net, HD-Staining, and 
related methods across other tumor types. This remains for 
future work. 

The H&E images presented here, alongside their genomic, tran-
scriptomic, clinical, and pathologic data, complement existing large- 
scale human repositories, including TCGA, TCIA, GTEx, and 
CAMELYON17 (10) while uniquely contributing PDX samples. As 
such, they expand the heterogeneity of publicly accessible histology 
data available for technical studies (e.g., color normalization and 
batch correction) while also enabling exploration of the phenotypic 
effect of cellular interactions and morphology within a model sys-
tem specifically intended to capture them. 
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