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Abstract: Bearing is one of the key components of a rotating machine. Hence, monitoring health condition
of the bearing is of paramount importace. This paper develops a novel particle swarm optimization
(PSO)-least squares wavelet support vector machine (PSO-LSWSVM) classifier, which is designed based
on a combination between a PSO, a least squares procedure, and a new wavelet kernel function-based
support vector machine (SVM), for bearing fault diagnosis. In this work, bearing fault classification is
transformed into a pattern recognition problem, which consists of three stages of data processing. Firstly,
a rich information dataset is built by extracting the features from the signals, which are decomposed by
the nonlocal means (NLM) and empirical mode decomposition (EMD). Secondly, a minimum-redundancy
maximum-relevance (mRMR) method is employed to determine a subset of feature that can provide an
optimal performance. Thirdly, a novel classifier, namely LSWSVM, is proposed with the aid of a PSO,
to provide higher classification accuracy. The key innovative science of this work is to propropose a new
classifier with the aid of an new wavelet kernel type to increase the classification precision of bearing
fault diagnosis. The merit features of the proposed approach are demonstrated based on a benchmark
bearing dataset and a comprehensive comparison procedure.

Keywords: non-local means (NLM); empirical mode decomposition (EMD); support vector
machine (SVM); wavelet kernel; minimum redundancy maximum relevance (mRMR); particle swarm
optimization (PSO); bearing fault diagnosis

1. Introduction

Since bearing is a crucial component in the machine, its failure will hugely affect to the disruption of
the machine. Therefore, condition monitoring for rolling bearings has become more and more important
to detect early damage and increase safe of the operating systems. In the literature, two approaches can be
applied to detect the bearing defects: (1) acoustic signal analysis, where the acoustic signal is acquired to
obtain bearing characteristic information, and (2) vibration signal analysis, where the vibration signal is
acquired. Among them, using vibration signal usually provides better defect detecting accuracy becuase it
contains rich information of the bearing characteristics and less measurement noise [1].
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Bearing defects can be detected by either analyzing the fault frequency spectrum [2] or pattern
recognition [3]. However, the analysis in [4] shown that the pattern recognition can give higher accuracy
compared to the spectrum approach. In the approach of traditional pattern recognition, the system will
include three major components: feature extraction, feature selection and feature classification. The goal
of the feature extraction task is to get as much information about the condition of the system as good.
For this purpose, we employ the NLM-EMD method, which has been developed in our previous work [5]
and proved its effectiveness, to extract a rich bearing feature set.

Feature extraction usually results in a large feature set. Unfortunately, the large feature set does
not neccessarily provide higher classification accuracy as it possibly contains irrelevant and redundant
features. Thus, it is signiticant to eliminate the irrelevant and redundant features before it is fed back to
a classifier. To obtain an optimal feature subset, a minimum-redundancy maximum-relevance (mRMR)
feature selection method has been developed [6]. The mRMR tries to search an outstanding combination
of candidate features for minimum redundancy and maximum relevance. Due to the merits of the mRMR,
it is employed in this paper to select the effective features.

Once the salient features are selected, they are fed into a classifier to identify the system condition.
Due to its high performance classification and less requirement on sample data input, the support
vector machine (SVM) proposed by Cortes and Vapnik [7] has been successfully applied to signal
processing [8], regression analysis [9], pattern recognition [10], and bearing fault diagnosis [11]. However,
the original SVM classifier provides high computational burden due to the method used to solve
the quadratic programming problem in the SVM [12]. In order to reduce this, many methods have been
developed, for example the SVM light decomposition algorithm [13], sequential minimal optimization
(SMO) algorithm [14], neighbor algorithm [15], and least squares SVM (LSSVM) [16]. Among them,
the LSSVM is commonly applied in real applications due to its simplicity in implementation and efficiency
in classification and computation [17].

In the SVM classifier, a kernel function is used to transform the data from the lower dimension space
to a high dimension space. Hence, the prior selection of the kernel will decide the way of classification of
the SVM [18]. Several kind of kernels have been developed for SVM, for example, polynomial, dot product,
and radial basis function (RBF) kernels. Among them, RBF kernel has shown to be more effective because
it has good capacity to approximate nonlinear functions. Recently, wavelet kernel has been developed as
an effective method for nonlinear approximation and mapping [4,19]. In [20], Zhang et al. has employed
the wavelet kernel for the SVM classifier, and a wavelet SVM (WSVM) classifier has been proposed as
a result. Since the wavelet transform provides better approximation capacity than the RBF, the WSVM
classifier provides higher accuracy than the SVM with RBF kernel. Since then, the WSVM have been
employed in many real applications, such as in the medical field [21], and machine fault diagnosis [22].
Due to the merits of the LSSVM classifier and the approximation capability of the wavelet kernel, a new
least squares wavelet support vector machine (LSWSVM) is proposed first time in this paper to improve
both computational efficiency and classification accuracy. However, the generalization performance of
the LSWSVM is affected by its parameters. Thus, it is necessary to optimize the parameters to obtain a better
performance. In the literature, Particle swarm optimization (PSO) [23] has been developed as an effective
optimization technique to optimize parameters of a process. Compared with other optimization methods,
PSO have many advantages, such as simple implementation, few parameters, parallel computation ability,
and quickly converge [24]. The PSO had proved its optimization capacity when applying for many practical
applications, such as for optimizing the parameters of SVMs [25] and other optimization problems [26,27].
Therefore, the PSO is used in this paper to effectively select the parameters of the LSWSVM, leading to a
new PSO-LSWSVM classifier, which addresses all difficulties in the use of the SVM classifier.

In summary, the novelties and main contributions of this paper can be listed as follows:
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• A new methodology for bearing fault diagnosis is developed by combining between feature
extration based on a NLM-EMD method, a feature selection based on a mRMR and a new
PSO-LSWSVM classifier.

• To improve the generalization performance of the SVM, a novel PSO-LSWSVM classifier, which
combines between a least squares procedure, a new wavelet kernel function and the PSO, is proposed.

2. Feature Extraction

In this paper, we employ the NLM-EMD method, which has been developed in our previous work [5]
and proved its effectiveness, to extract a rich bearing feature set. For the merit features of the NLM-EMD
and its detail description, the interested readers can refer to the previous work [5].

2.1. Nonlocal Mean (NLM) De-Noising

Consider a noise signal has a form as y = u + n, where u is the true signal and n is an additive noise.
The noise component can be eliminated using a NLM as below:

û(i) =
1

M(i) ∑
j∈Ωi

ω(i, j)y(i) (1)

The parameters used in (1) can be designed as in [5]. For more detail description of the NLM denoising,
the interested readers can refer to our previous paper [5].

2.2. Empirical Mode Decomposition

Consider an original signal x(t), a number of IMFs C(t) can be obtained from the original signal
using EMD method as [28]

x(t) =
n

∑
j=1

Cj(t) + rn(t) (2)

where the high frequency is decreased from C1(t), C2(t), C3(t), . . . , Cn(t), and rn(t) contains
no meaningful information. Generally, fault information is distributed significantly on the high
and mid-frequency components [4,19]. Thus, the first five IMFs are used in this work for bearing fault
analysis since they represent the mid- and high frequency components of the original signal.

2.3. Energy Feature Extraction

In the previous section, the EMD has been employed to decompose the original signal into a number of
IMF components with different frequency bands. On the other hand, the frequency band can be referenced
of the energy of fault vibration signal. Hence, in order to capture the effects of faults on the change of
the energy of the vibration signal, IMF energy features are employed.

Each IMF component Cj(t) possesses an energy Ej(t), which can be calculated as:

Ej =
∫
|Cj(t)|2dt (3)

Then, a normalization procedure can be applied for each Ej(t):

Tj =
Ej

T
(4)
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where T is the total energy of the first five IMF components:

T =

( 5

∑
j=1
|Ej|2

) 1
2

(5)

2.4. Time-Domain Feature Extraction

Time-domain features usually provide rich information to distinguish normal condition and fault
condition. In this paper, the nine time-domain dimensionless parameters defined in Table 1 is used to
extract fault information from the de-noised signal and the first five IMFs to obtain rich information of
bearing faults.

Finally, a set of features, which includes 5 + 9 × 6 = 59 fetures, is obtained to represent a
bearing condition.

Table 1. Time-domain dimensionless parameters.

No. Feature Equation No. Feature Equation

1 Standard deviation xstd =

√
∑N

n=1(x(n)−xm)2

N 6 Root mean square xrms =

√
∑N

n=1(x(n))2

N
2 Peak xp = max|x(n)| 7 Clearance factor CLF =

xp(
1
N ∑N

n=1 |x(n)|

)2

3 Skewness xskew = ∑N
n=1(x(n)−xm)3

(N−1)x3
std

8 Shape factor SF = xrms
1
N ∑N

n=1 |x(n)|

4 Kurtosis xkur =
∑N

n=1(x(n)−xm)4

(N−1)x4
std

9 Impulse factor IF =
xp

1
N ∑N

n=1 |x(n)|
5 Crest factor CF =

xp
xrms

where x(n) is a signal series for n = 1, 2, ..., N.

3. Minimum Redundancy Maximum Relevance (MRMR) Feature Selection

Let F be the initial feature set and |S| be the cardinality in seeking feature subset S. The following
criterion is developed for minimal redundancy:

min
S⊂F

1
|S|2 ∑

i,j∈ S
I( fi, f j) (6)

and the maximum relevance criterion is defined as:

max
S⊂F

1
|S| ∑

i∈ S
I(C, fi) (7)

where I( fi, f j) is the mutual information of two features, fi and f j; and I(C, fi) quantifies the relevance of
the feature, fi, in S and the target class, C.

To obtain a feature subset with minimum redundancy and maximum relevance, a mRMR function is
obtained by combining (6) and (7):

max
S⊂F

(
∑

i∈ S
I(C, fi)−

1
|S| ∑

i,j∈ S
I( fi, f j)

)
(8)

The completed procedure of the mRMR can be refered to [4]. To obtain the desired feature subset,
forward selection search [29] is employed.
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4. PSO-LSWSVM

4.1. Least Squares Support Vector Machine (LSSVM)

Given a training set of N data points, (x1, y1), (x2, y2), ..., (xN , yN), where xi ∈ Rd is the ith input
vector and yi ∈ ±1 is the corresponding target, we employ the idea of the transformation of an input
pattern into a reproducing kernel Hilbert space using a set of mapping functions, φ(x). The reproducing
kernel, K(x, x′), in the reproducing kernel Hilbert space is the dot product of the mapping functions at
x and x′, i.e., K(x, x′) = 〈φ(x).φ(x′)〉. In the new defined kernel space, a linear classifier usually has a
form below:

y(x) = sign(ω.φ(x) + b) (9)

To facilitate the selection of the parameters ω and b, the LSSVM formulates the optimization
problem as:

minimize
ω, b, e

F(ω, b, e) =
1
2

ωTω +
C
2

N

∑
i=1

e2
i

subject to yi[ω
Tφ(xi) + b] = 1− ei

(10)

The feature mapping, i.e., φ(x), is usually unknown, and Mercer’s condition [30] can be appllied.

Ωij = yiyjφ(xi)
Tφ(xj) (11)

The decision function of the LSSVM classifier becomes:

yi = sign
( N

∑
j=1

αjyjK(xi, xj) + b
)

(12)

A kernel RBF can be chosen as:

K(xi, xj) = exp
(
−
||xi − xj||2

σ2

)
(13)

where σ is a free parameter.

4.2. Least Squares Wavelet Support Vector Machine (LSWSVM)

Generally, the family of wavelet analysis has a form:

ha,c(z) = |a|−
1
2 h
( z− c

a
)

(14)

where z, a, c ∈ R, a is a dilation factor, c is a translation factor; and h(z) is the mother wavelet, which
satisfies the following condition [31,32]:

Wh =
∫ ∞

0

|F(ω)|2
|ω| < ∞ (15)

where F(ω) is the output of h(z) using Fourier transform. Employing a wavelet transform for g(z),
one obtains:

Wa,c(g) = 〈g(z), ha,c(z)〉 (16)
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where 〈〉 indicates the dot product. The function g(z) is provided by [31]:

g(z) =
1

Wh

∫ ∞

−∞

∫ ∞

0

1
a2 Wa,c(g)ha,c(z)dadc (17)

Reformulate (17):

ĝ(z) =
N

∑
i=1

Wihai ,ci (z) (18)

where Wi is the reconstruction coefficient, and g(z) is approximated by ĝ(z).
A wavelet function can be selected as [31]:

h(z) =
N

∑
i=1

h(zi) (19)

where z = [z1, z2, ..., zN ]
T ∈ R. Then, if z, z′ ∈ RN , the dot-product wavelet kernels can be computed as:

K(z, z′) =
N

∑
i=1

h
( zi − ci

a
) N

∑
i=1

h
( z′i − c′i

a
)

(20)

and the following expression is used to describe the translation invariant wavelet kernels [31]:

K(z, z′) =
N

∏
i=1

h
( zi − zj

a
)

(21)

Substituting (21) into (12), the decision function of the LSWSVM classifier has a form below:

yi = sign
( N

∑
j−1

αjyj

N

∏
j=1

h
( xt,j − xi,j

ai
+ b
)

(22)

where xt,j and xi,j denote the jth element of xt and the ith training sample, xi, respectively.
In order to approximate a general nonlinear model, in this paper, we propose to use the following

wavelet kernel:

h(x) = λcos
(

k
x
a

)
. exp

(
− x2

a2

)
(23)

where a is a parameter of the RBF kernel; k and λ are new parameters that control the kernel shape.
It is obvious to see from equation (23) that the performance of the defined wavelet kernel depends
significantly on the selection of the parameters a, k, and λ. When the parameters a, k, and λ are changed,
the shape of the kernel is changed. Therefore, it is needed to optimize these parameters to obtain a good
performance of the system.

4.3. Particle Swarm Optimization (PSO) for Parameter Selection of LSWSVM—the PSO-LSWSVM Classifier

In order to get the optimal values of the parameters a, k, and λ, particle swarm optimization (PSO) [33]
is employed in this paper. The detail description of the PSO can be referred to our previous work [4,19] to
reduce the length of the paper. The velocity, position and the initial weight of the PSO are updated using
the following three equations:

vt+1
id = ω.vt

id + c1r1.(pt
best,id − xt

id + c2r2.(gt
best,d − xt

id (24)
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xt+1
id = xt

id + vt+1
id (25)

ωk = ωmax −
ωmax −ωmin

itermax
× iter (26)

The definitions of the parameters used in Equations (24)–(26) can be referred to [4,19].
The LSWSVM classification model constructed using the wavelet kernel function defined in (23) has

four user-determined parameters, including a regularization parameter C and three kernel parameters, λ,
k and a. In this paper, we use PSO to automatically select the parameters of the LSWSVM classifier; hence,
a relatively new classifier, i.e., PSO-LSWSVM, is proposed. The step-by-step implementation details of
parameters selection for the LSWSVM classifer based on PSO are described below.

Step 1: Initializes the parameters of the PSO: the population N, the position and velocity of each particle
(C, a, k and λ - parameters for LSWSVM).

Step 2: Uses the following fitness function, which is obtained from the output of the LSWSVM classifier,
to evaluate the initialized particles:

fitness function =
Nt

Nt + N f
(27)

where Nt and N f denotes the number of true and false classification, respectively.
Step 3: Creates a new swarm by updating the velocity and position of each particle using (24) and (25).
Step 4: For the new obtained swarm, the fitness values are computed and compared to update the pbest,i

and Gbest of the swarm.
Step 5: Checks the termination condition: If the maximum number is reached, goes to Step 6. Otherwise,

return to Step 3 and continue the closed-loop process.
Step 6: Encodes the optimal parameter of the wavelet kernel of the LSWSVM classifier from the global

best position, Gbest.

5. Fault Diagnosis Methodology

The proposed fault diagnosis methodology is briefly described as in Figure 1. The implementation is
executed as follows:

Step 1: A number of effective IMFs are obtained after filtering the vibration signals using the NLM
and EMD.

Step 2: Extracts the energy and time domain features to obtain a combined feature set.
Step 3: Uses the mRMR feature selection technique to get an optimal feature subset.
Step 4: Uses the wavelet kernel function defined in (23) for LSSVM classifier and optimizes the parameters

using the PSO technique.
Step 5: Classifies the bearing fault types using the PSO-LSWSVM classifer based on the ‘one to others’

multi-class classification strategy [34], which is illustrated in Figure 2, and the selected feature subset
in Step 3.

Remark: Although the full fault diagnosis system, which includes feature extraction, feature selection,
and feature classification, is presented in this paper, the major contribution of this paper is to introduce a
novel PSO-LSWSVM classifier. The feature extraction tasks are mainly taken from the previous work [4],
while the feature selection based on the mRMR is a standard and well-known technique in the literature.
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Figure 1. Flow chart of the developed strategy for bearing fault diagnosis.

Figure 2. Flow chart of the developed strategy for bearing fault diagnosis.

6. Experimental Results

6.1. Training and Test Data Configuration

The data used in this experiment are taken from the Case Western Reserve University Bearing Data
Center (2014) [35]. The bearing test-bed is shown in Figure 3. In this paper, four types of bearing conditions
are considered, including one normal condition (no fault) which is labeled as NM and three fault conditions.
The three fault conditions include fault at outer race, fault at inner race and fault at ball which are labeled
as ORF, IRF and BF respectively. In each type of fault condition, fault size can have the value of 0.007, 0.014
or 0.021 mili-inches. Therefore, totally 10 conditions (10 classes) of bearing are taken into account.
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Figure 3. The bearing testbed

6.2. Parameter Selection

In the first simulation set, we illustrate the performance of the NLM and EMD. Figures 4–7
illustrate the denoising results using the NLM. The denoised signals are then passed through the EMD
to obtain the effective IMF components. The 59 features are then extracted from the denoised signal
and the IMF components as described in Section 2.

Figure 4. The represented (top) vibration signal, and (bottom) de-noised signal using NLM when the
bearing in normal operation.

Figure 5. Denoising signal using NLM when the bearing in an inner race (IR) fault (0.021 in.).
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Figure 6. Denoising signal using NLM when the bearing in an outer race (OR) fault (0.021 in.).

Figure 7. TDenoising signal using NLM when the bearing in a ball (B) fault (0.021 in.).

In the second and third simulation sets, the computed feature set is fed into the mMRM feature
selection to get an optimal feature subset. The selected feature subset is then used as input to a classifier
to identify the bearing conditions. The LSWSVM classifier was implemented based on a modification
of the LS-SVMLabtoolbox [36]. In order to verify the effectiveness of the PSO and the proposed wavelet
kernel function, we constructed four different classifiers: (1) an LSRBFSVM classifier using an RBF kernel
for the LSSVM with parameters selected by the user; (2) a PSO-LSRBFSVM classifier (LSRBFSVM with
parameters are selected by using PSO); (3) an LSWSVM classifier using the proposed wavelet kernel in (25)
with parameters selected by the users; and (4) a PSO-LSWSVM classifier (using PSO to automatically
select the parameters of the LSWSVM). In addition, to verify the effects of the parameters λ, k and a,
the PSO-LSWSVM classifier is used in three different circumstances: (a) λ and k are firstly selected by user,
and the PSO is used to tune the parameters a and C; (b) λ is firstly selected, and the PSO is used to tune
the parameters k, a and C simultaneously; and (c) the PSO is used to tune the parameters λ, k, a and C
simultaneously. These classifiers are also compared with the k-nearest neighbor (KNN) [37] and probability
neural network (PNN) [38] classifiers, which are widely applied for bearing fault diagnosis, to further
verify the effectiveness of the proposed classifier.

6.3. Performance Evaluation

According to the forward selection search algorithm [29], 59 feature subsets are created based on
the mRMR feature selection. To compare the generalization performance of the classifiers, we consider
each feature subset as an independent dataset. Thus, we have 59 different datasets corresponding to
59 feature subsets. To evaluate the performance of the methods, the extracted feature vectors are used as
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inputs for the classifiers to obtain the classification accuracies. In this paper, to estimate the generalized
classification accuracy, l-fold cross-validation (CV) [39], where l is set to 3, is employed. To obtain a
precisely classification result, l-fold CV is performed ten times in this study.

6.3.1. Training Process

First, the training process is performed to obtain an optimal feature subset of each classifier
and the kernel parameters of the LSRBFSVM and LSWSVM classifiers. The PSO is performed at this
training step. The validation accuracy in this study is computed as follows:

Caccuracy =
∑K NTP

NS
× 100% (28)

where K = 10 indicates number of classes, NTP indicates the number of true classifications, and NS is
the number of samples used in this experiment.

The validation accuracy of 59 features dataset for the KNN, PNN, LSRBFSVM, PSO-LSRBFSVM,
LSWSVM, and PSO-LSWSVM classifiers are shown in Figures 8–13, respectively. The mean and best
results and the computational time (for one fold) of each method are also reported in Table 2 for the sake
of comparison. The subspaces according to the best records are assigned as the optimal feature subset
according to the forward selection search algorithm [29]. Observing from these figures, we can see
that the combined 59 features yields a low classification accuracy due to the presence of the irrelevant
and redundant features; for example, 43% for the KNN, 55.95% for the PNN, 45.71% for the LSRBFSVM,
68.57% for the PSO-LSRBFSVM, 62.86% for the LSWSVM, and around 90.95% for the PSO-LSWSVM.
By using the mRMR criteria for feature selection, the classification accuracy is clearly increased.
For example, for the KNN classifier, the peak value is obtained at 7 features with the accuracy increased
up to 83.91%; for the PNN classifier, the peak value is obtained at 17 features with the accuracy increased
up to 91.42%; for the LSRBFSVM, the peak value is obtained at 11 features with the accuracy increased up
to 91.43%; for the PSO-LSRBFSVM, the peak value is obtained at 20 features with the accuracy increased
up to 94.76%; for the LSWSVM, the peak value is obtained at 12 features with the accuracy increased up
99.05%; and for the PSO-LSWSVM, the peak value is obtained at 2 features with the accuracy increased up
to 100%.

Figure 8. Validation accuracy of the KNN classifier.
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Figure 9. Validation accuracy of the PNN classifier.

Figure 10. Validation accuracy of the LSRBFSVM classifier; C = 4.5, σ = 2.5.

Figure 11. Validation accuracy of the PSO-LSRBFSVM classifier.
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Figure 12. Validation accuracy of the LSWSVM classifier.

(a) k = 1.75, λ = 1, using PSO to automatically select C and a.

(b) λ = 1, using PSO to automatically select C, a and k.
Figure 13. Cont.
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(c) Using PSO to automatically select C, a, k and λ.

Figure 13. Validation accuracy of the PSO-LSWSVM classifier.

Table 2. Accuracy comparison (%) among classifiers.

Classifier Mean Max Position Computation Time (s)

kNN 56.83 83.91 7 0.125
PNN 70.92 85.95 17 0.109

LSRBFSVM 71.37 91.42 11 0.375
PSO-LSRBFSVM 82.80 94.76 20 24.49

LSWSVM 81.40 99.05 12 0.422
PSO-LSWSVM (a) 90.15 100 14 30.52
PSO-LSWSVM (b) 95.97 100 5 30.52
PSO-LSWSVM (c) 98.14 100 2 30.52

From these results, four observations can be obtained: (1) the feature subsets selected by the mMRM
commonly yield higher accuracy than the use of all 59 features; (2) although the computational time of
the PSO-LSWSVM (PSO: 30.52 s+ LSWSVM: 0.422 s) classifier is higher than the KNN (0.125s), PNN
(0.109 s) and the PSO-LSRBFSVM classifier (PSO: 24.49 s+LSRBFSVM: 0.375 s), it gives much better
performance. It should be notice that although the PSO requires a higher computational time, however
the PSO training is done offline, and thus it will not affect to the real time fault diagnosis; (3) comparison
results between Figure 12 with Figures 8–10 shown that the LSWSVM classifier provides better accuracy
compared to the KNN, PNN and LSRBFSVM classifiers; (4) by comparing Figure 11 with Figure 10
and Figure 13 with Figure 12, it is clear that using the PSO for parameters selection always provides better
performance than using the random selection. In addition, comparisons between Figure 13a–c shown
that all parameters, λ, k, a and C, have significant effects on the performance of the LSWSVM classifier,
and that the selection of four parameters simultaneously will produce better generalization performance.
Based on Table 2 and the forward selection search algorithm [29], 8 features, 17 features, 20 features and 2
features are selected as the optimal feature subset for the KNN, PNN, PSO-LSRBFSVM and PSO-LSWSVM
classifiers, respectively.

6.3.2. Testing Process

After the optimal feature subset and optimal model are selected for each classifier, the testing
data samples are used to verify the effectiveness of the classifiers. The confusion matrices that
show the performances of the KNN, PNN, PSO-LSRBFSVM and PSO-LSWSVM (using PSO to
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automatically select all parameters, i.e., λ, k, a and C) classifiers are shown in Tables 3–6, respectively.
From the results, it is obvious to see that the proposed PSO-LSWSVM classifier (accuracy = 95.33%) gives
superior classification accuracy compared to the KNN (accuracy = 83.05%), PNN (accuracy = 84.77%),
and PSO-LSRBFSVM (accuracy = 86.84%).

Table 3. Confusion matrix for showing classification results of the KNN classifier.

NM ORF1 IRF1 BF1 ORF2 IRF2 BF2 ORF3 IRF3 BF3

NM 1452 4 6 0 10 1 11 2 3 1
ORF1 8 889 10 2 15 4 57 15 50 0
IRF1 0 0 1126 2 10 342 12 8 7 7
BF1 0 3 10 1135 5 3 0 7 10 0

ORF2 2 1 4 0 1249 2 13 73 1 24
IRF2 0 0 299 0 2 1144 3 5 2 3
BF2 38 191 2 0 11 0 1270 0 28 0

ORF3 0 20 2 18 192 1 1 1346 22 0
IRF3 0 7 41 12 6 3 3 4 1377 0
BF3 0 385 0 331 0 0 130 40 0 1465

Sensitivity(%) 96.8 59.27 75.07 75.67 83.27 76.27 84.67 90.07 91.8 97.67
Specificity(%) 99.72 98.85 97.1 99.73 99.13 97.64 98.02 98.07 99.45 93.47

Accuracy (%) 83.05

Table 4. Confusion matrix for showing classification results of the PNN classifier.

NM ORF1 IRF1 BF1 ORF2 IRF2 BF2 ORF3 IRF3 BF3

NM 1485 2 18 45 2 5 10 0 3 7
ORF1 0 1304 43 55 4 6 27 3 5 21
IRF1 1 53 1053 1 5 305 14 0 415 3
BF1 0 59 18 1290 10 2 33 7 16 9

ORF2 0 0 5 100 1250 1 42 65 0 0
IRF2 0 0 299 0 5 1177 0 0 3 1
BF2 14 13 0 0 101 0 1337 0 0 8

ORF3 0 0 0 3 63 0 0 1325 0 13
IRF3 0 2 64 6 60 4 0 50 1058 2
BF3 0 67 0 0 0 0 37 50 0 1436

Sensitivity(%) 99.0 86.93 70.2 86.0 83.33 78.47 89.13 88.33 70.53 95.73
Specificity(%) 99.32 98.79 94.5 98.86 98.42 97.72 99.99 99.41 99.45 98.86

Accuracy (%) 84.77
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Table 5. Confusion matrix for showing classification results of the PSO-LSRBFSVM classifier.

NM ORF1 IRF1 BF1 ORF2 IRF2 BF2 ORF3 IRF3 BF3

NM 1483 2 7 1 1 2 5 0 1 3
ORF1 0 1227 60 0 7 4 61 4 9 14
IRF1 1 20 1005 55 25 270 20 1 179 0
BF1 0 20 1 1276 3 0 0 0 2 5

ORF2 0 15 8 0 1354 0 41 62 1 0
IRF2 0 0 342 0 1 1215 5 0 0 1
BF2 15 78 0 1 0 0 1320 1 2 30

ORF3 0 50 0 0 80 0 0 1408 5 9
IRF3 0 31 77 97 28 9 0 1 1301 1
BF3 1 57 0 70 1 0 48 23 0 1437

Sensitivity(%) 98.87 81.80 67.00 85.07 90.27 81.00 88.00 93.87 86.73 95.80
Specificity(%) 99.84 98.82 95.93 99.77 99.06 97.42 99.06 98.93 99.45 98.52

Accuracy (%) 86.84

Table 6. Confusion matrix for showing classification results of the PSO-LSWSVM classifier.

NM ORF1 IRF1 BF1 ORF2 IRF2 BF2 ORF3 IRF3 BF3

NM 1500 0 2 0 1 0 5 0 0 2
ORF1 0 1484 0 0 1 0 1 0 2 0
IRF1 0 0 1210 0 10 164 0 0 60 0
BF1 0 0 25 1493 1 0 2 0 0 4

ORF2 0 0 20 0 1464 0 3 31 0 0
IRF2 0 0 178 0 2 1317 5 0 8 3
BF2 0 12 0 1 1 18 1473 1 0 0

ORF3 0 0 0 1 20 0 0 1447 0 0
IRF3 0 0 65 0 0 1 0 21 1421 0
BF3 0 4 0 5 0 0 11 0 9 1491

Sensitivity(%) 100 98.93 99.43 80.67 97.60 87.80 98.20 96.47 94.73 99.40
Specificity(%) 99.93 99.97 99.92 98.27 99.60 98.55 99.76 99.84 99.45 99.79

Accuracy (%) 95.33

7. Conclusions

Two major contributions have been presented in this paper:

• A new pattern recognition approach for bearing fault diagnosis is developed by combining between
feature extration based on a NLM-EMD method, a feature selection based on a mRMR and a new
PSO-LSWSVM classifier.

• A novel PSO-LSWSVM classifier, which combines between a least squares procedure, a new wavelet
kernel function and the PSO, is proposed.

In the presented method, the combined NLM-EMD is first employed to acquire more effective
IMF components of vibration signals. Then, for the de-noised signal and each IMF component,
the energy and time-domain feature parameters are extracted to obtain characteristic parameters. Next,
the mRMR feature selection technique is adopted to eliminate the irrelevant and redundant features
and select the best combined feature subset. Finally, the selected feature subset is fed into the proposed
PSO-LSWSVM classifier to identify the bearing conditions, wherein a novel combination of a PSO,
a least squares procedure, and a new wavelet kernel is proposed to address the difficulties in the use of
the traditional SVM classifier. By experimenting with a real bearing vibration signal, we verified that
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the proposed wavelet kernel function has a better generalization performance than the previous kernels,
i.e., RBF kernel, and the proposed PSO-LSWSVM classifier can overcome all difficulties in the use of
the traditional SVM classifer. In addition, the uses of the NLM-EMD for the feature extraction and mRMR
for the feature selection are effective. Therefore the proposed fault diagnosis methodology based on
the NLM-EMD, mMRM feature selection and PSO-LSWSVM classifier improves the bearing recognition
accuracy significantly, up to 95.53%.
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Abbreviations

List of Abbreviation used in paper:

BF Ball falut bearing
EMD Empirical mode decomposition
IMF Intrinsic mode function
IRF Inner race fault bearing
KNN K-nearest neighbor
PNN Probability neural network
PSO Particle swarm optimization
LSSVM Least squares support vector machine
LSWSVM Least squares wavelet support vector machine
LSRBFSVM Least squares radial basis function support vector machine
mRMR Minimum-redundancy maximum-relevance
NLM Nonlocal mean
NM Normal bearing
ORF Outer race fault bearing
RBF Radial basis function
SMO Sequential minimal optimization
SVM Support vector machine
WSVM Wavelet support vector machine
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