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Abstract: Endophytic fungi have attracted increasing attention as an under-explored source for the
discovery and development of structurally and functionally diverse secondary metabolites. These
microorganisms colonize their hosts, primarily plants, and demonstrate diverse ecological distribu-
tion. Among endophytic fungal natural products, sulfur-containing compounds feature one or more
sulfur atoms and possess a range of bioactivities, e.g., cytotoxicity and antimicrobial activities. These
natural products mainly belong to the classes of polyketides, nonribosomal peptides, terpenoids, and
hybrids. Here, we reviewed the fungal producers, plant sources, chemical structures, and bioactivities
of 143 new sulfur-containing compounds that were reported from 1985 to March 2022.

Keywords: sulfur; plant endophyte; endophytic fungi

1. Introduction

Sulfur is one of the prime elements on Earth and the eighth most abundant element
in the human body. It is a group 6A (or VIA) member of the periodic table, with a larger
atomic size and a weaker electronegativity than oxygen. Sulfur has unique characteristics,
such as five different oxidation states, and sulfur-containing molecules often participate in
biological redox reactions and electron transfer processes. Notably, two essential amino
acids, L-methionine and L-cysteine, both contain a sulfur atom, further highlighting the
importance and indispensability of sulfur in biology [1]. Indeed, one fifth (20%) of the
FDA-approved drugs contain at least one sulfur atom. These sulfur-containing drugs
have different structure skeletons such as sulfonamides, β-lactams, thioethers, thiazoles,
thiophenes, phenothiazines, sulfoxides, S=C and S=P structures, thionucleotides, sulfones,
sulfates and macrocyclic disulfides. Of note, many sulfur-containing drugs are natural
products or their derivatives (i.e., rosuvastatin, ecteinascidin 743 and ixabepilone) [2].

Fungi are a major group of microorganisms that produce a broad array of compounds
with novel structures and unique bioactivities. One type of fungi colonizes the intercel-
lular and/or intracellular regions of healthy plant tissues at a particular time and has no
interference with and causes no pathogenic symptoms to the host [3]. These endophytic
microorganisms are an important but less-explored source for the discovery of structurally
novel natural products in drug research. This paper reviews new sulfur-containing com-
pounds isolated from endophytic fungi since 1985 (Table 1). Based on their major chemical
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features, these compounds will be categorized into peptides, disulfides, polyketides, hy-
brids and terpenoids. The fungal strains that producing sulfur-containing compounds, host
plants, structure uniqueness and biological activities of these compounds will be discussed
(Table 1).

Table 1. Sulfur-containing compounds isolated from plant endophyte fungi.

Compound Structures Producing Strain Host Plant etc. Bioactivity Reference(s)
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Xylaria sp. YM 
311647 Azadirachta indica Antifungal [61] 

 

Colletotrichum 
gloeosporioides A12 

Aquilaria sinensis  [62] 

 

Emericella Sp Azadirachta indica Anticandidal [63] 

2. Peptides 
2.1. Sulfide (R-S-R′) 

A rare diketopiperazine bionectin D (1) (Figure 1) was obtained from a fungal strain 
Bionectria sp. Y1085 that was isolated from the plant Huperzia serrata. Bionectin D (1) con-
sists of a tryptophan and a threonine moiety, and the α-carbon of its tryptophan moiety 
carries a single methylthio substitution. Compound 1 exhibited antibacterial activity 
against Staphylococcus aureus, Escherichia coli, and Salmonella typhimurium ATCC 6539 with 
the same minimal inhibitory concentration (MIC) of 25 μg/mL [4]. Lasiodiplines A-C (2–
4) and E-F (5–6) are new sulfureous diketopiperazines that were produced by Lasiodiplodia 
pseudotheobromae F2 isolated from the apparently normal flower of Illigera rhodantha. The 
structure elucidation of these compounds was accomplished using a combination of spec-
troscopic and computational approaches, and the structure of 2 was further confirmed in 
conjunction with low-temperature (100 K) single-crystal X-ray diffraction. Lasiodiplines 
E (5) displayed antibacterial activity against Veillonella parvula, Actinmyces israelili, Strepto-
coccus sp., Bacteroides vulgates and Peptostreptococcus sp. with the MIC values of 0.25, 32.0, 
0.12, 0.12 and 0.12 μg/mL, respectively [5]. 
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2. Peptides
2.1. Sulfide (R-S-R′)

A rare diketopiperazine bionectin D (1) (Figure 1) was obtained from a fungal strain
Bionectria sp. Y1085 that was isolated from the plant Huperzia serrata. Bionectin D (1)
consists of a tryptophan and a threonine moiety, and the α-carbon of its tryptophan moi-
ety carries a single methylthio substitution. Compound 1 exhibited antibacterial activity
against Staphylococcus aureus, Escherichia coli, and Salmonella typhimurium ATCC 6539 with
the same minimal inhibitory concentration (MIC) of 25 µg/mL [4]. Lasiodiplines A-C (2–4)
and E-F (5–6) are new sulfureous diketopiperazines that were produced by Lasiodiplodia
pseudotheobromae F2 isolated from the apparently normal flower of Illigera rhodantha. The
structure elucidation of these compounds was accomplished using a combination of spec-
troscopic and computational approaches, and the structure of 2 was further confirmed in
conjunction with low-temperature (100 K) single-crystal X-ray diffraction. Lasiodiplines E
(5) displayed antibacterial activity against Veillonella parvula, Actinmyces israelili, Streptococ-
cus sp., Bacteroides vulgates and Peptostreptococcus sp. with the MIC values of 0.25, 32.0, 0.12,
0.12 and 0.12 µg/mL, respectively [5].

Botryosulfuranols A and B (7–8), two spirocyclic thiodiketopiperazines, were pu-
rified from Botryosphaeria mamani. The fungal strain was isolated from the fresh leaves
of Bixa orellana L. (Bixaceae) collected in Peru. These two unique compounds, each of
which contains two spiro centers, were derived from two L-phenylalanines with two
methylthio substitutions at the α-carbon and β-carbon of the two building blocks, respec-
tively. Botryosulfuranols A (7) was active against four cancer cell lines (HT-29, HepG2,
Caco-2, HeLa) with IC50 values of 8.0, 11.4, 18.2, 23.5 and 9.3 µM, respectively. Botryosul-
furanols B (8) was active against three cancer cell lines (HT-29, HepG2, HeLa) with the
IC50 values of 63.2, 56.1, 61.2, 49.9 and 64.7 µM, respectively [6]. Outovirin A (9) was a
thiodiketopiperazine derived from two molecules of L-phenylalanine. It was produced
by Penicillium raciborskii, an endophytic fungus isolated from Rhododendron tomentosum [7].
Compound 9 contains a nitrogen-oxygen bond in the oxazinane ring between diketopiper-
azine and conduritol-like rings, and it has a sulfide bridge between the α- and β-carbons
rather than the typical α−α bridging. Nine new thiodiketopiperazines, epicoccin I (10),
ent-epicoccin G (11), and epicoccins J-P (12–18), have been isolated from the endophytic
fungus Epicoccum nigrum. Compounds 10, 17, and 18 all have a sulfide bridge between
the α-carbon and the 2′/3′-position of the reduced benzene ring. Ent-epicoccin G (11) and
epicoccins M (15) showed potent in vitro activities against the release of β-glucuronidase
in rat polymorphonuclear leukocytes induced by the platelet-activating factor, with IC50
values of 3.07 and 4.16 µM, respectively [8].

Tilachlidium sp. (CANU-T988) isolated from a decaying wood sample was reported to
produce T988 B (19). Compound 19 has an unusual dimerized indole moiety with a 3-3
linkage, and it displayed potent cytotoxicity against P388 leukemia cells with an IC50 of
2.18 µM [9]. Bisdethiobis(methylsulfanyl)apoaranotin (20) was produced by Aspergillus
terreus BCC 4651, which was isolated from a tree hole in Nam Nao National Park, Thailand.
Compound 20 was derived from two molecules of L-phenylalanine with one benzene ring
being oxidized to a 4,5-dihydrooxepine ring. Compound 20 exhibited weak antimycobac-
terial activity [10]. Chaetocochin G (21), oidioperazine E (22), and chetoseminudin E (23)
were obtained from Chaetomium sp 88194, which was isolated from Cymbidium goeringii, a
plant native to China, Japan and Korea. Chaetocochin G (21) is a dimer of serine-tryptophan
diketopiperazines. Its structure including the absolute configuration was established by
spectroscopic data interpretation and single-crystal X-ray diffraction analysis. Chaetocochin
G (21) showed cytotoxicity against MCF-7 [11]. Fusaperazine E (24) and colletopiperazine
(25) were obtained from Penicillium crustosum and Colletotrichum gloeosporioides, respectively.
Both strains were isolated from Viguiera robusta Gardn. (Asteraceae). [12].
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Chetoseminudin F and G (26–27) were purified from Chaetomium sp. SYP-F7950, which
was isolated from the root of Panax notoginseng collected from Wenshan, Yunnan, P. R. China.
Chetoseminudin F (26) displayed cytotoxicity against MDA-MB-231 with an IC50 of
26.49 µM [13]. Four thiodiketopiperazines penicibrocazines F–I (28–31) were purified
from Penicillium brocae MA-231, which was isolated from the fresh tissue of the marine
mangrove plant Avicennia marina collected at Hainan Island, P. R. China. Penicibrocazines
H (30) displayed activity against V. harveyi, E. coli, A. hydrophilia and V. parahaemolyticus with
MICs of 16.0, 16.0, 32.0, and 16.0 µg/mL, respectively. Penicibrocazines I (31) displayed
activity against V. harveyi with an MIC of 32.0 µg/mL [14].

Two new compounds 6-octenoic acid, 3-hydroxy-2,4,6-trimethyl-5-oxo-, (5S,5aS,7aR,8R,
14aR)-5,5a,7a,8,14a,15-hexahydro-8,12-dihydroxy-7a,14a-bis(methylthio)-7,14-dioxo-7H,14H-
oxepino[3”,4”:4′,5′]pyrrolo[1′,2′:4,5]pyrazino[1,2-a]indol-5-yl ester (6E) (32) and bisdethio-
bis(methylthio)deacetylapoaranotin (33) were purified from the seed fungus Menisporopsis
theobromae BCC3975. Compound 32 is a hybrid of diketopiperazine and polyketide. Both
compounds showed antimycobacterial activity with MICs of 1.24 and 7.14 µM, respectively.
Compound 32 displayed cytotoxicity against NCI-H187 cell line and antimalarial activity
with IC50 of 20.3 and 2.95 µM, respectively [15].

Two new compounds, Sch 54794 (34) and Sch 54796 (35) (Figure 2), were separated
from the fermentation culture of ToJypocJadium sp. The microorganism ToJypocJadium sp.
was isolated from dead twigs from a Quercus virginiana Miller, an old live oak tree in the
state of Tamalupas, Mexico. The structures of Sch 54794 (34) and Sch 54796 (35) were
determined as cis and trans isomers in the spectroscopic analysis. The trans isomer, which
was similar to other diketopiperazines reported as platelet-activating factor (PAF) inhibitors
in the literature, displayed weak inhibitory activity in PAF assay with an IC50 of 50 µM.
However, the cis isomer appeared inactive (IC50 > 100 µM) [16].

Four new dioxopiperazine alkaloids, penispirozines A−D (36–39), were produced by
Penicillium janthinellum HDN13-309, which was isolated from the root of the mangrove plant
Sonneratia caseolaris. Penispirozine A (36) contains an unusual pyrazino[1,2]oxazadecaline
coupled with a thiophane ring system, and compound 37 possesses a 6/5/6/5/6 pentacyclic
ring system with two rare spirocyclic centers. Penispirozines C (38) and penispirozines
D (39) increased the expression of superoxide dismutase 2 (SOD2) and heme oxygenase-
1 (HO-1) at 10 µM [17]. A fermentation broth of Phoma lingam isolate Leroy obtained
from rapeseeds generated a new compound sirodesmin H (40) [18]. The octahydrocy-
clopenta[b]pyrrole moiety in 40 might be derived from L-phenylalanine, which reacted with
an isoprenyl group (C5) to form a spiro-furanone system. Two new thiodiketopiperazines
phomazines A (41) and B (42) were purified from Phoma sp. OUCMDZ-1847, which was
isolated from the mangrove plant Kandelia candel at Wenchang, Hainan, P. R. China. Com-
pound 42 displayed inhibitory activity against MGC-803 cells with an IC50 of 8.5 µM [19].

Two new pentacyclic diketopiperazines spirobrocazines A (43) and B (44) were ob-
tained from Penicillium brocae MA-231, which was derived from the marine mangrove plant
Avicennia marina [20]. Compound 43 exhibited moderate antibacterial activities against
Escherichia coli, S. aureus and Vibrio harveyi with MIC values of 32.0, 16.0 and 64.0 µg/mL,
respectively. Three new epipolythiodioxopiperazines, penicisulfuranols D–F (45–47), were
isolated from a marine mangrove plant, Sonneratia caseolaris-derived Penicillium janthinellum
HDN13-309 [21]. The piperazine-2,5-dione core in each of these compounds (45–47) was
flanked by a 1,2-oxazadecaline moiety and a spiro-benzofuran ring. Compounds 45–47
were tested inactive against HeLa and HL-60 cell lines. Five pentacyclic diketopiper-
azines, penicibrocazines A–E (48–52), were obtained from Penicillium brocae MA-231, a
fungus obtained from the fresh tissue of the marine mangrove plant Avicennia marina.
In the antimicrobial screening, penicibrocazine B (49), penicibrocazine C (50) and penici-
brocazine D (51) showed activity against Staphylococcus aureus, with MIC values of 32.0,
0.25, 8.0 µg/mL, respectively, which are comparable with that of the positive control,
chloromycetin (MIC = 4.0 µg/mL). Penicibrocazines C (50) also showed activity against
Micrococcus luteus with an MIC of 0.25 µg/mL, which is stronger than that of the positive
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control, chloromycetin (MIC = 2.0 µg/mL). Moreover, penicibrocazines B (49) and D (51)
exhibited activity against the plant pathogen Gaeumannomyces graminis with MIC values of
0.25 and 8.0 µg/mL, respectively, while the positive control amphotericin B has an MIC of
16.0 µg/mL [22].
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Figure 2. Structures of compounds 34–59.

The chemical investigation of a culture of Exserohilum holmii, a pathogenic fungus of
the weedy plant Dactyloctenium aegyptium, yielded two linearly fused pentacyclic dike-
topiperazines exserohilone (53) and 9,10-Dihydroexserohilon (54) [23]. The fermentation
of Nigrospora sphaerica, which was isolated from a germinating fescue seed, on shredded
wheat medium generated a novel pentacyclic diketopiperazine, epoxyexserohilone (55), a
congener of the known phytotoxin, exserohilone [24]. The investigation of Setosphaeria ros-
trata led to the discovery of three pentacyclic diketopiperazines, rostratazines A-C (56–58).
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The fungal strain was isolated from the fresh leaf tissues of the medicinal plant C. specio-
sus collected from Colombo, Sri Lanka. Rostratazine B (57) inhibited porcine pancreatic
alpha-amylase activity with an IC50 of 578 µM [25]. A pentacyclic diketopiperazine with a
4,5-dihydrooxepine moiety versicolor A (59) was isolated from Aspergillus versicolor 0312.
The fungal strain was isolated from the stems of Paris polyphylla var. yunnanensis collected
in Kunming, Yunnan Province, P. R. China. Compound 59 displayed cytotoxicity against
the contraction of the MOLT-4 cell line with an IC50 of 29.6 µM [26].

2.2. Disulfide (R-S-S-R′) and Multisulfide (R-Sn-S-R′, n = 3 or More)

Bionectin E (60) (Figure 3) was obtained from Bionectria sp. Y1085, which was isolated
from Huperzia serrata. Similar to compound 19 (T988 B) [9], compound 60 has an indole
moiety attached to the tryptophan-derived 1,2,3,3a,8,8a-hexahydropyrrolo[2,3-b]indole.
Interestingly, the other amino acid in the α−α′-bridged disulfide diketopiperazine is a
dehydroxylated threonine. Compound 60 showed antibacterial activity against E. coli,
S. saureus and Salmonella typhimurium with the same MIC value of 12.5 µg/mL [1]. Derived
from the apparently normal flower of Illigera rhodantha, Lasiodiplodia pseudotheobromae F2
produced Lasiodipline D (61) [5]. The α position of the alanine moiety in compound 61 was
connected to the β position of the tryptophan moiety via a disulfide bond. Botryosulfuranol
C (62) was obtained from the same fungal strain Botryosphaeria mamani as compounds 7
(botryosulfuranols A) and 8 (botryosulfuranols B), but it has an α−β-bridged disulfide bond
instead of the sulfide bond in 7 and 8. Botryosulfuranol C (62) showed cytotoxicity against
HepG2, HT29, Hela, IEC6 and Vero with IC50 values ranging from 15.9 to 115.7 µM [6].

Two new epithiodiketopiperazine natural products, outovirins B (63) and C (64),
resembling the antifungal natural product gliovirin have been identified in an extract of
Penicillium raciborskii, an endophytic fungus isolated from Rhododendron tomentosum [7].
Compounds 63 and 64 were almost identical to compound 9 (outovirins A) except for
an α−β-bridged disulfide and a trisulfide bond in compounds 63 and 64, respectively.
Compound 64 inhibited the growth of all tested fungal isolates (Fusarium oxysporum, Botrytis
cinerea, and Verticillium dahliae) at a low concentration of 0.38 mM (207 µg/mL), but a more
significant growth inhibition was observed at 0.76 mM (413 µg/mL). Compound 64 was
the most active against Botrytis cinerea (57% inhibition) and slightly less effective against
Verticillium dahliae (45% inhibition). Four new pentacyclic thiodiketopiperazines, epicoccins
Q-T (65–68), were discovered from the same fungal strain, Epicoccum nigrum, as compounds
10–18. Epicoccins S (67) showed activity against the release of β-glucuronidase with an
IC50 of 4.95 µM [8].

Secoemestrin D (69), a new epitetrathiodioxopiperizine, was obtained from Emericella
sp. AST0036, a fungal endophyte of Astragalus lentiginosus. Compound 69 contains an α−α-
bridged tetrasulfide bond. A benzoic acid moiety was attached to the 4,5-dihydrooxepine
ring. Secoemestrin D (69) exhibited potent cytotoxic activity against a panel of seven cancer
cell lines with IC50 values ranging from 0.06 to 0.24 µM [27]. Tilachlidium sp. (CANU-
T988), a fungal strain isolated from a decaying wood sample collected in Christchurch, New
Zealand, produced two new thiodiketopiperazine derivatives, T988 A (70) and C (71), which
have an indole ring connected to the 1,2,3,3a,8,8a-hexahydropyrrolo[2,3-b]indole, struc-
turally similar to compounds 19 and 60. Compound 71 has an α−α-bridged disulfide bond,
while compound 70 has an α−α-bridged trisulfide bond. Compounds 70 and 71 displayed
cytotoxicity against P388 with IC50 values of 0.25 and 0.56 µM, respectively [9]. Pretricho-
dermamide A (72) was obtained from Trichoderma sp. BCC 5926, which was collected on a
bamboo leaf from Khao Yai National Park, Nakhon Ratchasima Province, Thailand. Under
alkaline conditions, compound 72 with an α−β-bridged disulfide bond underwent a rapid
transformation to a stable amide, which is composed of a 1,2-oxazadecaline moiety and a
coumarin derivative. Compound 72 exhibited antibacterial activity against Mycobacterium
tuberculosis H37Ra with an MIC of 12.5 µg/mL [28]. A new epidithiodiketopiperazine,
pretrichodermamide G (73), was afforded by Trichoderma harzianum associated with the
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medicinal plant Zingiber officinale [29]. Although compound 73 is quite similar to compound
72, no chemical transformation under alkaline conditions was reported.
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Figure 3. Structures of compounds 60–92.

The investigation of Aspergillus tamarii FR02 led to the isolation of a new cyclic pen-
tapeptide, disulfide cyclo-(Leu-Val-Ile-Cys-Cys), named malformin E (74). A. tamarii FR02
was isolated from the root of Ficus carica. Malformin E (74) exhibited cytotoxic activities
against MCF-7, A549 and HepG2 with IC50 values of 0.65, 2.42 and 36.02 µM, respectively.
Malformin E (74) also showed antimicrobial and antifungal activities against Bacillus sub-
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tilis, Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Penicillium chrysogenum,
Candida albicans and Fusarium solani with MIC values ranging from 0.45 to 7.24 µM [30].

Six pentacyclic diketopiperazines, brocazines A-F (75–80), were discovered from
Penicillium brocae MA-231, a fungus obtained from the fresh tissue of the marine mangrove
plant Avicennia marina. Brocazines A (75), B (76), E (79) and F (80) were cytotoxic to
a panel of nine tumor cell lines with IC50 values ranging from 0.89 to 9.0 µM. [31]. A
culture of Phoma sp. OUCMDZ-1847 afforded one new phomazine C (81), which should be
biogenetically generated from the same precursor as compounds 41 and 42 [19]. Penicillium
janthinellum HDN13-309 produced epipolythiodioxopiperazines, penicisulfuranols A−C
(82–84), together with compounds 45–47. Compounds 82–84 exhibited cytotoxicity against
HeLa and HL-60 with IC50 of 0.1–3.9 µM [21].

Brocazine G (85), a new diketopiperazine, along with compounds 43 and 44 was
obtained from Penicillium brocae MA-231 associated with the fresh tissue of the marine
mangrove plant Avicennia marina. It showed cytotoxicity against A2780 with an IC50 of
59 µM. Brocazine G (85) also showed inhibitory activity against E. coli, Aeromonas hydrophilia
and V. harveyi with the same MIC of 32.0 µg/mL [20]. Five new epipolysulfanyldioxopiper-
azines, gliocladines A–E (86–90), were isolated from Gliocladium roseum 1A, a fungal strain
isolated from submerged wood collected from fresh water in Yunnan Province, P. R. China.
Both compounds 86 and 87 are dimers with each monomer being derived from L-alanine
and L-tryptophan, while each of compounds 88–90 is a diketopiperazine with an indole ring
connected to the 1,2,3,3a,8,8a-hexahydropyrrolo[2,3-b]indole. These compounds exhibited
nematicidal activities toward C. elegans, P. redivivus and B. xylophilus with ED50 values
ranging from 25 to 250 µg/mL [32].

An analog of compounds 86 and 87, 6-Formamide-chetomin (91), was obtained from
a culture of Chaetomium sp. M336, isolated from the plant H. serrata (Thunb. ex Murray)
Trev. Compound 91 was cytotoxic to HeLa, SGC-7901 and A549 cells with IC50 values of
21.6–27.1 µM. It exhibited activity against Escherichia coli, Staphylococcus aureus, Salmonella
typhimurium ATCC 6539 and Enterococcus faecalis with the same MIC of 0.78 µg/mL [33].

2.3. Sulfoxide (R-SO-R′) and Sulfone (R-SO2-R′)

An indole alkaloid with a rare methylsulfonyl unit, 21-Epi-taichunamide D (92), was
obtained from Aspergillus versicolor F210 (Lycoris radiata). The strain was isolated from
the bulbs of Lycoris radiata collected from Yichang City in Hubei Province, P. R. China.
Compound 92 inhibited anticancer activity toward HL-60 and A549 cells with IC50 values
of 26.8 and 32.5 µM, respectively [34].

3. Polyketides
3.1. Sulfide

A new cytotoxic compound, isocochlioquinones D (93) (Figure 4), was purified from
Bipolaris sorokiniana A606. The endophytic fungus was isolated from the medicinal plant
Pogostemon cablin, also known as patchouli or “Guanghuoxiang” in traditional Chinese
medicine (TCM) [35]. Isocochlioquinones D (93) is a hybrid of a polyketide and a sesquiter-
penoid with a rare benzothiazin-3-one moiety. Compound 93 demonstrated antiprolifera-
tive activity toward SF-268, MCF-7, NCI-H460 and HepG-2 with IC50 values of 32.8, 28.3,
42.6 and 38.6 µM, respectively.

Paraphaeosphaeria neglecta FT462 yielded paraphaeosphaerides E (94), F (95), H (96)
and methyl ester of paraphaeosphaeride F (97) [36]. P. neglecta FT462 was isolated from
the Hawaiian plant Lycopodiella cernua, synonym Palhinhaea cernua (Lycopodiaceae). Para-
phaeosphaeride E (94) was active against E. coli JW2496 at 20 µg/mL. Paraphaeosphaeride E
(94) inhibited nuclear factor kappa B (NF-κB) with an IC50 of 7.1 µM. Paraphaeosphaerides
E (94) and F (95) also showed inducible nitric oxide synthase (iNOS) with IC50 values of
47.9 and 43.2 µM, respectively. Paraphaeosphaeride A (98) with the unique 4-pyranone-γ-
lactam-1,4-thiazine moiety was obtained from P. neglecta FT462 [37].
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Figure 4. Structures of compounds 93–116.

The first natural sulfur-containing benzophenone dimer, named guignasulfide (99),
was isolated from the culture of Guignardia sp. IFB-E028, an endophytic fungus residing in
the healthy leaves of Hopea hainanensis. Guignasulfide (99) exhibited cytotoxicity against
HepG2 with an IC50 of 5.27 µM. It also showed antimicrobial activity against Helicobacter
pylori with an MIC of 42.9 µM [38].

Cladosporium cladosporioides MA-299 yielded four 12-membered macrolides, thiocla-
dospolides A-D (100–103). C. cladosporioides MA-299 is an endophytic fungus obtained
from the leaves of the mangrove plant Bruguiera gymnorrhiza. Thiocladospolide A (100) was
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active against E. tarda, E. ictarda and C. glecosporioides with MIC values of 1, 8 and 2 µg/mL,
respectively. Thiocladospolide B (101) was active against C. glecosporioides, P. piricola Nose
and F. oxysporum f. sp.cucumerinum with MIC values of 2, 32 and 1 µg/mL, respectively.
Thiocladospolide C (102) was active against the same three strains as 101 with MIC values
of 1, 32 and 32 µg/mL, respectively. Thiocladospolide D (103) was active against E. ictarda,
C. glecosporioides, P. piricola Nose and F. oxysporum f. sp.cucumerinum with MIC values
of 1, 1, 32, and 1 µg/mL, respectively [39]. The investigation of the mangrove-derived
fungus Cladosporium sp. SCNU-F0001 afforded a new 12-membered macrolide, thiocla-
dospolide E (104) [40]. A mangrove-derived fungus, Cladosporium oxysporum, yielded
five 12-membered macrolides, thiocladospolides F–J (105–109), and they showed a broad
spectrum of antimicrobial activity with MIC values ranging from 4 to 32 µg/mL [41].

Two cytochalasan analogs, cyschalasins A (110) and B (111), were obtained from As-
pergillus micronesiensis, which was isolated from the root of the traditional Chinese medicinal
plant Phyllanthus glaucus collected from LuShan Mountain, Jiangxi Province, P. R. China.
Cyschalasins A (110) and B (111) exhibited cytotoxicity against HL60, A549, Hep3B, MCF-7
and SW480 with IC50 values in the range of 3.0 to 19.9 µM except for 110, which was inactive
toward A549 at 20 µM. Cyschalasins A (110) and B (111) also demonstrated antimicrobial
activity with MIC50 values ranging from 10.6 to 94.7 µg/mL [42].

An amide of a coumarin moiety and L-phenylalanine-derived 1,2-oxazadecaline moi-
ety, trichodermamide G (112), was isolated from Trichoderma harzianum D13. The fungal
strain was isolated from the internal tissues of the root of Excoecaria agallocha, distributed in
the mangrove regions of various parts of India [43].

Two sulfur-containing xanthones, sydoxanthone A (113) and sydoxanthone B (114),
were purified from A. sydowii, occurring in the liverwort Scapania ciliata S. Lac. Sydoxan-
thone B (114) was active on the concanavalin A-induced and lipopolysaccharide (LPS)-
induced proliferation of mouse splenic lymphocytes with IC50 of 22.53 and 15.30 µg/mL,
respectively [44]. Sydoxanthones D (115) and E (116) were discovered from Pseudopestalo-
tiopsis theae, which was isolated from the leaves of Caloncoba welwitschii [45].

3.2. Disulfide

A new natural compound, a symmetrical disulfide dimer dodecyl 3,3”-dithiodipropionate
(117) (Figure 5), was isolated from the ethyl acetate extract of fermentation broth of an
endophytic fungus, Sphaceloma sp. LN-15. The fungal strain was isolated from the leaves of
Melia azedarach L., commonly known as the chinaberry tree, pride of India, Persian lilac,
and some other names [46]. The structure of 117 was determined by NMR and MS and was
further confirmed by chemical synthesis.
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3.3. Sulfoxide

LC-UV/MS-based metabolomics analysis of the Hawaiian endophytic fungus Para-
phaeosphaeria neglecta FT462 led to the identification of unique mercaptolactated γ-pyranol–
γ-lactams, paraphaeosphaerides G (118). The fungal strain was isolated on potato dextrose
agar (PDA) medium from a healthy leaf of the Hawaiian indigenous plant Lycopodiella
cernua (L.) Pic. Serm, which was collected in the Mokuleia Forest Reserve in 2014 [36].
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3.4. Sulfones

Two new polyketides modified with a rare methyl sulfonyl group, neosartoryone A
(119) and 3-methoxy-6-methyl-5-(methylsulfonyl)benzene-1,2,4-triol (120), were isolated
from Neosartorya udagawae HDN13-313 cultivated with the DNA methyltransferase inhibitor
5-azacytidine. N. udagawae HDN13-313 was isolated from the root of the mangrove plant
Aricennia marina [47]. Compound 119 decreased the lipid accumulation elicited by oleic
acid at 10 µM.

3.5. Sulfates and Sulfonates

Two new alkyl sulfate-containing aromatic compounds, penixylarins B (121) and D
(122), were isolated from a mixed culture of the Antarctic deep-sea-derived fungus Penicil-
lium crustosum PRB-2 and the fungus Xylaria sp. HDN13-249 [48]. Xylaria sp. HDN13-249
was isolated from the root of Sonneratia caseolaris collected from the mangrove conservation
area of Hainan, P. R. China. Penixylarins B (121) showed weak antibacterial activity against
Bacillus subtilis with an MIC50 of 100 µM.

Alternariol 5-O-sulfate (123) and alternariol 5-O-methyl ether-4′-O-sulfate (124) were
produced by Alternaria sp., which was isolated from fresh healthy leaves of the wild
Egyptian medicinal plant Polygonum senegalense Meisn. (Polygonaceae) [49]. Alternariol
5-O-sulfate (123) was cytotoxic against L5178Y with an EC50 of 4.5 µg/mL. Compound 123
also showed inhibition toward a panel of protein kinases at the micromolar level.

The extracts of cultures grown in liquid or on solid rice media of the fungal endo-
phyte Ampelomyces sp. isolated from the medicinal plant Urospermum picroides exhibited
considerable cytotoxic activity against L5178Y cells. The extract obtained from liquid
cultures afforded two sulfated anthraquinones, macrosporin-7-O-sulfate (125) and 3-O-
methylalaternin-7-O-sulfate (126) [50]. However, neither compound showed any cytotoxic
or antimicrobial activities.

A 2-hydroxyl 6-alkylated benzaldehyde derivative, pestalols E (127), was isolated
from the endophytic fungus Pestalotiopsis sp. AcBC2, which was derived from the Chinese
mangrove plant Aegiceras corniculatum, commonly known as black mangrove or river
mangrove [51].

Oreganic acid (128) and its trimethyl esters (129) were obtained from the extract of an
endophytic fungus MF6046 isolated from living leaves of Berberis oregano [49]. Oreganic
acid (128) is a highly potent and specific farnesyl protein transferase (FPTase) inhibitor
(IC50 = 14 nM) [49].

A novel metabolite containing a sulfonate group, fusaodavinvin (130), was isolated
from an endophytic fungus Fusarium sp. (CTGU-ZL-34). The fungal strain was isolated
from a healthy plant Davidia involucrata. Compound 130 displayed inhibitory activity
against A549, HepG2, Caski and MCF-7 cell lines with IC50 values of 11.5, 15.3, 15.2 and
60.5 µg/mL, respectively [53].

4. Hybrids
4.1. Sulfides

A fungal strain Pestalotiopsis sp. HS30 was isolated from the fresh stems of Isodon
xerophilus collected at Kunming Botanical Garden, Yunnan Province, P. R. China [54].
Pestaloamides A (131) and B (132), two novel alkaloids featuring an unprecedented
spiro[imidazothiazoledione-alkylidenecyclopentenone] scaffold, were obtained from the
cultures of Pestalotiopsis sp. HS30. Compounds 131 and 132 were derived from a polyketide
and a Phe-Cys dipeptide together with C2 and C5 moieties. Both compounds could enhance
the cell surface engagement of NKG2D ligands in HCT116 cells at 40 µM [54].

4.2. Disulfides

PM181110 (133) was a new depsipeptide obtained from Phomopsis glabrae, which was
isolated from the leaves of Pongamia pinnata (Fabaceae) [55]. Compound 133 was derived
from two molecules of L-cysteine and one C12 polyketide. It exhibited potent cytotoxic
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activity toward 40 human cancer cell lines at the nanomolar level (mean IC50 = 89 nM) and
24 human tumor xenografts with the mean IC50 of 245 nM [55].

FE399 (134), a dehydroxylated 133, was isolated from Ascochyta sp. AJ 117309, an
endophytic strain separated from a raw leaf of Taxus cuspidata var. nana Rehd. [56]. Com-
pound 134 also demonstrated potent cytotoxic activity against SWS948, K562T, Colon26,
CHO-K1 and P388 cells with IC50 values ranging from 75 to 400 ng/mL [56].

4.3. Thiols

Fusarium chlamydosporium, an endophytic fungus isolated from the leaves of Anvillea
garcinii (Burm.f.) DC. (Asteraceae), produced a new benzamide derivative, fusarithioamide A
(135), which is composed of a 2-aminobenzamide moiety, an L-alanine and a 3-mercaptopropan-
1-ol moiety derived from L-cysteine. Compound 135 displayed cytotoxicity against SK-MEL,
KB, BT-549 and SKOV-3 cells with IC50 values of 9.3, 7.7, 0.4 and 0.8 µM, respectively. It
was also active against S. aureus, B. cereus, E. coli, P. aeruginosa and C. albicans with MIC
values of 4.4, 3.1, 6.9, 100 and 2.6 µg/mL, respectively [57].

Fusarithioamide B (136), a new aminobenzamide derivative with an unprecedented
carbon skeleton, was separated from an EtOAc extract of Fusarium chlamydosporium isolated
from Anvillea garcinii (Burm.f.) DC. leaves (Asteraceae) [58]. Fusarithioamide B (136)
displayed antifungal activity toward C. albicans with an MIC of 1.9 µg/mL. It also showed
high antibacterial activity against E. coli, S. aureus and B. cereus with MIC values of 3.4, 2.9
and 3.9 µg/mL, respectively. Compound 136 exhibited cytotoxic activity toward BT-549,
MCF-7, HCT-116, SKOV-36, KB and SK-MEL with IC50 values of 0.09, 0.21, 0.59, 1.23, 6.9
and 11.2 µM, respectively [58].

5. Terpenoids
5.1. Sulfide/Thiophene

Leptosphin A (137), a new sesquiterpenoid with a benzo[b]thiophene moiety, was
obtained from a culture of Leptosphaeria sp. XL026 isolated from the leaves of Panax
notoginseng [59]. Leptosphin A (137) displayed antifungal and antibacterial activity with
MIC values ranging from 25 to 100 µg/mL [59].

5.2. Sulfates

An endophytic fungus S49 was isolated from the bark of Cephalotaxus hainanen-
sis, known as Hainan plum-yew. S49 afforded two new sesquiterpenoids 1,10,11,12-
guaianetetrol (138) and 1,10,11,12-guaianetetrol (139) [60]. Two new isopimarane diter-
penoids, 16-O-sulfo-18-norisopimar-7-en-4α,16-diol (140) and 9-deoxy-hymatoxin A (141),
were isolated from the culture broth of an endophytic fungus, Xylaria sp. YM 311647,
obtained from Azadirachta indica. Compounds (140) and (141) were active against C. albicans
YM 2005, A. niger YM 3029, P. oryzae YM 3051, F. avenaceum YM 3065 and H. compactum YM
3077 with MIC values in the range of 32–128 µg/mL, while compound 141 had the same
MIC of 16 µg/mL toward C. albicans and P. oryzae [61].

6. Others

A new thiazole derivative, colletotricole A (142), was obtained from Colletotrichum gloeospo-
rioides A12, an endophytic fungus derived from Aquilaria sinensis [62]. A sulfur-containing
anticandidal compound, N-[(2S,3aR,6S,7aS)-6-acetamido-octahydro-l,3-benzothiazoi-2-yl]2-
(adamantan-l-yl) acetamide (143), was isolated from Emericella sp. from Azadirachta indica [63].

7. Discussion and Conclusions

From 1985 to March 2022, 143 new sulfur-containing compounds were obtained from
endophytic fungi. This review summarized the fungal producers, host plants, chemical
structures and biological activities of these fungal metabolites (Table 1). The majority of
these compounds (109 out of 143) were reported in 2010, 2014, 2015, 2017, 2019 and 2020
(Figure 6). There was a trend that more sulfur-containing compounds were reported in
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recent years except 2021. Only one sulfur-containing compound was reported in 2021,
most likely due to the outbreak of COVID-19 in 2020. A total of 24 journals reported these
compounds (Figure 7). The J. Nat. Prod. has published the highest number of papers (16)
that reported sulfur-containing compounds, followed by Phytochemistry (8) (Figure 7). This
is not unexpected because both J. Nat. Prod. and Phytochemistry are prominent natural
product journals.
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Figure 6. Annual numbers of sulfur-containing compounds identified from 1985 to 2022. (Keywords:
sulfur-containing compound, plant endophytic fungi; Databases: SciFinder, PubMed).
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Figure 7. The journal names and numbers for the papers that reported sulfur-containing compounds.

These sulfur-containing compounds demonstrate functional and structural diversity
and exhibited many bioactivities. Among the reported biological activities, 42% of these
compounds were antimicrobial, while 37% were cytotoxic (Figure 8), which is not surprising
because the majority of the FDA-approved antimicrobial and anticancer drugs are either
natural products or derived from natural products. For example, Secoemestrin D (69), a
diketopiperazine, was very active against a panel of seven cancer cell lines with IC50 values
ranging from 0.06 to 0.24 µM [27], while PM181110 (133) [55] and FE399 (134) [56], hybrids
of polyketides and peptides, exhibited potent anticancer activity with IC50 values at the
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nM level. These compounds also possess other bioactivities. For instance, oreganic acid
(128), a fatty acid derivative, inhibited FPTase with an IC50 of 14 nM [49]. The majority of
sulfur-containing compounds (92) were peptides, followed by polyketides (38), hybrids
(6), terpenoids (5) and others (2) (Figure 9). All 92 of these peptides are diketopiperazines,
and the sulfur atoms in these molecules are mainly derived from L-cysteine that contains a
reactive sulph-hydryl group.
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8. Prospects

Some plants are rich in sulfur, for example, allium vegetables, legumes and crucif-
erous plants. These plants should be great sources of endophytic fungi that produce
sulfur-containing compounds. Large amounts of sulfur are released during volcanic erup-
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tions. Hence, plants in volcanic areas and hot springs might also be excellent sources for
endophytic fungi producing sulfur-containing compounds.

Most of the compounds reviewed in this article were tested for their antimicrobial and
antiproliferative or anticancer activities. We believe that other biological properties could be
identified if fungal metabolites were evaluated in a broader range of biological settings. For
example, sinuxylamides A and B were obtained from Xylaria sp. FM1005, an endophytic
fungus isolated from Sinularia densa (leather coral) collected in the offshore region of the Big
Island, Hawaii [64]. Sinuxylamides A and B showed no antibacterial activity or cytotoxicity
at 40 µM, but they strongly inhibited the binding of fibrinogen to purified integrin IIIb/IIa
in a dose-dependent manner with IC50 values of 0.89 and 0.61 µM, respectively.

Diketopiperazines are expected to be biosynthetically assembled from two amino acid
building blocks by nonribosomal peptide synthetases [65]. On the other hand, the biogene-
sis of many sulfur-containing compounds remains incompletely understood. For example,
the structures of compounds 20 [10], 40 [18], 98 [37], 136 [58], 142 [62] and 143 [63] are
unique. It would be interesting to investigate how these molecules are biogenetically syn-
thesized. Presumably, the 4,5-dihydrooxepine ring in 20 is derived from the benzene ring of
L-phenylalanine through ring expansion. On the other hand, the spiro[cyclopenta[b]pyrrole-
5,2′-furan] moiety in 40 might be formed through the constriction of the benzene ring of
L-phenylalanine followed by the merge of the octahydrocyclopenta[b]pyrrole ring with
an isoprenyl (C5) group. We previously isolated compound 98 [37]. The precursor of the
side chain at the 14-position in compound 98 could be L-cysteine, which is converted to
mercaptolactate. The nucleophilic addition of the mercaptolactate thiol to C-14 of para-
phaeosphaeride C generates an intermediate that is oxidized to another intermediate. It is
also plausible that the second intermediate is generated from mercaptopyruvate and para-
phaeosphaeride C. The nitrogen atom in the second intermediate undergoes intramolecular
nucleophilic addition to the ketone of the mercaptopyruvate moiety, leading to the for-
mation of the third intermediate. The dehydration of the third intermediate yields the
final product 98 [37]. However, the experimental details of the biosynthesis of compound
98 are still not available. Compound 136 is composed of five fragments, including a 2-
amino benzoic acid moiety, an L-alanine, a 2-amino-2-methylsuccinic acid fragment that
might be derived from an isoprenyl group (C5), and L-glycine and L-cysteine-derived
3-mercaptopropanoic acid moieties. Compound 142 carries a 2-hydroxyl propanoic acid
ester. The thiazole ring in 142 is probably derived from acetate and L-cysteine, while
the linker (-CH2-CH2-) might be derived from another acetate. It would be interesting
to investigate how 142 is synthesized biogenetically. Investigating the biosynthesis of
diamond-like compound 143 should be very challenging and interesting. Recent advances
in genome mining and synthetic biology offer new opportunities to discover new natural
products [66]. It becomes routine to sequence the (meta)genomes of fungal isolates, and ca-
pable bioinformatics tools (e.g., antiSMASH fungal version) [67] are increasingly available
for identifying potential biosynthetic gene clusters (BGCs) of fungal natural products [68].
These predicted BGCs can suggest new chemotypes, enzymology and bioactivities. Sub-
sequently, native and engineered BGCs can be expressed in multiple synthetic biology
chasses, such as Aspergillus nidulans [69] and Saccharomyces cerevisiae [70]. In this regard,
biosynthetic research is critical for laying the basis for the genome mining of BGCs of new
fungal sulfur-containing compounds with bioactivities, particularly those whose biogenesis
remains unclear.
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