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Abstract: Alcohol use disorder is a pervasive healthcare issue with significant socioeconomic
consequences. There is a plethora of neural imaging techniques available at the clinical and preclinical
level, including magnetic resonance imaging and three-dimensional (3D) tissue imaging techniques.
Network-based approaches can be applied to imaging data to create neural networks that model
the functional and structural connectivity of the brain. These networks can be used to changes to
brain-wide neural signaling caused by brain states associated with alcohol use. Neural networks can
be further used to identify key brain regions or neural “hubs” involved in alcohol drinking. Here,
we briefly review the current imaging and neurocircuit manipulation methods. Then, we discuss
clinical and preclinical studies using network-based approaches related to substance use disorders
and alcohol drinking. Finally, we discuss how preclinical 3D imaging in combination with network
approaches can be applied alone and in combination with other approaches to better understand
alcohol drinking.

Keywords: addiction; dependence; substance use disorder; iDISCO; fMRI; modularity; graph theory;
animal model; binge drinking; alcohol use disorder

1. Introduction

Alcohol abuse is a pervasive societal problem with substantial socioeconomic and medical
consequences [1]. Alcohol use disorder (AUD) is a chronic relapsing disorder that is associated with
the loss of control of ethanol drinking and compulsive drinking that is driven by the emergence of a
negative affective state upon cessation [2,3]. The transition from casual drinking to alcohol dependence
is thought to occur over time as the motivation to drink shifts from positive reinforcement to avoiding
negative reinforcement [4]. Once dependent, three repeating stages are postulated to occur. The first
stage being a period of excessive drinking, followed by a second stage involving a period of abstinence,
resulting in negative affect symptoms, which then leads to the third stage that involves increased
motivation and craving to drink [3,5,6].

In humans, the emotional and physical signs of withdrawal from alcohol can manifest in several
ways such as increased anxiety, increased irritability, increased frustration, increased aggression,
mood swings, insomnia, tremors, convulsions, higher blood pressure, accelerated pulse, accelerated
breathing, dehydration, and delirium tremens [7–14]. The emotional symptoms of withdrawal from
alcohol dependence, including anxiety-like behavior, depression-like behavior, irritability-like behavior,
and aggressive behavior can be modeled in rats and mice and can last for days to weeks after cessation
of drinking [15–39].
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Preclinical animal models, especially in rats and mice, are ideal for studying alcohol drinking
and alcohol addiction due to the ability to adequately model negative affect and excessive drinking
behavior. Some of the most prominent animal models to study excessive and binge-like drinking are
the intermittent access to ethanol (IAE) model, using two-bottle choice [40–60], and the drinking in
the dark (DID) model, using a single bottle [61–72]. For a comprehensive review of the behavioral
methods used to study AUD in rodents, see Vendruscolo and Roberts and Tunstall et al. [73,74].

Rats and mice have also been selectively bred to express excessive drinking behavior, allowing for
greater focus on genetic aspects associated with increased drinking. In rats, the alcohol-preferring
strain, the high alcohol-drinking strain, and the Marchigian Sardinian alcohol-preferring rats have
been examined [75–79], and in mice, high drinking in the dark mice and high alcohol-preferring mice
have been examined [80–85].

To study excessive and compulsive-like drinking due to alcohol dependence, the intermittent
ethanol (CIE) vapor exposure model has been heavily used in both rats and mice [16,55,86–105].

Although our knowledge of the neurocircuitry that underlies excessive alcohol drinking and
alcohol dependence has improved dramatically over the last decade [5,106], there is still a large need to
further our understanding. Adequately advancing our understanding of the neurocircuitry involved
in alcohol drinking will require research to continue to take advantage of quality preclinical models
and emerging technological advancements in the field of neuroscience.

2. Recently Developed Approaches in Preclinical Neuroscience

The development of site-specific recombinase systems [107–109] has allowed for controlled
mutations in preclinical models of disease [110]. Advances in cell-specific molecular genetics has built
the foundation for the modern optogenetic, chemogenetic, and electrophysiology methods, used in
cell-specific populations.

2.1. Optogenetics

The optogenetic method takes advantage of the genetic incorporation of light-gated cation channel
channelrhdopsin-2 (ChR2) and chloride and proton pumps (i.e., halorhodpson and archaerhopsin) into
neural tissue [111–113]. Neuron specific Cre recombinase expression allows for the use of viral vectors
encoding Cre-inducible opsin proteins in specific brain regions [114]. Optogenetics can be used to map
neural connections between specific sets of brain regions. Optogenetic manipulation can further reveal
distinct circuits involved in behavioral and emotional states such as reward, stress, and anxiety-like
behaviors [115].

Optogenetic approaches in preclinical models have been used to identify numerous circuits
throughout the brain involved in alcohol drinking. Several studies have used optogenetic manipulation
to identify projections from the central amygdala (CEA) that are critical for addiction-like
behaviors [116–118]. Optogenetic manipulation of ventral tegmental area (VTA) neurons projecting
to the nucleus accumbens (NAc) has identified a role for the VTA–NAc circuit in alcohol-drinking
behavior [119–121]. Other circuits determined to be important for alcohol-related behaviors via
optogenetics include an agranular insular cortex to basolateral amygdala (BLA) circuit [122] and a
medial prefrontal cortex (mPFC) to NAc circuit. Interestingly, inhibition of the mPFC–NAc circuit was
found to reduce alcohol drinking associated with quinine adulteration, suggesting the importance
of the circuit for compulsive-like alcohol drinking [123]. While optogenetic approaches allow for
precision in targeting neural circuits, they require surgical manipulation and active stimulation to
produce inhibition or activation. Therefore, the approach examines the inhibition or activation of
circuits for a period of seconds to minutes but not days to weeks, which may be needed to determine
long-term effects. Optogenetics has been used to make great progress toward understanding the
circuits mediating alcohol-related behavior and will likely continue to be an important approach in
neuroscience. Chemogenetics are a complementary set of approaches that have similarly been used to
explore circuits related to alcohol drinking.



Brain Sci. 2020, 10, 578 3 of 21

2.2. Chemogenetics

Designer receptors exclusively activated by a designer drug (DREADDs) are a class of
chemogenetically engineered receptors activated by small molecules [124]. DREADDs are engineered
G-protein coupled receptors that have been modified to be activated exclusively by synthetic compounds
(e.g., clozapine-N-oxide). The use of DREADDs serves as a less invasive and more affordable
alternative to optogenetic approaches. The expression of DREADDs in specific brain regions is
usually achieved with stereotaxic injection of an Adeno-associated virus encoding Cre or flippase
DNA recombinases. The development of transgenic DREADD reporter mice for Cre- or Flp-driven
chemogenetic manipulation allows for brain-wide, cell-specific circuit investigation [124–126]. Several
DREADD variants have been engineered using a G-protein coupled receptor or β-arrestin signaling
components [125,127,128]. Similar to optogenetics, chemogenetics has been used to identify distinct
neural circuits associated with behavioral and emotional states [127,129].

Several studies have taken advantage of chemogenetics to explore mechanisms of alcohol drinking.
For example, a reduction of alcohol consumption in mice was found by a suppression of activity in
the NAc core with hM4Di-mediated inhibition [130]. Pharmacological antagonism of the k-opioid
receptor and chemogenetic silencing of dynorphin signaling neurons was used to identify a role for
dynorphin/k-opioid receptor signaling in the central amygdala in excessive alcohol consumption in
a rodent model of binge drinking [131]. Specific neuronal ensembles critical for alcohol dependent
drinking within the CEA were identified by the chemogenetic silencing of activated neurons using
Daun02 [91]. Inhibition of dorsal mPFC projections to the BLA via chemogenetics reduced withdrawal
symptoms associated with abstinence for alcohol dependence [132]. With chemogenetic methods,
receptors are targeted via the injection of a ligand, resulting in a less specific time of effect. Furthermore,
some ligands may produce potential off-target effects depending on the dose used, thus requiring
ligand-only controls [133–136]. Although optogenetics and chemogenetics tend to focus more on
neural circuits, other techniques such as calcium imaging are necessary to determine the activity of
individual neurons over time in a single brain region.

2.3. Calcium Imaging

Two-photon calcium imaging is a method for monitoring the in vivo activity of distinct neurons in
brain tissue [137]. This allows for a real-time analysis of cells and subcellular compartments. Calcium
imaging can also be used in in vitro studies in brain slices [138]. The combination of acetoxymethyl
ester staining and calcium imaging techniques allows for the characterization of neural network activity
on a larger scale [139]. Calcium imaging has been used to identify neural circuits involved in behaviors
mediating substance use disorders (SUD) and AUD. For example, calcium imaging was able to identify
neural activity patterns in mPFC neurons projecting to the periaqueductal gray that predicted the
emergence of compulsive-like alcohol drinking behavior [140]. Calcium imaging is able to assess
activity patterns of individual neurons; however, this approach is often limited to brain regions closer
to the surface of the skull and does not examine the neural activity of the brain as a whole. Calcium
imaging can also be performed using fiber photometry, which allows for access to deeper brain regions.

2.4. Magnetic Resonance Imaging

One of the most commonly used neuroimaging techniques is magnetic resonance imaging (MRI),
which is relatively fast, non-invasive, and can be done in vivo. MRI takes advantage of the ability of
atomic nuclei to absorb radio frequency (RF) in the presence of an external magnetic field [141]. Then,
the nuclei emit an RF signal with intrinsic spin polarization that can be detected in a radio frequency
coil. This method has evolved over time, and advanced applications are currently available to look
at functional brain activity in human subjects and preclinical animal models [142,143]. Functional
magnetic resonance imaging (fMRI) is a method that measures time-based changes in brain metabolism,
which are functionally measured as changes in oxygenated blood during a neural response [143].
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While MRI techniques are not a recent development, their application in determining structural
and functional connectivity is a relatively new advancement in the field of neuroscience. Magnetic
resonance imaging methods are useful to measure within-subjects; however, they require a head-fixed
and anaesthetized state. Furthermore, imaging is only possible at a mesoscale resolution. Neural
activity can be examined in preclinical animal models by using fMRI; however, there are limitations on
the resolution of the activity patterns that may limit the usefulness in rodent models of disease.

2.5. Three-Dimensional Imaging

Recent developments in tissue-clearing methods allow for three-dimensional (3D) imaging
of intact tissues, such as the whole brain. Hydrophobic and hydrophilic tissue-clearing methods
are both solvent-based and generally remove lipids, pigments, and calcium phosphate to reach an
appropriate refractive index for imaging. The 3D imaging of tetrahydrofuran (THF) cleared organs
(3DISCO) was developed by Ertürk et al. The use of THF, a dehydrating and de-lipidating agent,
instead of alcohol enhances the refractive index homogeneity of the samples [144]. Renier et al.,
developed the immunolabeling-enabled DISCO (iDISCO) method, which allows for whole-mount
immunolabeling of whole cleared organs [145]. This technique was adapted and improved by
removing the use of THF and instead only using methanol to dehydrate the tissue with iDISCO+ [146].
The ‘ultimate’ DISCO (uDISCO) technique, developed by Pan et al., was optimized for the preservation
of endogenous fluorescence for months [147]. Hydrogel-based tissue clearing uses covalent linkage to an
acryl-based hydrogel for complete lipid removal with limited structural damage and protein loss [148].
This method has been termed ‘cleared lipid-extracted acryl-hybridized rigid immunostaining/in situ
hybridization-compatible tissue hydrogel’, or CLARITY. A summary of 3D imaging techniques and
some of the pros and cons of each method are presented in Table 1. The availability of many 3D
imaging methods allows researchers to tailor the method for a given experiment, each with their
own advantage or disadvantage. With all 3D imaging methods, only between-subject timepoints are
possible, as the method requires post-mortem data collection. Neural activity measured by 3D imaging
can be immense and hard to interpret without combining the technique with network neuroscience to
identify brain-wide neural activity at the network level.

Table 1. Three-dimensional (3D) imaging techniques. 3DISCO: 3D imaging of tetrahydrofuran (THF)
cleared organs, iDISCO: immunolabeling-enabled DISCO, uDISCO: ‘ultimate’ DISCO, CLARITY: cleared
lipid-extracted acryl-hybridized rigid immunostaining/in situ hybridization-compatible tissue hydrogel.

Imaging
Technique Clearing Method Pros Cons Reference

3DISCO tetrahydrofuran and
dibenzyl ether

relatively quick tissue
clearing, allows for 3D

imaging of entire
intact tissue

can only be used on fixed
tissue, cannot store tissue
for long periods of time

[149]

iDISCO tetrahydrofuran and
dibenzyl ether

allows for whole mount
immunolabeling

can bleach endogenous
fluorescent signals [145]

iDISCO+
methanol and dibenzyl

ether
allows for whole mount

immunolabeling
can bleach endogenous

fluorescent signals [150]

uDISCO
diphenyl ether, benzyl

alcohol, benzyl benzoate,
and α-tocopherol

preserves endogenous
fluorescent signal,

reduces volume, virus
labeling, and

immunostaining
compatible

significant shrinkage of
tissue [147]

CLARITY

acrylamide and
bisacrylamide hydrogel,

formaldehyde, and
thermal transduction

suitable for long-stored
organs, preserves

endogenous fluorescence
signal

not ideal for
immunostaining of the

brain
[148]
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3. Neural Networks

Network-based approaches are highly applicable to neuroscience and have been used to analyze
large sets of data. In neuroscience, networks can be examined at the structural or functional connectivity
level. Structural networks are mapped by measuring the physical inter-neuronal connectivity or
inter-regional connectivity, whereas functional networks examine the effective connectivity of neural
activity between regions [151]. Methods for looking at structural connectivity include MRI, diffusion
tensor imaging, and electron microscopy [152–155]. Functional connectivity can be measured using
fMRI, electroencephalography (EEG), magnetoencephalography (MEG), or 3D imaging [156–166].
A summary of the methods used to model the functional and structural connectivity of the human
brain is presented in Table 2.

Table 2. Methods used for human brain mapping.

Method Domain References

functional magnetic resonance imaging Functional [156–161]
electroencephalography Functional [162,163]

magnetoencephalography Functional [165–167]
diffusion tensor imaging Structural [152]

diffusion spectrum imaging Structural [153]
magnetic resonance imaging Structural [154,155]

Graph theory has been used to identify specific features of neural networks in more detail. Graph
theory is a branch of mathematics that is used to analyze complex networks [129,168–179]. Graph
theory can be applied to data across multiple levels of time and neural organization (e.g., whole brain,
regions, circuits, neurons). Graph theory models the pairwise relations between vertices, or nodes,
through interconnecting edges, which can be directed or undirected [180]. When modeling the brain,
the node can be neurons or an anatomical brain region, and the edges can be the functional connectivity
between them, as measured by the correlation of neural activity.

In terms of brain mapping, numerous studies have examined the human brain (Table 2).
Many of the graph models of human brain imaging data show small-worldness and modular
organization [164,181]. In graph theory, the “world” of a network is said to be “small” if the mean
geodesic distance between node pairs is small relative to the total number of nodes. The geodesic
distance is calculated by determining the minimum number of edges required to travel between two
nodes [182]. Mathematically, as the number of nodes tends to infinity Equation (1), the mean geodesic
(g) will grow slower than logarithmically Equation (2).

N→∞ (1)

g = r(log N) (2)

Modularity is defined as the division of a network into modules. A network expressing
high modularity consists of nodes with high intramodule connectivity and sparse intermodule
connectivity [181]. Mathematically, modularity is calculated by taking the fraction of edges that fall
within modules minus the expected fraction of edges. These topographical measures translate across
methods and correlate with phenotypes and disease states. For example, in patients with schizophrenia,
network analysis of EEG and fMRI data shows changes in the magnitude of connectivity across brain
regions relative to healthy controls [183,184]. Additionally, general intelligence has been shown to be
associated with topological measures of network efficiency in neural network analysis of functional
and structural brain mapping data [185–187]. Graph theory can further be used to determine network
features such as network efficiency and node centrality. Network efficiency is characterized by the
average of the shortest path lengths between any pair of nodes, with lower values indicating higher
efficiency [164,188]. Node centrality quantifies the importance of a node inside a network and can
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consider degree, efficiency [158], closeness, or betweenness [189]. These nodes are considered a hub in
the network [190,191].

In modeling neural networks, hub brain regions will emerge that are characteristic of the specific
brain state being examined. A hub is defined as a node with high connectivity to other nodes in the
same module (provincial hubs) or to other modules (connector hubs) [191,192]. Hub brain regions
are critical to network function and represent the highest level of connectivity [99,129,171,190,193].
An example of hub identification and validation in brain-wide neural networks can be seen in a study
by Vetere et al., in which in silico node deletion and in vivo chemogenetic silencing of the identified
nodes confirmed the connection between a region’s node degree and role in memory consolidation [129].
Furthermore, important hubs identified in neural networks have been shown to be conserved across
species and scales [194]. Going forward, network neuroscience has the potential to provide novel
insights regarding how the brain functions as a whole in brain states associated with SUDs.

4. Neural Networks in Clinical Models of Substance Use Disorders

There have been attempts to identify modules and neurocircuitry involved in SUDs from large-scale
analysis of prior literature [106,195]. However, the majority of the SUD studies leveraging neural
network analysis have involved imaging data. Differential levels of functional connectivity in alcohol,
tobacco, and concurrent alcohol and tobacco users compared to a control population that did not use
substances have been determined by resting-state fMRI analysis [196]. The results showed a general
reduction in functional connectivity among substance users, with hyper-connectivity to the precuneus
observed in smokers. Smokers examined during abstinence, and after satiation, using whole brain
resting-state fMRI were found to have functional neural adaptations in the anterior cingulate cortex
and precuneus during withdrawal-induced craving [197]. The precuneus is involved in a variety of
functions, including memory [198] and has been proposed as a core component of the default mode
network [199]. The use of fMRI, combined with memory and cognition tasks, after administration of
the psychostimulant methylphenidate in healthy individuals was used to identify key brain regions
involved in regulating cognition [200,201]. Analysis of resting-state fMRI data from cocaine-dependent
individuals after treatment with methylphenidate was used to identify connectivity patterns in the
mesocorticolimbic system [202]. Studies of brain connectivity during cocaine dependence using MRI
techniques have shown that cocaine use is associated with altered brain connectivity that is associated
with behavioral performance, treatment outcomes, and history of use [203]. Cocaine use has also been
found to alter the identification of brain hubs in neural networks [204]. Abstinent heroin-dependent
users experienced increased impulsivity and greater intrinsic amygdala functional connectivity at
resting state compared to controls [205]. Abstinence from heroin dependence has also been shown to
decrease the resting-state functional connectivity of the anterior cingulate cortex, which was associated
with cue-induced cravings for heroin [206].

Alcohol-dependent individuals and binge drinkers have been shown to have major alterations to
functional connectivity in several studies. Resting-state functional connectivity in executive control
brain regions has been found to be reduced in subjects suffering from AUD [207,208]. Acute alcohol
intake was found to result in greater changes to functional connectivity in heavy drinkers than normal
drinkers [209]. Increased functional connectivity has been observed in patients with AUD during
acute withdrawal in task-based cue-reactivity fMRI studies, identifying brain regions involved in
craving [210,211]. This was accompanied by cue-based functional dysconnectivity and resting-state
hyperactivity in specific cortical and subcortical regions as measured by EEG [210]. This study supports
the hypothesis of a network of alcohol-related brain areas connected to craving, including the amygdala,
parahippocampus, NAc, striatum, posterior cingulate cortex, and VTA. Similarly, young adult binge
drinkers were found to have greater connectivity between striatal areas associated with reward, such as
the NAc, and salience-associated areas, such as the anterior cingulate cortex, and reduced connectivity
of the prefrontal cortex and hippocampus [212]. Alcohol has been shown to reduce connectivity
between the globus pallidus externus (GPe) and other brain regions in patients with history of alcohol
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use. In the same study, impulsivity was correlated with greater GPe connectivity during intoxication,
and the contribution of drinking and impulsivity to GPe connectivity were found to be distinct [213].
Taken together, these highlighted studies indicate that major changes occur in the brain after using
substances of abuse such as alcohol. However, there are limitations to the amount of detail that can be
inferred from human studies; thus, there is a need to broaden neural network approaches to animal
models of SUD.

5. Leveraging Neural Networks in Preclinical Animal Models

Network-based approaches can also be applied to preclinical animal models using imaging
techniques such as fMRI, traditional immunohistochemistry, and whole-brain single-cell imaging
(i.e., iDISCO). Figure 1 summarizes two of the available preclinical imaging techniques and their
application to neural networks. Whole-brain single-cell imaging can capture a cognitive state (e.g.,
alcohol abstinence) at a single point in time, at a mesoscale resolution. Fos protein begins to be produced
at detectable levels approximately 30 min after neural activity, and peaks at 60 to 90 min, and returns
to baseline at approximately 180 min; thus, the data from Fos protein represents neural activity across
minutes to hours. This method allows immunostaining for multiple proteins and combination with
other approaches such as optogenetics, chemogenetics, or pharmacology. This approach allows for data
to represent normal awake-behaving neural activity, allowing for multiple experimental paradigms to
be explored. Some limitations to single-cell whole-brain imaging are that it is ex vivo and only samples
a single timepoint. In contrast, fMRI can capture a time course within the same subjects in vivo with
data representing neural activity across seconds per measurement. Some limitations to fMRI are lack of
brain region specificity in the data and that the animals are either immobilized or anesthetized during
sampling, which prevents assessing many experimental paradigms (Table 3).
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Figure 1. Illustration of imaging techniques used for neural network analysis of functional and
structural brain connectivity. (A) Single-cell whole-brain imaging techniques, such as iDISCO, allow
for analysis of the whole brain at the mesoscale (i.e., with region and cell-specific resolution), with
results representing neural activity across minutes to hours. (B) Magnetic resonance imaging (MRI)
techniques allow for analysis of the brain in more generalized resolution (i.e., at the macroscale) in
anesthetized or immobilized animals, with results representing neural activity across seconds. Data
from both of these methods can be interpreted using graph theory approaches to identify key brain
regions, hubs, and global changes in neural networks during a given state.
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Table 3. Pros and cons of imaging techniques used for neural network analysis of functional and
structural brain connectivity.

Technique Pros Cons References

Single-cell whole-brain
imaging

mesoscale resolution (i.e., with
region and cell-specific),

organs taken in the freely
moving state

single timepoint, post-mortem
measurements [145,147,149,150]

MRI and fMRI
repeatable measurement for

multiple timepoints
within-subject

anesthetized or immobilized
during measurement,

generalized brain region
resolution (i.e., at the

macroscale)

[141–143,189]

5.1. Preclinical Studies of Substance Use Disorders Using Functional Magnetic Resonance Imaging

Functional MRI has been used in preclinical models of neurological disease and SUD to identify
general trends in functional connectivity, as well as key brain regions and neural pathways involved
in these states. Compared to controls, the thalamus was found to be heavily involved in the neural
network activity of rats in acute abstinence from cocaine self-administration. Interestingly, changes in
the neural network seen by fMRI measurement disappeared after 2 weeks [214]. A longitudinal study
in a rodent model of alcohol use disorder utilized resting-state fMRI during a baseline measurement
and after chronic alcohol use to determine a brain network and functional connectivity alterations
associated with excessive alcohol drinking. An overall decrease in brain functional connectivity after
chronic alcohol use and increased functional connectivity between the striatal and prefrontal–cingulate
were found [215]. Although preclinical fMRI data can help to better understand brain function
associated with SUD, the lack of resolution with regard to brain region specificity suggests that other
approaches may be more beneficial in preclinical network neuroscience.

5.2. Preclinical Studies of Substance Use Disorders Using Single-Cell Whole-Brain Imaging

An unbiased approach to examine whole-brain neural activity by light-sheet fluorescent imaging
of immunostained and optically cleared tissue has recently been developed (iDISCO) and used to
uncover brain regions differentially activated during parenting behavior [145,146]. Another approach
identified brain-wide maps of Fos mRNA expression during auditory fear conditioning to reveal
patterns of Fos induction that are similar among shock-only and tone-only fear conditioning and fear
recall conditions, suggesting simple associative learning ensembles that are activated by arousal rather
than by a specific sensory cue [216].

Recent studies have begun to use protein detection of the immediate early gene Fos in combination
with functional connectivity and network analysis. The quantification of 81 brain regions for Fos protein,
using traditional immunohistochemistry, after fear conditioning led to the identification of a fear
network [171]. This fear network was further examined using in vivo chemogenetic silencing of different
network nodes to confirm the importance of the hubs predicted in network models [129]. Similarly,
an unbiased brain-wide Fos protein approach, using the single-cell whole-brain imaging (iDISCO+)
method, has been combined with functional connectivity and graph theory to identify changes to neural
network structure and function caused by withdrawal from alcohol and psychostimulants [99,217].

Neural networks associated with withdrawal from individual psychostimulants (cocaine,
methamphetamine, and nicotine) were identified in mice by using single-cell whole-brain imaging of
neural activity [217]. While withdrawal from each drug produced a distinct pattern of brain activity,
methamphetamine and cocaine had the most overlapping similarities. The common neuroadaptation
between these psychostimulants was not necessarily changes in the connectivity of a specific group
of brain regions, but an overall decrease in the modularity of the network. Global adaptations in the
functional networks, such as decreased modularity, have been observed in other neuropsychiatric
disorders, such as dementia, seizures, and traumatic brain injury [181,218–222].
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Similarly, the unbiased single-cell whole-brain imaging and network analysis approach identified
a massive increase in coactivation among brain regions and reduced modular structuring of the
brain during abstinence from alcohol dependence when compared to control networks [99]. In the
alcohol abstinence network, an overall structural simplification was observed, with three large
modules identified that corresponded well to the classic three-stage theory of addiction [3,5,6]:
an extended amygdala module, a midbrain striatal module, and a cortico-hippocampo-thalamic
module. This approach was able to verify the importance of regions within the extended amygdala
that are known for their involvement in alcohol drinking and withdrawal, such as the CEA [23].
Additionally, brain regions of interest within the extended amygdala module, which may have been
previously overlooked, were identified as targets for future research (Figure 2). These regions included
the parasubthalamic nucleus, tuberal nucleus, cortical amygdala, and intercalated amygdala [99].
The findings related to alcohol abstinence [99] represent a small portion of the ways that whole-brain
imaging and neural network-based approaches can be leveraged to ask and answer questions in the
alcohol field going forward.
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Figure 2. Graph theory representation of the neural network associated with alcohol abstinence
in alcohol-dependent mice. Analysis identified several underexplored regions within the extended
amygdala module that may be critical for withdrawal-associated behavior and excessive alcohol
drinking. The zoomed-in panel highlights several of the underexplored regions, which include the
posterior cortical amygdala (COAp), intercalated amygdala (IA), parasubthalamic nucleus (PSTN), and
tuberal nucleus (TU). Figure reproduced and modified from Kimbrough et al., 2020 PNAS.

5.3. Ways to Use Network-Based Approaches in the Preclinical Alcohol Field Going Forward

The network-based approach using single-cell whole-brain imaging provides a unique opportunity
to assess different aspects of alcohol drinking and AUD through various preclinical models (e.g.,
binge-like drinking, casual drinking etc.) and states of drinking/dependence depending on the question
of interest. The different preclinical behavioral paradigms models (e.g., IAE, DID, CIE) of alcohol
drinking and alcohol-preferring rodent strains can be used to assess neural networks across severities
and conditions of alcohol drinking (e.g., binge drinking, alcohol dependent drinking, abstinence, etc.).
Similarities and differences in brain-wide networks can be compared across alcohol drinking paradigms,
and the unique components of a given network can be identified.

Perhaps most exciting of all is the possibility to combine single-cell whole-brain imaging and
network analysis with other recently developed preclinical neuroscience technology. For example,
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the Targeted Recombination in Active Populations (TRAP) technique, in which mice contain a
tamoxifen-dependent recombinase CreERT2 that is expressed in an activity-dependent manner from
the loci of the immediate early genes Arc and Fos. This allows for the labeling of activated neurons
at a given time/behavioral state (e.g., after a discrete drinking session, during intoxication, during
withdrawal, etc.) while maintaining the ability for further testing before collection of the brain to
examine neural networks [223,224]. Then, TRAP Fos labeling from a previous timepoint of neural
activity (e.g., intoxication) can be combined with traditional Fos immunostaining to mark for natural
immediate early gene protein production, using iDISCO, which is associated with neural activity from
a time window shortly prior to euthanasia (e.g., protracted abstinence). Then, the neural activity from
these two timepoints could be used together to assess neurons that are activated at both timepoints
and potential similarities and differences in neural network activity between the two timepoints.

Preclinical network analysis using immediate early gene immunofluorescence can also be
combined with immunostaining or endogenous fluorescence that signals specific neuronal cell types.
This approach will provide information on a wide scale about what types of neurons and receptors
contribute to overall network activity. Furthermore, viral tracing between brain regions can determine
structural connections and then be used to compare structural to functional connectivity within a
given network.

Optogenetics or DREADDs can be combined with single-cell whole-brain imaging to explore
the effect of manipulation of specific circuits or cells on the neural connectivity of the whole brain.
This approach would be ideal for delineating regions that play a role in a given behavior associated
with the specific circuit but that is at the tertiary, quaternary, or further level of separation from the
stimulation/inhibition. Additionally, using optogenetics or DREADDs to disrupt the activity of brain
regions identified by network analysis combined with whole-brain imaging as “hub” regions associated
with a behavioral state can verify their functional importance for the behavior. Calcium imaging can
also be used to uncover more specific neuron-to-neuron local networks within a given brain region
alongside an examination of brain-wide networks in the same animals. There is also the potential to use
multi-brain region fiber photometry to collect neural activity data from neurons across a large number
of brain regions [225], either independently, or as a complementary approach alongside single-cell
whole brain imaging.

Traditional pharmacology with drug candidates that are potential medications to treat alcohol
drinking can be explored as well using neural network approaches. It would be interesting to know
how efficacious a given drug is at restoring the network function of the brain to a more normal state after
a history of drinking. Perhaps current medications for the treatment of AUD, such as the FDA-pproved
naltrexone, acamprostate, and disulfiram, only relieve changes to brain-wide network activity partially,
or for a short period of time, which may explain to some degree the limited/moderate efficacy [226].
Interestingly, there is evidence that naltrexone alters functional connectivity in humans. Naltrexone
was found to normalize local network efficiency in alcohol-dependent subjects [227]. Additionally,
enhanced functional connectivity between the cingulate cortex and prefrontal cortex has been identified
as a potential key component of the mechanism of action of naltrexone to treat alcohol drinking [228].
Overall, the preclinical field of alcohol addiction can benefit tremendously by taking advantage of
single-cell whole-brain imaging and neural network approaches over the next several years.

6. Conclusions

Network-based approaches in preclinical studies have the potential to make significant
contributions to our understanding of alcohol drinking. The combination with other relevant
neuroscience approaches provides a unique opportunity to enhance our systems-based understanding
of the brain in a way that was not previously available. Further, network analysis may help improve
medication development and lead to better therapeutic options for AUD.
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