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Fibrosis is characterized by fibroblastic proliferation and the 
deposition of excessive extracellular matrix (ECM) and hard colla-
gen layers through chronic inflammatory and reparative responses 
[1-4]. Fibrosis can also occur during the wound healing process, 
and it is an end-stage phenomenon that causes chronic damage 
to solid organs, such as the liver, lungs, and kidneys [5]. Hepatitis 
and cholestatic diseases with various etiologies eventually lead 
to liver cirrhosis, and various types of glomerulonephritis lead to 
glomerulosclerosis. In such cases, the organ is replaced with fi-
brous tissue instead of the original functional tissue, resulting in 
a loss of function. However, in contrast to those solid organs, the 
phenomenon of fibrosis in the gastrointestinal tract, a hollow 
viscous organ, is poorly understood.  

Inflammatory bowel disease (IBD) is characterized by persis-
tent and refractory immuno-mediated inflammation in the gas-
trointestinal tract [6]. To date, studies on disease activity in IBD 
have focused on the presence or absence of ulcers and the degree 
of infiltration of inflammatory cells. However, intestinal fibrosis 
is a common pathogenic feature of IBD and has several related 
complications, including stricture, fistula, and bowel penetra-
tion [7,8]. Intestinal fibrosis can occur through several etiolo-
gies, including a desmoplastic reaction, radiation enteropathy, 

solitary rectal ulcer, graft-versus-host disease, post-surgical adhe-
sions, desmoid tumors, collagenous colitis, and eosinophilic en-
teropathy. IBD is the leading cause of intestinal fibrosis, and it is 
thus necessary to understand its unique form of intestinal fibrosis 
[9-11].

Intestinal fibrosis is a pathological complication of great inter-
est not only to radiologists and pathologists but also to clinicians 
due to its association with the risk of major complications that 
require surgical treatment, prognosis after surgery, and the risk of 
recurrence [12].

PATHOGENESIS

Fibrosis is an irreversible process that occurs as a consequence 
of chronic inflammation. It results in persistent luminal narrow-
ing and strictures. Anti-inflammatory agents do not prevent or 
treat fibrosis in IBD, even if they improve the inflammation [13]. 
Because the fibrotic process is not affected by various IBD treat-
ments, researchers have focused on inflammation-independent 
mechanisms, such as genetic factors, environmental risks, and the 
gut microbiota, which are known to affect the prognosis of fibrosis 
[14]. Moreover, intestinal fibrosis can be observed alongside ex-
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cessive deposition of ECM and activated mesenchymal cells in 
the intestinal wall [15]. The main known drivers of this fibrosis 
mechanism are soluble molecules (cytokines and growth factors), 
the epithelial-mesenchymal transition (EMT), the endothelial-
mesenchymal transition (EnMT), and the gut microbiota.

Genetic factors 

Genetic research on IBD has proposed several genetic pathways 
for its pathogenesis [16,17]. However, relations between those 
gene mutations and intestinal fibrosis have not yet been well stud-
ied. In one bioinformatics study, researchers hypothesized that 
similar molecular pathways would be involved in fibrosis in vari-
ous organs and thus measured gene expressions found in kidney 
fibrosis and liver cirrhosis in Crohn’s disease (CD) and ulcerative 
colitis (UC). They found that fibrosis in different organs had dif-
ferent gene signatures. C-X-C motif chemokine ligand 9 (CXCL9) 
and CD52 were upregulated in both CD and UC, whereas throm-
bospondin 2 (THBS2), matrix gla protein (MGP), protein tyro-
sine phosphatase receptor type C (PTPRC), and decorin (DCN) 
were upregulated only in CD. In UC, CXCL9, CD52, and gran-
zyme A (GZMA) were upregulated, and DCN, which was elevated 
in CD, was downregulated [18]. 

Nucleotide binding oligomerization domain containing 2 
(NOD2) has been most studied in association with IBD. Various 
polymorphisms related to the NOD2 gene have been reported 
and are known to be related to fibrogenesis in UC and CD [19-
23]. The NOD2 gene was also suggested as a predictive marker 
for the progression of CD fibrosis [24]. Within the innate im-
mune system, Toll-like receptors 4 (TLR) and signal transducers 

and activators of the transcription 3 (STAT3) might be a mech-
anism for intestinal fibrosis [19,25,26], and interleukin-23 re-
ceptor (IL23R), interleukin-12 subunit beta (IL12B), and Janus 
kinases 2 (JAK2), which are related to the Th17 pathway, could 
also be involved [25,27-29]. CX3CR1-mediating chemokines 
[30] and autophagy genes (autophagy related 16 like 1 [ATG16L1] 
and immunity-related GTPase family M protein [IRGM]) were 
reported to have an association with stricture disease [25,31]. 
However, the exact mechanism remains obscure because fucosyl-
transferase 2 (FUT2) appears to change the composition of the 
gut microbiota, which is presumed to be able to induce fibrosis 
[32]. Transforming growth factor β (TGF-β) plays a broad role 
in initiating inflammation and fibrosis [33,34]. Matrix metal-
lopeptidase 3 (MMP3) encodes a proteinase that degrades most 
components of the ECM. Membrane-associated guanylate kinase 
inverted 1 (MAGI1), which is associated with a mechanism that 
disrupts the tight junction of intestinal epithelial cells, is a gene 
factor potentially associated with fibrosis (Table 1) [35,36]. Be-
cause the number of studies is too small for generalization, more 
genome-wide association studies and next generation sequencing 
studies are needed to reveal genetic factors involved with fibrosis 
in IBD [16].

Cytokines and growth factors 

Local fibroblasts in fibrotic foci proliferate in response to vari-
ous growth factors and cytokines. platelet derived growth factor 
(PDGF), basic-fibroblast growth factor, insulin like growth factor 
1, epidermal growth factor, CTGF, tumor necrosis factor α 
(TNF-α), IL-1β, and IL-6 can act as major proliferating factors 

Table 1. Potential genetic factors of IBD-associated fibrosis

Related genes Disease entity Mechanism Reference

NOD2 CD and UC Apoptosis and activates NF-κB, induce interleukin 1-beta [19-23]
TLR4 CD Initiating innate immune responses [19]
IL23R CD and UC Activation of Th17 lymphocytes [27,28]
IL12B CD Activation of Th17 lymphocytes [25]
JAK2 CD Activation of Th17 lymphocytes [29]
CX3CR1 CD Leukocyte chemotaxis and adhesion [30]
STAT3 CD and UC Innate immune mechanisms [25,26]
ATG16L1 CD Autophagocytosis [31]
IRGM CD Autophagocytosis [25]
FUT2 CD Affects the composition of the gut microbiota [32]
TGF-β CD Initiation of inflammation [33,34]
MMP3 CD and UC Mediate degradation of components of the extracellular matrix [35]
MAGI1 CD Disruption of epithelial barrier via abrnormality of tight junction of intestinal epithelial cells [36]

IBD, inflammatory bowel disease; NOD2, nucleotide-binding oligomerization domain-containing protein 2; CD, Crohn disease; UC, ulcerative colitis; NF-κB, nu-
clear factor κB; TLR4, Toll-like receptors 4; IL23R, interleukin-23 receptor; IL12B, interleukin-12 subunit beta; JAK2, Janus kinases 2; CX3CR1, C-X3-C motif 
chemokine receptor 1; STAT3, signal transducers and activators of the transcription 3; ATG16L1, autophagy-related 16-like 1; IRGM, immunity-related GTPase 
family M protein; FUT2, fucosyltransferase 2; TGF-β, transforming growth factor beta; MMP-3, matrix metalloproteinase-3; MAGI1, membrane-associated gua-
nylate kinase inverted 1.
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[12,14,37]. The proliferating fibroblasts recruit various inflam-
matory cells, T cells, eosinophils, and mast cells. Inflammatory 
mediators, such as PDGF-A, PDGF-B, IGF-1, and fibronectin, 
are also involved in local fibroblastic proliferation and the migra-
tion of fibroblasts to the ECM of an inflamed area. In addition, 
intestinal stellate cells are differentiated into fibroblasts at inflam-
matory sites using TGF-β [38]. Furthermore, though the molec-
ular pathway is not well established, the capacity of adult bone 
marrow to derive fibroblast precursors recently became clear, 
and several cytokines, such as IL-10 or other growth factors, are 
considered to be part of that pathway [14,39,40].

Critical role of adipose tissue 

The role of adipose tissue is essential in inducing hyperplasia 
of the muscularis propria and subsequent stricture formation in 
CD [41]. In IBD research, interest is increasing in the role of vari-
ous bioactive substances secreted by mesenteric fat [42]. Creep-
ing fat is a unique and pathognomonic phenomenon in CD that 
was first reported by Crohn in 1932 [43]. Creeping fat is defined 
as > 50% coverage of the exterior intestinal surface  with prolif-
eration and ectopic extension of mesenteric adipose tissue (Fig. 1). 
In the proliferated adipose tissue surrounding the intestine, nu-
merous mediators play crucial roles in inflammation and immu-
nity that lead to the development and progression of IBD [41,44]. 
Mediators secreted by fat tissue include adipokines (adiponectin, 
leptin, resistin, C1q/TNF-related protein 3 [CTRP-3], and fatty 
acids), cytokines (TNF-α, peroxisome proliferator-activated 
receptor-γ [PPAR-γ], macrophage colony-stimulating factor, 
monocyte chemoattracted protein-1, IL-1, IL-6, IL-8, IL-10, and 
chemokine (C-C motif) ligand 5), and growth factors (ghrelin and 
vascular endothelial growth factor). Those secretions attract and 
activate various immune cells [45,46]. Therefore, cases of cobble-
stone mucosa and proper muscle hyperplasia are common in spec-
imens surgically resected to treat CD complications and result 
in a thick intestinal wall and stricture formation (Fig. 1) [47].

EMT and EnMT

The EMT is a well-known phenomenon in malignant neo-
plasms and literally describes a phenomenon in which tumor 
cells with epithelial features acquire a mesenchymal tendency 
to break the resistance of the surrounding ECM, facilitate local 
migration and invasion, and exhibit aggressive behavior [48]. It 
is also a mechanism of distant metastasis, in which epithelial cells 
are attacked by immune cells, or an apoptotic program is initiat-
ed when epithelial cells float away from their location, especially 
when they enter the blood flow, which is the starting point of 

distant metastases [49].
In IBD, damaged intestinal epithelial cells are activated, and 

the EMT pathway is initiated. This change can be shown by a 
loss of epithelial marker expression (such as cytokeratins and E-
cadherin) in the enterocytes of inflamed foci and increased expres-
sion of mesenchymal markers (especially fibroblast markers, MMP-
2, MMP-9, ferroptosis suppressor protein 1, α-smooth muscle 
actin [α-SMA], and vimentin) [50].

In addition, IBD can damage vascular endothelial cells [14]. 
In the presence of an excessive inflammatory response, such as 
hypoxia and secondary mechanical stress, endothelial cells are 
activated and converted into cells with fibroblast properties. 
This is called the EnMT, in which endothelial markers (VE-cad-
herin, Von Willebrand factor, and CD31) expressed in cells are 
lost, and the expression of fibroblast markers increases. In the 
EnMT, TGF-β, insulin-like growth factor 2, and IL-1b or TNF-α, 
which are pro-inflammatory components, are inducers [48,51,52]. 
Occasionally, this process is reversible. Bone morphogenetic pro-
tein-7 or hepatocyte growth factor can convert fibroblasts back 
into endothelial cells. However, the conditions under which this 
reversal pathway works remain unknown [53,54]. Cellular tran-
sitions, i.e., the EMT and EnMT, are sources of new fibroblasts 
and result in excessive ECM deposition. Fibroblasts also exhibit 
enhanced migratory ability. Therefore, the submucosal layer, 
which is composed of loose connective tissue, is replaced with vari-
ous ECM components. As a result, the condition of the intestinal 
wall impedes its flexible movement [13].

 
Gut microbiota

The gut microbiota is one key factor in the development of fi-
brosis in IBD [16]. It consists of bacteria, viruses, archaea, pro-

Fig. 1. Gross finding of resected large intestine specimen of 30-year-
old patient with Crohn’s disease. Creeping fat covers more than 
50% of the intestinal circumference surface with mesenteric prolif-
eration. Cobblestone mucosa and proper muscle hyperplasia that 
result in intestinal stricture are also noted.
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Fig. 2. Histologic findings of Crohn’s disease. (A) Hypertrophy and hyperplasia of the submucosa and muscularis propria are present. (B) 
Chronic inflammation with lymphoid aggregates and lymphoid follicles is dominant. (C) Although chronic inflammation is predominant, active 
inflammation that consists of extensive neutrophilic infiltrates is also noted. (D) Fibromuscular hyperplasia of damaged submucosal vessels 
causes slow blood flow. (E) Neural hypertrophy is also noted. (F) Trichrome stain reveals that dissection between the hyperplastic smooth 
muscle bundles is interspersed with fibrosis.

tists, and yeast. The composition of the intestinal microbiota af-
fects the host metabolism and immune systems in various ways, 
and chronic inflammatory status caused by the gut microbiota 
can ultimately produce the complications of intestinal fibrosis or 
strictures [55]. The stability of the intestinal microbiota supports 
the barrier function of intestinal epithelial cells [56]. If the bal-
ance between beneficial and harmful bacteria is destroyed, the in-
testinal microbial barrier and anti-inflammatory regulatory path-
way can be damaged, which can eventually cause severe colitis 
[57,58]. In one study, the intestinal bacterial diversity of mice was 
reduced using intestinal radiation and an antibiotic cocktail treat-
ment, and that produced decreased levels of TGF, phosphorylated 
SMAD3, and SMA proteins, which in turn reduced the chronic 
inflammation that plays a crucial role in intestinal fibrosis [59]. 
Preliminary studies of fibrosis and the microbiome have been 
done [24]. Several studies have suggested that fibronectin and 
collagen deposition in the intestinal wall is a response to bacte-
rial stimulation of the intestine [60,61]. In addition, several stud-
ies have reported that strictures are more frequent in patients with 
CD who have higher levels of antibacterial antibodies [56,58].

HISTOPATHOLOGY

In IBD-associated fibrosis, the change in the muscular layer, 
which contributes to the presence of a thickened bowel wall, is 
notable (Fig. 2A). This results in both hypertrophy and hyper-

plasia [47]. Although chronic inflammation, represented by basal 
plasmacytosis, is predominant, IBD can also show a mixed inflam-
mation pattern that is accompanied by active inflammation (Fig. 
2B, C). As the disease progresses, increased activation of intesti-
nal myofibroblasts results in the gradual synthesis of ECM and 
contractile proteins (α-SMA and MYLK) [60]. Young fibroblasts 
begin to be deposited and gradually progress to fibrosis with in-
creased deposition of ECM (collagen, fibronectin, etc.) [55]. In ad-
dition, slowed blood flow is caused by damage to highly branched 
vessels (Fig. 2D). This condition often becomes refractory to 
medication. Neuronal cell changes are usually observed in surgical 
specimens from patients with chronic constipation without a 
certain organic cause, and similarly in IBD patients, neuronal hy-
pertrophy can be a secondary reactive change [62]; however, it can 
also act as a mechanism for intestinal stiffening (Fig. 2E). In tri-
chrome stain results, dissection between hyperplastic smooth mus-
cle bundles is observed to be interspersed with fibrosis (Fig. 2F).

Histopathology scoring systems for stenosis

In IBD, many scoring systems have been developed to express 
disease activity, including the Geboes score and Nancy Index of 
UC and the Crohn’s Disease Activity Index [63,64]. These eval-
uation methods consider not only the presence of ulcers but also 
the degree of infiltration of inflammation, submucosal fibrosis, 
and thickened muscularis propria. Following a recent discussion 
at the Stenosis Therapy and Antifibrotic Research Consortium, a 
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four-tiered system (none, mild, moderate, and severe) was con-
structed to include an evaluation of the inflammatory and fibrotic 
components of each mural layer [55]. In this artificial intelligence 
era, researchers have endeavored to develop a deep learning model 
to evaluate intestinal fibrosis in surgical specimens for postop-
erative recurrence prediction [65,66].

Differences of intestinal fibrosis in UC and CD

UC and CD, which belong to the same IBD category but dif-
fer in their mechanisms of development and clinical features, 
also show differences in IBD-related fibrosis [67]. In UC, fibrotic 
changes are limited to the mucosal and submucosal layers [55]. 
This can shorten or stiffen the intestine, leading to motility dis-
orders. Because strictures in UC are rare and can be either be-
nign or malignant, a persistent stricture should raise suspicions 
of cancer [68]. Complications that are mainly due to bowel wall 
thickening, such as stricture and stenosis, are problematic in 
CD. Furthermore, diffuse transmural collagen layers down to 
the muscularis propria and proliferative fibroblastic infiltration 
are observed. In UC, on the other hand, the progression of intes-
tinal fibrosis does not correlate with disease duration or location; 
however, inflammatory activity does correlate with medical treat-
ment. In contrast, in CD, the duration and location of the disease 
and type of treatment are related to the risk of intestinal fibrosis 
[55,69,70].

Biomarkers and potential antifibrotic agents 

Gene variants, epigenetic modifiers, antimicrobial antibodies, 
ECM components, and clinical, endoscopic, or environmental fac-
tors can be used to evaluate and predict fibrosis in IBD patients 
[71]. Fibrosis in CD, which causes several serious sequelae, is re-
versible, and thus it is important to develop therapeutic agents 
targeting it [72]. However, no effective therapeutic agents are 
available to prevent or repair the progression of fibrosis except 
by suppressing inflammation, though diverse potential antifi-
brotic therapies have been proposed. Although their mechanism 
is still unknown, statins (simvastatin) have been reported to ef-
fectively inhibit the progression of CD fibrosis [73,74]. In CD, 
pirfenidone, Rho kinase inhibitors, TGF-β signaling inhibitors, 
IL-13 inhibitors, and G31P (an antagonist of CXCL8) are also 
known to be effective [75,76]. GED-0507-34, an agent with a 
strong affinity for PPAR-γ, has been suggested as an anti-fibrotic 
agent in UC patients [77].

CONCLUSION

IBD-related intestinal fibrosis is the starting point for serious 
complications in patients with refractory and poorly controlled 
chronic IBD. If the uniquely activated profibrotic pathway ob-
served in IBD can be identified, it could be used as a biomarker 
for targeted therapy. In addition, the gene expression signature 
of fibrogenesis at diagnosis could predict the risk of surgery. In-
testinal fibrosis is an unfavorable result of the harmonic action 
of intestinal epithelial cells, the microbiota, and various mesenchy-
mal components, such as the adipose tissue, fibroblasts, smooth 
muscle, neural tissue, and vascular endothelial cells, at the lesion 
site. It is thus necessary to pay attention to these mechanisms, 
from analyzing the ECM to developing therapeutic agents that 
target the main factors affecting pathogenesis, as well as eluci-
dating the mechanisms involved by using various advanced re-
search methods.
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