FEBS Open Bio 5 (2015) 319-324

o

journal homepage: www.elsevier.com/locate/febsopenbio ‘

4-0x0-(E)-2-hexenal produced by Heteroptera induces permanent
locomotive impairment in crickets that correlates with free thiol

depletion
Koji Noge **, Judith X. Becerra”

2 Department of Entomology, University of Arizona, Tucson, AZ 85721, USA
b Department of Biosphere 2, University of Arizona, Tucson, AZ 85721, USA

@ CrossMark

ARTICLE INFO ABSTRACT

Article history:

Received 10 February 2015
Revised 10 April 2015
Accepted 10 April 2015

Heteropterans produce 2-alkenals and 4-keto-2-alkenals that function as defense substances or
pheromones. However, in spite of advances in heteropteran chemistry, it is still unclear how these
compounds affect insect physiology. We found that exposure to 4-oxo-(E)-2-hexenal (OHE) induced
permanent paralysis and death in crickets, an experimental model. The depletion of free thiols in leg

tissues of OHE-treated crickets and the in vitro adduct formation of OHE with a thiol compound sug-
gest that covalent binding of OHE to biologically active thiols is a potential cause affecting crickets’

locomotion.
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1. Introduction

Heteropterans, or true bugs, are remarkable for their production
of volatile chemicals such as (E)-2-hexenal, (E)-2-octenal, (E)-dece-
nal, and 4-oxo-(E)-2-hexenal (OHE) in scent glands located in the
dorsal abdomen in nymphs and in metathoracic scent glands in
adults (Fig. 1). In bugs, mixtures of these compounds are known
to function as pheromones and as defense substances against
predators in their natural habitats [1-5]. Of these compounds,
(E)-2-hexenal has specifically been reported to be a predator repel-
lent [6], inhibitor of microbial growth [7], and in the plant litera-
ture it is also reported for its role against herbivores [8-10]. In
contrast, OHE is recognized for its deterrent effects and high toxi-
city but without repellent properties against insects or other
predators [6,11,12]. Yet, in spite of the advances in heteropteran
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* Corresponding author at: Department of Biological Production, Akita Prefectural
University, Akita 010-0195, Japan. Tel.: +81 18 872 1500; fax: +81 18 872 1670.
E-mail address: noge@akita-pu.ac.jp (K. Noge).

http://dx.doi.org/10.1016/j.fob.2015.04.004

chemistry, it is still unclear how OHE and other (E)-2-alkenals
affect the physiology of organisms.

Interestingly, OHE is also known as a peroxidation product of ®-
3 polyunsaturated fatty acids (PUFAs) and similar to the cytotoxic
compounds, 4-hydroxy-(E)-2-nonenal (HNE) and 4-oxo-(E)-2-
nonenal (ONE), derived from peroxidation of ®-6 PUFAs [13].
Because they have an o,B-unsaturated carbonyl moiety, one of
the primary targets of HNE and ONE is a cysteine thiol group of
proteins such as v-ATPase, ionotropic receptors, and the synapto-
somal-associated protein 25 (SNAP-25) that regulate enzyme
activity and signal transduction in synaptic sites [14-17]. These
two lipid peroxidation products are definitely associated with
human aging and diseases, such as Alzheimer's disease,
Parkinson’s disease and atherosclerosis [18-23]. In fact, HNE
adducts have been detected in sites of oxidative stress associated
diseases [22,24,25]. Similarly, the accumulation of protein-bound
4-hydroxy-(E)-2-hexenal (HHE) has been observed in patients with
neurodegenerative disorders [26]. The reaction properties are com-
mon, but the target proteins of HHE have been shown to be differ-
ent from those of HNE [13]. Compared to HNE, ONE, and HHE, the
effects of OHE on organisms are still largely unknown. What we
know of OHE is that it has mutagenic properties and that it can
form adducts with 2’-deoxyguanisine [27].
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Fig. 1. Structure of (A) 4-oxo-(E)-2-hexenal (OHE), and (B) (E)-2-hexenal.

We investigated the effects of OHE inducing locomotive impair-
ments in the house cricket (Acheta domesticus). Then, with this
information, we explored the potential mode of action of OHE
against insects by examining whether OHE affects the thiol content
in crickets and whether OHE can react with thiol compounds using
a model thiol compound.

2. Materials and methods
2.1. Insects and chemicals

Commercially available crickets (A. domesticus) in Tucson, AZ,
USA, were reared on an artificial diet for tropical fishes in the labo-
ratory. Nymphs between 120 and 150 mg in weight were used for
all exposure assays. OHE was synthesized by a one-step reaction
described in Moreria and Millar [28]. 1-Butanethiol (1-BuSH),
5,5'-dithiobis(nitrobenzoic acid) (DTNB), trichloroacetic acid
(TCA), Triton X-100, (E)-2-pentenal, (E)-2-hexenal, (E)-2-octenal,
(E)-2-hexen-1-ol, (E)-2-hexene, hexanal, and hexane were
obtained from Sigma-Aldrich (St. Louis, MO, USA). (E)-2-Heptenal
and (E)-2-nonenal were purchased from TCI America (Portland,
OR, USA).

2.2. Exposure assays

We prepared jars (8 cm i.d. x 9 cm ht, 500 ml) containing a
small strip of filter paper with the test chemical compounds on a
hand-made stainless stand (4.5 cm ht) to prevent crickets from
getting in direct contact with compounds. After placing two ran-
domly selected nymphs inside, jars were tightly closed with its
cap and placed in an incubator set at 25 °C.

First, we examined the effects of OHE over time on ten ran-
domly selected crickets with 0.4, 0.8, 1.0, 1.2, 1.6, 2.0, 3.2, 4.0
and 10 mg/1 of OHE. Effects on nymph behavior in terms of paraly-
sis and death were recorded every hour for 4 h. To determine the
dose-dependent effect of OHE that induces paralysis in crickets
in a 2 h exposure, we calculated its ECsg using JMP [29].

To compare the effects of OHE with the ones caused by related
compounds, (E)-2-pentenal, (E)-2-hexenal, (E)-2-heptenal, (E)-2-
octenal, (E)-2-nonenal, (E)-2-hexen-1-ol, (E)-2-hexene, hexanal,
and hexane (control treatment) were used. For this, we exposed
crickets in jars to 2.0 mg/l of each compound for 2 h in which all
of the crickets exposed to OHE became paralyzed. After this time,
the number of nymphs showing signs of paralysis and/or death
were counted. Also, to test whether these compounds affected
crickets permanently or temporarily, we subsequently moved
these crickets into a new open jar and kept them under fresh air
for 12-16 h. Again we recorded the number of crickets that had
been affected only temporarily and showed signs of having recov-
ered. Ten crickets per treatment and control were used.

2.3. Quantification of free thiols in crickets

To evaluate the biochemical causes of the paralysis caused by
OHE, we quantified the amount of free thiols in crickets that
showed paralysis after exposure to OHE. For this, we used newly
prepared crickets that were subjected to a treatment of 4h

exposure to 2.0 mg/l of OHE. Crickets that died after being exposed
were omitted from this analysis. As control, we used non-treated
crickets. Crickets were kept frozen at —20 °C until thiol measure-
ment. Then, hind legs of each OHE treated and non-treated cricket
were collected separately and homogenized using a pestle in
250 pl of 100 mM phosphate buffer, pH 7.0 containing 1% Triton
X-100 (buffer A) on ice. Homogenates were centrifuged at
11,000g for 15 min and the supernatant containing free thiols
was recovered. The concentration of total protein in each sample
was measured by the BCA assay [30] using a QuantiPro BCA
Assay kit (Sigma-Aldrich) according to the manufacture’s recom-
mendations. Samples were diluted to 2 mg proteins/ml in buffer
A. Amount of free thiols was determined according to the protocol
described in Patsoukis and Georgiou [31] with a slight modi-
fication. Briefly, to prepare the sample containing non-protein free
thiols, 90 pl of the sample (2 mg proteins/ml) were mixed with
10 pl of 50% (w/v) TCA solution, and then the mixture was kept
on ice for 10 min. The mixture was centrifuged at 16,000g for
5 min, and then the supernatant was recovered as the sample con-
taining non-protein free thiols. This sample (50 pl) was mixed with
100 pl of 400 mM Tris-HCI, pH 8.9 and 5 pl of 5 mM DTNB, and
then kept for 30 min at room temperature. The absorbance of the
resulting mixture at 412 nm was measured against a blank pre-
pared using buffer A instead of sample solution in a DU 800 spec-
trophotometer (Beckman Coulter). The amount of total free thiols
in the sample was measured using 10 pul of buffer A instead of
TCA. The amount of free thiols derived from proteins was obtained
by subtracting the amount of non-protein free thiols from total free
thiols. Eight replicates were done for each assay. Differences in
total amount of thiols, and amounts of protein and non-protein
thiols, between treated and non-treated crickets were analyzed
with ANOVA's performed in JMP.

2.4. in vitro Reaction of OHE with 1-butanethiol

To determine whether OHE can react with free thiol groups,
OHE (1 mmol) was mixed with 1-butanethiol (1-BuSH, 0.2 mmol)
in 1 ml of 20 mM phosphate buffer/acetonitrile (2/1, v/v, pH 6.5)
at 25-27°C for 14 h following the method described in Sasai
et al. [32]. The mixture was extracted with ether and the organic
layer was washed with brine and dried over anhydrous Na,SO,.
The crude extract was analyzed for structure elucidation by GC-
MS (an Agilent 6890N gas chromatograph linked to an Agilent
5975B mass spectrometer, operated at 70 eV, with a HP-5MS capil-
lary column, 30 m x 0.25 mm i.d., 0.25 pm in film thickness). To
quantify the product compositions, a GC with a flame ionization
detector and a DB-5MS capillary column, 25 m x 0.32 mm i.d.,
0.52 pm in film thickness was used. The oven temperature was
programmed from 50 °C (3 min holding) to 300 °C at a rate of
10 °C/min and then held for 5 min. The injector temperature was
maintained at 200 °C. Chemical ionization (CI) mass spectra were
obtained in the positive mode at an ion source temperature of
250°C with the GC-MS system using methane as regent gas.
Four replicates of the reaction were done for chemical analyses.

To determine the structures of OHE adducts, four reaction mix-
tures were combined (422 mg) and applied onto a silica gel column
(30 g), and successively eluted in a sequence with 300 ml each of
hexane, 1%, 3%, 4%, 5%, 10% and 50% ethyl acetate in hexane. The
compositions of each elute were monitored by GC/MS. The 4% ethyl
acetate fraction that contained two OHE adducts (SHx and SHy)
was further fractionated on another silica gel column (6 g) eluted
with 60 ml of 4% ethyl acetate in hexane into 10 fractions (6 ml
each) to isolate these two compounds. SHa was isolated from the
hexane fraction. '"H and '>C NMR spectra of the isolated OHE
adducts were acquired on a Brucker DRX-500 ('H at 500 MHz
and '3C at 125 MHz) and a Varian Inova-600 spectrometer ('H at
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Fig. 2. Paralyzed cricket after exposure to OHE (2.0 mg/l, 2 h). Normally, crickets
support their body with their legs, but after exposure to OHE, paralysis takes place.

600 MHz and '3C at 150 MHz) in a CDCl; solution with tetram-
ethylsilane as an internal standard.

3. Results

3.1. Permanent locomotive impairment in crickets induced by the
exposure of OHE

Each cricket showed signs of distress and paralysis after being
exposed to OHE. They moved around in the jar and frequently
groomed their antennae, mouthparts, and fore and hind legs within
15 min after the exposure. Then they became gradually less active,
could not support their body, and lost their capability of move-
ment. OHE seemed to affect more markedly the crickets’ hind legs,
which became rigidly stretched and flipped up dorsal ward (Fig. 2).
Paralysis and death induced by OHE in crickets occurred more fre-
quently when exposed to higher doses and for a longer time
(Fig. 3). The theoretical ECso of 2h exposure of OHE was
1.24 mg/l (Fig. 4). These symptoms continued even after crickets
were taken out experimental jars and exposed to fresh air (12-
16 h), suggesting that OHE induces permanent paralysis in crickets
(Table 1).

The 2 h exposure of 2.0 mg/l of OHE induced complete perma-
nent paralysis in crickets, while only 20-50% of crickets lost their
capability of movement when they were exposed to (E)-2-hexenal,
(E)-2-heptenal, (E)-2-octenal and (E)-2-hexen-1-ol under the same
conditions. Furthermore, these affected crickets recovered when
they were released from exposure and kept under fresh air
(Table 1). Other (E)-2-alkenals, (E)-2-pentenal and (E)-2-nonenal,
did not affect any crickets. Neither (E)-2-hexene, an unsaturated
C-6 hydrocarbon, nor hexanal, a saturated C-6 aldehyde, affected
crickets in a visible way (Table 1).

321
100 -
5
g,-\ 80 A
L3S
O — -
g oo
£
$5 40
© ©
a6
3 20
(@]
0 - ¢

1.0 10
Concentration (mg/l)

0.1

Fig. 4. Effect of concentration-dependent exposure to OHE on crickets’ locomotive
impairment. Crickets were exposed to different concentrations of OHE for 2 h, then
the percentage of crickets that were paralyzed was calculated. Thirty percent
crickets died after being exposed to 10 mg/l of OHE for 2 h.

3.2. Depletion of the amount of free thiols in crickets by the exposure of
OHE

Total amount of free thiols in crickets’ hind legs that were para-
lyzed after exposure to OHE were lower (30.8 + 5.8 pmol/mg pro-
tein in legs) than the ones in control crickets (40.5 + 2.0 pmol/mg
protein in legs; P < 0.001; DF = 15; Fig. 5A). Free thiols derived from
both protein and non-protein sources were also significantly
decreased to 79% (OHE treated =27.9 + 5.4 pmol/mg protein in
legs, not treated = 35.2 + 2.0 pmol/mg protein in legs; P=0.003;
DF = 15) and 55% (OHE treated = 2.9 + 0.7 pmol/mg protein in legs,
not treated = 5.3 £ 1.9 pmol/mg protein in legs; P = 0.004; DF = 15),
respectively (Fig. 5B and C).

3.3. The in vitro reaction of OHE with 1-BuSH

OHE reacted with 1-BuSH to form three OHE adducts, tenta-
tively named SHa, SHx and SHy (Fig. 6). Of the adducts, SHx was
the major product (mean+SD=63.6+1.2%) followed by SHy
(29.7 £ 1.0%) and SHa (6.6 £ 0.2%) (N = 4). These OHE adducts were
identified as 2-buthylthio-5-ethylfuran (SHa, peak 2), 3-
buthylthio-4-oxo-hexanal (SHx, peak 3) and 2-buthylthio-4-oxo-
hexanal (SHy, peak 4) by GC/MS and NMR analyses (Fig. 7). SHx
and SHy were 1,4-Michael type adducts, while SHa was a product
of 1,2-addition followed by cyclization. The mass and NMR spectra
of the identified OHE adducts are summarized as follows:
Compound SHa (peak 3): colorless oil; EIMS m/z (%): 184 (M",
71.6), 169 (8.5), 128 (72.4), 113 (100), 57 (7.5); CIMS (methane):
mjz 185 [M+H]", 213 [M+CyHs]*, 225 [M+CsHs]*; 'H NMR
(600 MHz, CDCl3): & 6.39 (1H, d, J=3.0Hz), 596 (1H, d,
J=3.0Hz), 2.72 (2H, t, J=7.4Hz), 2.64 (2H, q, J=7.5Hz), 1.56

[] Not affected  [] Paralyzed [l Dead

A B C D
£ g0 80 80 80
Q
S 60 60 - 60 - 60
5 -
T 40 40 40 40
"5 —
£ 201 20 — 20 20
z | ||

0 0 0 0
0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

Exposure time (h)

Fig. 3. Percentage of affected crickets after exposure to OHE. (A) 0.8 mg/l, (B) 1.2 mg/l, (C) 2.0 mg/l, (D) 4.0 mg/l of OHE (each n = 10 crickets).
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Table 1
The effect of OHE and related compounds on cricket.

Compound Movement disorder (%)
Temporary? Permanemt”
OHE 100 100
(E)-2-Hexenal 50 10
(E)-2-Hexen-1-ol 40 0
(E)-2-Hexene 0 0
Hexanal 0 0
(E)-2-Pentenal 0 0
(E)-2-Heptenal 20 0
(E)-2-Octenal 20 0
(E)-2-Nonenal 0 0
Hexane 0 0

¢ Percentage of paralyzed crickets after 2h exposure to 2.0 mg/l of each
compound.

b Percentage of paralyzed crickets first exposed to 2.0 mg/l of each compound for
2 h and then kept under fresh air for 12-16 h.
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Fig. 5. Amount of free thiols in hind legs of crickets. (A) Whole free thiols, (B)
protein-derived free thiols, (C) non-protein-derived free thiols. Asterisks indicate
that the differences among treatments were significantly different (P < 0.01).

(2H, quintet, J=7.5 Hz), 1.40 (2H, sextet, J=7.5Hz), 1.22 (3H, t,
J=7.6Hz), 090 (3H, t, J=7.4Hz); and 'C NMR (150 MHz,
CDCl3): 6 160.90, 143.40, 117.83, 105.84, 36.02, 31.81, 21.72,
21.52, 13.61, 11.93. Compound SHx (peak 4): yellow oil; EIMS m/
z (%): 202 (M*, 4.3), 184 (8.3), 145 (33.9), 117 (72.0), 90 (44.5),
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Fig. 6. Gas chromatogram of (A) reaction products of 1-butanethiol with OHE and
(B) OHE. 1. Dibutyl disulfide (artifact from 1-BuSH); 2. 2-buthylthio-5-ethylfuran
(SHa); 3. 3-buthylthio-4-oxo-hexanal (SHx); 4. 2-buthylthio-4-oxo-hexanal (SHy);
imp. impurity.

83 (75.6), 57 (100), 56 (54.6), 55 (75.7), 41 (50.1); CIMS (methane):
mjz 203 [M+H]*, 231 [M+C.Hs]*, 243 [M+CsHs]"; 'H NMR
(500 MHz, CDCl3): § 9.71 (1H, s), 3.75 (1H, dd, J=9.6, 4.36 Hz),
3.30 (1H, dd, J=18.5, 9.7 Hz), 2.92 (1H, dq, J=17.6, 7.3 Hz), 2.78
(1H, dd, J = 18.6, 4.4 Hz), 2.59 (1H, dq, J = 17.6, 7.3 Hz), 2.49 (1H,
dt,J=12.1,7.3 Hz), 2.36 (1H, dt, ] = 12.0, 7.3 Hz), 1.50 (2H, quintet,
J=7.3Hz), 1.37 (2H, sextet, ] = 7.4 Hz), 1.12 (3H, t, ] = 7.3 Hz), 0.90
(3H, t, J=7.3 Hz); '3C NMR (125 MHz, CDCl;): § 205.62, 199.21,
45.04, 44.97, 33.19, 31.39, 29.21, 22.00, 13.62, 8.24. Compound
SHy (peak 5): brownish yellow oil; EIMS m/z (%): 202 (M", 18.0),
184 (4.2), 145 (8.1), 90 (17.2), 83 (25.1), 57 (100), 56 (21.2), 55
(30.3), 41 (21.0); CIMS (methane): m/z 203 [M+H]*, 231
[M+C,Hs]*, 243 [M+CsHs|*; 'H NMR (500 MHz, CDCl5): § 9.38
(1H, d, J=1.9 Hz), 3.69 (1H, ddd, J=9.3, 4.8, 1.9 Hz), 3.08 (1H, dd,
J=17.8, 92 Hz), 2.72 (1H, dd, J=17.8, 4.8 Hz), 2.51, 2.48 (each
1H, ABXs, Jap=17.6 Hz, J.x=Jox=7.2 Hz), 2.46, 2.40 (each 1H,
ABXY, Jip=122Hz, J.x=6.7Hz, J.;,=80Hz, Jox=7.2Hz,
Joy = 7.9 Hz), 1.54 (2H, dddt, = 14.1, 8.0, 7.3, 7.2 Hz), 1.39 (2H, sex-
tet, J=7.3 Hz), 1.08 (3H, t, J=7.4 Hz), 0.90 (3H, t, J = 7.3 Hz); '3C
NMR (125 MHz, CDCl3): § 207.72, 192.24, 47.58, 40.95, 36.14,
31.55, 29.64, 21.93, 13.59, 7.67.

4. Discussion

Our results indicate that while exposure to o,B-unsaturated
aldehydes with six to eight carbon chain lengths caused only mod-
erate and temporary paralysis in crickets, exposure to OHE
impaired the cricket’s locomotive ability resulting in permanent
paralysis and death. The crickets’ hind leg stretching reaction after
being treated with OHE is similar to the symptoms exhibited by
locusts when treated with the insecticide, pymetrozine [33].
However, while locusts treated with pymetrozine do not show
any signs of paralysis, and their fore and mid legs are not affected
by the insecticide, in OHE treated crickets all legs were effected.
This suggests that the mode of action of OHE is probably different
to the one of pymetrozine.



K. Noge, J.X. Becerra/FEBS Open Bio 5 (2015) 319-324 323

/\(\AO + CaHgSH
(0]

— > AN _ome
pH 6.5 o S

SHa (peak 2)

/C4H9

S
X0 + WO
© © S\C4H9

SHx (peak 3) SHy (peak 4)

Fig. 7. Reaction of 1-butanethiol with OHE.

The temporal inhibition of movement occurred by only (E)-2-
alkenals with six to eight carbon chain lengths suggests that there
could be size-dependent certain mode of actions of these (E)-2-
alkenals. One possibility is the penetration rate of the tested com-
pounds into crickets’ body. It has been previously shown that
longer carbon chain aldehydes have a lower penetration rate
through the cuticle than shorter chain aldehydes [11,34]. (E)-2-
Hexen-1-ol also induced moderate temporary paralysis in crickets,
suggesting that o,p-unsaturated C-6 compounds might inhibit the
function of molecules associated with insect locomotion, for exam-
ple neurotransmission, by competitive antagonistic effect or
loosely blocking the target molecules. (E)-2-Hexenal, (E)-2-hepte-
nal, (E)-2-octenal and (E)-2-hexen-1-ol might reversibly or slowly
affect the function of these biological molecules, while OHE could
irreversibly and quickly inactivate these molecules. The toxic
potencies of aldehydes are recognized to be linked to their elec-
trophilicities, size and solubility [17], thus, the differences in our
results can be also explained by the electrophilic reactivity of the
tested aldehydes. In fact, a previous report showed that OHE is a
stronger electrophile than (E)-2-hexenal and (E)-2-octenal by com-
paring their lowest unoccupied molecular orbital (LUMO) energy
level [7].

The in vitro reaction of OHE with 1-BuSH resulted in two major
thioether-type compounds (SHx and SHy) produced by a 1,4-
Michael addition reaction similar to the reported reactions of
HNE and ONE [16,18,22]. The remaining aldehyde and ketone moi-
ety of SHx and SHy could be involved in a secondary reaction with
other nucleophiles (e.g. lysine) to form cross-linked dimer or oligo-
mer as previously described [23,35].

There was a minor but unique adduct with a furan ring (SHa)
produced by a 1,2-addition from the reaction between OHE and
1-BuSH. According to the hard and soft acids and bases theory
[36], 1,4-Michael adducts occur more predominantly than 1,2-
adducts, and our results are consistent with this theory. The 1,2-
addition between a thiol group and o,B-unsaturated aldehydes
such as 4-hydroxy-2-alkenals has not been reported before. Our
results showed that (E)-2-hexenal only affected crickets temporar-
ily, thus, the furan ring formation specific to OHE could be involved
in the irreversible effect seen in crickets. Previously, Sasai et al. [32]
showed that a-acaridial, a conjugated dial found in astigmatid
mites, can react with 1-BuSH to form 2,3-substituted furan com-
pound, and thus furan ring formation is supposed to be specific
to conjugated dicarbonyl compounds.

The adduct formation of OHE with 1-BuSH and the depletion of
thiol compounds after OHE exposure suggest that this compound
could covalently react with a cysteine residue in proteins, enzyme
active sites, glutathione, and other thiol compounds such as coen-
zyme A in vivo, and impair these biologically active molecules. Oral
administration of a thiol inactivator, N-ethylmaleimide, to crickets
resulted in very similar symptoms to the exposure of OHE (per-
sonal observation of KN), suggesting that the irreversible reaction
of OHE with certain thiol compounds can inhibit the cricket’s

locomotion. The effects of OHE and HNE show interesting similari-
ties. HNE is reported to reduce the contractility of smooth muscle.
With HNE, it appears to occur as an irreversible alkylation of thiol
groups on the receptor system, L-type calcium channels and/or
contractile apparatus of muscle [37,38]. Furthermore, actin is
known as another target of HNE [39]. Thus, OHE might affect insect
neurotransmission and/or muscular components in similar fashion
to HNE. Further study to identify the target molecules of OHE in
insects could not only contribute toward a deeper understanding
of the ecological significance of OHE as a defense substance in het-
eropterans, but it could also contribute to the understanding of
human neurodegenerative diseases caused by lipid peroxidation
products. Heteropteran bugs protect themselves by discharging
unpleasant volatile components that can repel their predators
immediately. Having toxic compound(s), such as OHE, as another
chemical barrier together with repellent in a blend, could fortify
the bug’s chemical defense system.
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