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Abstract: It was only relatively recently discovered that nucleic acids participate in a 
variety of biological functions, besides the storage and transmission of genetic information. 
Quite apart from the nucleotide sequence, it is now clear that the structure of a nucleic acid 
plays an essential role in its functionality, enabling catalysis and specific binding reactions. 
In vitro selection and evolution strategies have been extremely useful in the analysis of 
functional RNA and DNA molecules, helping to expand our knowledge of their functional 
repertoire and to identify and optimize DNA and RNA molecules with potential therapeutic 
and diagnostic applications. The great progress made in this field has prompted the 
development of ex vivo methods for selecting functional nucleic acids in the cellular 
environment. This review summarizes the most important and most recent applications of 
in vitro and ex vivo selection strategies aimed at exploring the therapeutic potential of 
nucleic acids. 
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1. Introduction 

Nucleic acids, particularly RNA, are extremely versatile molecules. Apart from their role as carriers 
of genetic information they can also express a phenotype, e.g., they may show a catalytic activity, have 
a specific binding function, or have the capacity to recruit specific molecules.  

The appearance of sequence variation in a nucleic acid can, in some cases, provide an advantage to 
an organism: a key feature in natural evolution. Over the last 20 years, advances in molecular biology 
and biotechnology have seen the development of methods that allow the effect of such naturally arising 
variation to be mimicked in the laboratory. It was in the 1960s when Spiegelman’s group first observed 
evolution in vitro [1]. These authors reported that changes in the RNA genome of the Qβ 
bacteriophage during replication led to the formation of RNA molecules that were more efficiently 
copied by the viral replicase. These genomes lacked unnecessary sequences and were synthesized at a 
greater rate. However, these finding fell into oblivion until 1990, when the great potential of in vitro 
selection and evolution techniques was reported by three independent groups [2-5]. Since then, 
numerous authors have used these technologies to study the chemical and catalytic properties of 
nucleic acids (for further information see [6-13]. They have also helped uphold the RNA world 
hypothesis, and it seems likely that they may soon have applications in biomedicine. Indeed, new 
selection methods – known as ex vivo selection procedures – are now being used to identify molecules 
that target viruses, subcellular fractions and even whole cells. These techniques overcome some of the 
limits imposed by in vitro technology and provide new environments and conditions in which to 
explore the properties and functions of nucleic acids. This review highlights the most recent advances 
in in vitro and ex vivo selection procedures for nucleic acids, and discusses their potential application 
in biomedicine. 

2. General Principles of in Vitro Selection Methods 

In vitro selection strategies have been used to select nucleic acids with a large variety of properties. 
Although each strategy differs according to the feature or phenotype sought, all in vitro selection 
methods follow the same three-step pattern (Figure 1). 

2.1. The design of starting variant populations 

Genetic variability is introduced into the system (generally by chemical synthesis) to yield nucleic 
acid populations, the heterogeneity of which is determined by fixing the number of nucleotides to be 
mutagenized and the mutation rate per nucleotide. In most cases, completely random synthesis 
involving a fixed number of nucleotides yields a starting population of variant molecules that, a priori, 
differ only in the sequence and the structure of the variable region. Constant sequences, or primer 
binding sites (PBS), flanking the variable region are incorporated during the design of the starting 
population to facilitate the amplification of desired molecules, although this limits the structural 
diversity of the RNA populations to specific conformations [14]. Different approaches have been tried 
to minimize the effect of PBSs, e.g., the addition of customized primers or adapters by ligation before 
amplification, and their removal prior to the selection step [15-17].  
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2.2. Selection 

The selection strategy needs to be specifically designed according to the phenotype sought. The 
initial pool of variants usually contains very few active molecules corresponding to the desired 
phenotype, and their enrichment can only be made possible by properly designing the selection step. 
The selection of inactive molecules may also be important since the analysis of these molecules can 
provide very valuable information on the sequence and structural requirements of active molecules 
[18]. In vitro selection strategies have been widely used for the selection of nucleic acids capable of 
catalyzing specific chemical reactions, i.e., DNAzymes and ribozymes [19]. These strategies have also 
been successfully used to identify DNA and RNA molecules with affinity for a specific ligand (i.e., 
aptamers) [3], being known as SELEX, which stands for systematic evolution of ligands by 
exponential enrichment [5]. 

Figure 1. General scheme of in vitro selection procedures. The starting population of 
variant molecules enters in the selection cycle. Sequence variants are separated into active, 
those that satisfy selection criteria, and inactive molecules. Active molecules are 
selectively amplified by PCR resulting in the production of a new pool of molecules that 
can be the input of a new selection cycle. An additional reverse transcription and in vitro 
transcription steps are required, before and after PCR, respectively, when the selection is 
performed on RNA molecules. Alternatively, active and inactive resulting pools can be 
cloned and analyzed. 

 

 

 

 

 

 

 

 

 

2.3. Amplification of active molecules 

Variants that show the required phenotype need to be replicated to ensure their passage into the next 
generation and therefore their persistence in the population. Specific primer binding sites are used to 

 



Molecules 2010, 15                            
 

 

4613 

amplify the selected molecules. When necessary a RNA polymerase promoter is incorporated at the 5’ 
end of the PBS during the amplification step. 

In addition to these general steps, the amplified molecules may require additional manipulations 
prior to their introduction into the next round of selection When the selected molecule is ssDNA, both 
DNA strands must be separated and the positive one isolated, e.g., by incorporating a biotinylated 
residue into the unwanted strand [20,21] via asymmetric PCR [22]. 

As a result of the described selection cycle, a population enriched in the sought-after molecules (but 
not composed of them entirely) is produced; a new selection cycle can then be undertaken. By 
iteratively executing the process of selection and amplification the complexity of the original 
population is reduced and enriched with candidates of interest. During this process, the stringency of 
selection can be increased to achieve the isolation of the molecules with the desired phenotype.  

3. Ex Vivo Selection  

The great advances made in in vitro selection procedures over recent decades have helped us 
improve our knowledge of the plasticity of nucleic acids and their potential applications as therapeutic 
tools. Indeed, such have been the advances that selection strategies within living cells are now 
contemplated. These new methodologies are named according to the specific procedure employed in 
each method, e.g., ex vivo, in vivo, in cell selection, or Cell-SELEX etc. These are here all referred to 
as ex vivo selection strategies. 

Ex vivo selection methodologies follow the general pattern described above for in vitro techniques. 
These systems have mainly been used in the isolation of DNA and RNA molecules that interfere with 
the activity of a target molecule. When the expression of an oligonucleotide leads to a desired cell 
phenotype, it allows for the selection of these cells and the subsequent isolation of the oligonucleotide 
itself. Following these principles a strategy was used to identify a transcriptional activator regulated by 
TMR (tetramethylrosamine) [23]. For this purpose, a chimera was constructed by tethering a TMR 
aptamer to the transcriptional activator for MS2 protein (also known as N40-26) [24]. Variability was 
introduced by randomizing seven nucleotides within the linker region of the two RNA domains. 
Selection was performed in yeast cells containing a construct coding for the HIS3 and LacZ genes 
under the control of the LexA operator, and expressing a LexA-MS2 coat protein fusion. This is a 
hybrid protein that binds to the operator and to the N40-26 MS2 RNA hairpin present in the RNA 
construct. Only cells expressing an active transcriptional activator were capable of growth in the 
absence of histidine, and were the only ones capable of expressing β-galactosidase. The stringency of 
the selection process was increased by the presence of varying amounts of a competitive inhibitor of 
the His3p activity. Analysis of the selected yeast clones revealed specific RNA sequences that 
responded to TMR enhancing the transcription activator effect [23].  

The selection of an artificial ribosome switched on or off via the external addition of a small 
molecule to the growth medium deserves special mention. The Escherichia coli 16S ribosomal RNA 
was fused to an aptazyme, a ribozyme capable of binding thiamine pyrophosphate (TTP) through an 
aptamer domain. The binding of TTP activates the ribozyme, reducing gene expression by cleaving the 
16S ribosomal RNA and thus working as a riboswitch. This allows for the identification and selection 
of specific E. coli colonies according to the phenotype expressed [25]. The TTP riboswitch was also 
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included in the 5`UTR region of a reporter gene, 30 nt upstream of the Shine-Dalgarno sequence. This 
linker between these elements was randomized and E. coli colonies selected depending on the 
expression of the reporter gene in response to TTP [26]. 

Ex vivo selection methods in cells are limited by the number of sequences that can be studied, this 
number being determined by the number of available cells. Another problem is the possibility of there 
being more than one sequence variant per cell, which could lead to many false positive. Ellington’s 
group developed a very interesting strategy that allowed the direct selection of active molecules 
instead of selecting cell clones [27]. The cleavage products of the autocatalytic ribozymes synthesized 
in the cell nucleus were extracted via hybridization to a biotinylated oligonucleotide, allowing the 
direct identification of active molecules. 

The selection of nucleic acids against whole cell targets has been successfully used to select nucleic 
acids that target cell surface receptors. This technology also known as cell-SELEX could have a role to 
play in the treatment of cancer. For most types of cancer cell there is a shortage of highly specific 
surface markers that can be used with diagnostic and therapeutic intent. Aptamers generated from 
whole living cells are the optimal molecular probe for characterizing target cells at the molecular level. 
When bound to the membrane receptors of cell lines they provide an effective means of identifying 
disease markers. 

4. Post-selection Modifications 

The pharmacokinetic and pharmacodynamic properties of a nucleic acid, and its resistance to 
nucleases, all condition its effectiveness as a therapeutic molecule. After selection, the most effective 
molecules can be modified to improve their nuclease resistance as well as their affinity for their 
targets, their cellular uptake and selectivity. A great diversity of post-selection modifications has been 
described. Only those of interest for therapeutic purpose are discussed here. These include 
modifications of oligonucleotide size and sequence, and mainly certain chemical modifications (for a 
review see [28,29].  

Advances in chemical synthesis have allowed the production of conjugates that combine an 
oligonucleotide sequence with compounds such as fluorophores, peptides, carbohydrates and lipids 
(Figure 2). These modified oligonucleotides show advantageous properties with respect to the native 
form. The ligands are usually linked to the 5’ or 3’ termini, which are the most accessible regions for 
chemical conjugation reactions; in addition, any disruption of the nucleic acid’s folding and functional 
properties are minimized [30]. Conjugations at the 2’ position of ribose or involving the 
internucleotidic phosphodiester bonds are also possible. Fluorophore conjugation is already used in 
clinical diagnosis, e.g., in fluorescence in situ hybridization (FISH) and molecular beacons. FISH can 
detect specific genes in cells, while molecular beacons act like switches, emitting fluorescent light 
when bound to their target sequence. Cell uptake has been improved by the conjugation of 
oligonucleotides to peptides capable of translocating them across the cell membrane by a non-receptor-
mediated endocytotic mechanism. Some of the most frequently used peptides are residues 43-58 of the 
third helix of the antennapedia homeodomain (penetratin), the highly arginine/lysine rich region of the 
HIV-1 Tat protein, the hydrophobic signal peptide, the nuclear localization sequence (NLS), and 
transportan [31]. Besides improving cellular uptake, peptide-oligonucleotide conjugates show 



Molecules 2010, 15                            
 

 

4615 

increased stability to nucleases degradation and enhanced binding [32]. Carbohydrate-oligonucleotide 
conjugates (COCs) have similar applications. In addition they confer cell or tissue specificity by their 
binding to sugar receptors (i.e., lectins) present at the cell surface capable of recognizing and 
internalizing (by endocytosis) glycoproteins bearing specific carbohydrates moieties [33]. Lipophilic 
oligonucleotide conjugates (LOCs), such as cholesterol, reduce the hydrophobic character of the 
oligonucleotide, and some bind to blood lipoprotein carriers. Lipophilic oligonucleotides are also used 
for designing supramolecular assemblages such as micelles, vesicles and liposome networks [34]. 

Figure 2. Most relevant chemical modifications which significantly contribute to improve 
pharmacokinetic and pharmacodynamic properties of aptamers. A) Flourescent label. B) 
Most common glycoside modifications: B.1, Trigalactosylated tetrahydroxycholate 
conjugate, B.2, Galactose conjugate, B.3, Multiple carbohydrates can be attached through a 
cyclopeptide scaffold like RAFT: radioselectively addressable functionalized template. 
B.4, Polyamine conjugate with two manosyl and two galactosyl residues. C) Most 
commonly used covalent linkers to conjugate cell penetrating peptides (CPP) and an 
oligonucleotide (ON) chain. D) 2’-modified ribonucleosides. E) Cholesterol conjugate. F) 
Locked nucleotides (LNA). 
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The ability of certain RNA polymerases to incorporate modified nucleotides to the growing chain, 
such as the 2’-modified ribonucleosides, makes it possible to use the selection procedure with 
populations of chemically modified oligonucleotides [35,36]. Chemical modifications of the 2’ 
hydroxyl group of RNA, such as 2’ fluoro, amino, methoxy and amido modifications, are noteworthy 
for their potential therapeutic applications since they increase RNA stability, conferring greater 
resistance to nucleases. Another important modification for therapeutic purposes is the use of locked 
nucleotides (LNAs) in the nucleotidic chain. LNAs contain a methylene link between the 2’-O and 4’-
C of the ribose ring which locks the sugar moiety in the 3’ endo conformation [37]. This generates the 
most stable hybrids ever characterized, with a ΔTm of +3 to +10 per LNA residue upon binding to 
DNA and RNA respectively, thus conferring nuclease resistance [38,39]. The introduction of LNA 
modifications into in vitro selection techniques has so far been restricted to post selection 
incorporation (for a review see [40]). Nevertheless, it has recently been shown that locked nucleotides 
can be incorporated enzymatically into both DNA and RNA [41-43].  

Spiegelmers (Spiegel = mirror in German), unnatural but biostable L-forms of D-aptamers, were 
developed to allow oligonucleotides to escape nuclease attack. Naturally occurring proteins are L-
chiral, therefore natural nucleases digest D-oligonucleotides while L-nucleosides escape this fate. To 
obtain spiegelmers, natural oligonucleotides are used during the selection cycle against unnatural D-
proteins that mirror the natural structure of the L-target [44,45]. The selection process yields L-form 
aptamer sequences that by virtue of the law of symmetry recognize their natural target. Spiegelmers 
have been selected against peptide hormones such as gonadotropin-releasing hormone (GnRH) [46], 
and ghrelin, an endogenous ligand for growth hormone secretagogue receptor 1a [47]. Both have a 
neutralizing effect in vivo against these hormones after systemic administration.  

5. Therapeutic Applications of Nucleic Acid Selection Procedures 

In vitro selection strategies have been extensively and successfully used to characterize known 
ribozymes and DNAzymes, and to isolate new catalytic nucleic acids with unsuspected activities. In 
fact, the first observation of a DNA molecule catalyzing a chemical reaction (DNAzyme) was made 
when using an in vitro selection strategy [48]. Although ribozymes and DNAzymes have been 
extensively assayed as potential therapeutic agents, and different clinical trials have already tested their 
efficiency against various diseases [49-52], very few reports have described the direct application of in 
vitro selection strategies in the development of potentially therapeutic catalytic nucleic acids. 
Ellington’s group recently described a procedure aimed at identifying cleaving ribozymes active within 
the cell milieu, but this has not yet been used with therapeutic intent [27]. Most of the work referred to 
herein describes the use of in vitro and ex vivo selection strategies for the identification of aptamers of 
therapeutic potential. Assays with catalytic nucleic acids engineered by so-called ‘rational design’ are 
beyond the scope of this review.  

6. Aptamers as Therapeutic Agents 

The idea that aptamers can modulate the activity of target proteins emerged from basic studies of 
viruses. In the 1980s, research on HIV and adenovirus led to the discovery that these viruses contain 
several structural RNA domains that bind to viral or cellular proteins with high affinity and specificity. 
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Not surprisingly, functional analyses of these viral RNA ligands demonstrated that the viruses had 
evolved these aptamers either to modulate the activity of proteins essential for their replication [53] or 
to inhibit the activity of proteins involved in cellular antiviral responses [54]. The first study performed 
to determine whether an RNA aptamer could be used to inhibit the activity of a pathogenic protein was 
published in 1990. This work reported that the TAR aptamer, evolved by HIV to recruit viral and 
cellular proteins to viral transcripts, could be turned against the virus to inhibit its replication [55]. The 
in vitro aptamer selection strategies developed during the 1990s prompted the idea of Sullenger’s 
group that therapeutic aptamers might be possible. Several such aptamers have now completed various 
stages of preclinical development, and a number of others are currently being tested clinically (Table 
1). Indeed, one aptamer is already on the market as a therapeutic drug 

Table 1. Aptamers obtained by in vitro selection currently in clinical trials or approved for 
their use as therapeutic drugs. Updated June 2009. 

Therapeutic 
target Aptamers Type Disease indication Clinical status Reference 

VEGF 
MacugenTM 

(Pegaptanib 
Sodium) 

2’-Fluoro- 2’-O-
methyl 

RNA+PEG 
Macular degeneration Market [57-58] 

Von Willebrand 
factor ARC1779 DNA/RNA+PEG 

Thrombotic 
microangiopathy 

Adjunct to carotid 
endarterectomy 

Phase 2 
Phase 2 [59-60] 

Factor IXa 

REG-1 (RB006 
aptamer + 

RB007 
antidote) 

 RB006 2’-
Fluoro 

RNA+PEG and 
RB007 2’-O-
methyl RNA 

Coronary artery bypass 
Percutaneous coronary 

intervention 

Phase 2 
Phase 2 [61-63] 

Nucleolin AS1411 DNA 
Acute myeologenous  

leukemia 
Renal cell carcinoma 

Phase 2 
Phase 2 [64-66]  

PDGF-b E10030 DNA Macular degeneration Phase 1 [67-68]  

Complement 
factor 5 ARC1905 2’-Fluoro RNA Macular degeneration Phase 1 [69]  

Thrombin NU172 DNA Coronary artery bypass Phase 1 [70-72] 

VEGF = vascular endothelial grow factor; PDGF-b = Platelet-derived growth factor B-chain;  
PEG = polyethylene glycol. 

 
Several modifications of the general selection process scheme have been described in order to 

achieve different goals. For example, the toggle-SELEX strategy is used for the selection of potentially 
therapeutic nucleic acids [56]. Toggle-SELEX was designed for the isolation of aptamers with a broad 
range of specificities for closely related targets, such as the homologous proteins of different species. 
These aptamers were obtained by performing the selection procedure for related targets (i.e., 
homologous proteins) in alternating cycles. Such alternation ensures that the RNA or DNA variants 
resulting from selection will bind to both proteins, most likely to domains conserved between them. 
Sullenger’s group described an in vitro selection strategy in which RNA aptamers that bind both 
human and porcine thrombin were selected by "toggling" the protein target between the human and 
porcine forms in successive rounds of selection [56]. This yielded a family of aptamers, all of which 
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bound both thrombin types with high affinity. Toggle-25, a characteristic member, inhibited two of 
thrombin's most important functions: plasma clot formation and platelet activation [56]. This strategy 
could facilitate the isolation of ligands with properties required for gene therapy or other therapeutic or 
diagnostic applications. 

6.1. Aptamer-based anti-degenerative disease agents 

To date, the only aptamer approved by the FDA [73], known as Pegaptanib or Macugen, was 
approved in December 2004 for the treatment of wet type age-related macular degeneration (AMD). 
This aptamer binds to vascular endothelial growth factor, VEGF165 [57,74], the main isoform of a 
family of growth factors involved in promoting blood vessel development and maintenance via 
tyrosine kinase receptor signaling. VEGF165 is also involved in several pathological processes such as 
AMD, diabetic retinopathy and cancer [75]. A Phase II clinical trial to evaluate the use of this aptamer 
in the fight against diabetic retinopathy is currently underway [76]. The selection procedure involved a 
2’-fluoro-pyrimidine (2’-FY)-modified RNA pool. Additional modifications were made after selection 
by adding 2’-O-methyl (2’-MR) to all purine residues of the aptamer except two, by adding a 3’ cap, 
and by adding polyethylene glycol (PEG; 40 kD) to the 5’ end (Figure 3). The Macugen aptamer binds 
to the heparin-binding domain of VEGF165 [75,77] and efficiently inhibits the growth of blood vessels 
[57,74]. This agent is of particular interest with respect to preventing tumor angiogenesis.  

Figure 3. Pegaptanib aptamer. Proposed secondary structure model of the pegaptanib 
aptamer is indicated on the left. All pyrimidines were 2’-fluoromodified during selection 
procedure. All purines of the aptamer were 2’-O-methyl-modified after the selection. 
Additionally 40 kDa polyethylene glycol was added in 5’-end and an inverted 3’-3’-
deoxythymidine cap in 3’ the end. Chemical structure of indicated modifications is shown 
on the right [57,74].  
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Different aptamers are currently being tested for the treatment of other degenerative diseases. Niu’s 
group attempted to interfere with the function of the GluR2 AMPA receptor associated with cerebral 
ischemia and amylotrophic lateral sclerosis [78]. A selected aptamer known as AN58 acts as a 
glutamate antagonist preventing glutamate-induced activation of the cationic channel. Interestingly, the 
aptamer adopts two mutually exclusive non-interchangeable isoforms that are both necessary for 
proper inhibition to occur [79]. Recently, new RNA aptamers have been isolated that bind to the Nogo-
66 neural receptor as antagonists of myelin-derived ligands. Nogo-66 signaling blocks neurite 
outgrowth, but the binding of the aptamers allow axon growth in rat ganglion cells in vitro [80]. This 
aptamer is of special interest in the search for agents that aid neural repair, e.g., after spinal  
cord trauma. 

Aptamers can also be targeted against disease-causing proteins such the scrapie isoform of the prion 
protein (PrPSC). A 2’-FY RNA aptamer known as SAF-93 [81] has been shown to prevent its 
aggregation in cell free systems, while a 2’-amino-2’-deoxypyrimidine-modified aptamer known as 
DP7 slows down its aggregation in neuroblastoma cells [35]. Both aptamers target the same conserved 
region involved in prion interactions. 

6.2. Anti-inflammatory aptamers 

Neutrophil elastase (hNE) is involved in the pathogenesis of inflammatory diseases such as acute 
respiratory distress syndrome (ARDS), septic shock, emphysema and arthritis, as well as ischemia-
reperfusion injuries [82]. A covalent inhibitor of hNE, a diphenyl phosphate derivative of valine, has 
been coupled to an RNA library to enhance its binding to hNE [83]. After in vitro selection, an RNA 
aptamer conjugated with DNA:valP (RNA10.11:DNA:valP) was isolated that binds hNE with high 
affinity. The bound molecule, unlike the aptamer RNA 10.11 or DNA:valP alone, also inhibits lung 
inflammation in an ex vivo rat model of ARDS [83]. More efficient inhibitors of hNE were obtained 
from a valyl phosphonate:DNA pool [84]. After selection, aptamer inhibitor ED45 inhibited hNE 
formation two orders of magnitude greater than RNA.10.11:DNA:valP [83]. A truncated DNA aptamer 
version named NX21909, composed of two annealed DNA oligonucleotides, was tested in a rat model 
of lung inflammation and was found to inhibit neutrophil infiltration by 53% at a dose of 40 nmol [85]. 

6.3. Anti-immunoglobulin E aptamers 

Immunoglobulin E (IgE) plays an important role in protecting mammals from parasites [86]. 
However, its overproduction due to exposure to environmental antigens can result in allergies, atopic 
dermatitis and allergic asthma [87]. DNA selection was performed against human IgE to produce 
aptamers that bind it with high affinity [88]. These aptamers inhibited the binding of IgE to its receptor 
FcεRI, and also prevented IgE-mediated cellular degranulation in the serum of patients with allergy to 
grass pollen. In patients exposed to grass pollen extract, the IC50s for the DNA aptamers were  
2–6 µM, but when triggered by anti-IgE antibodies they reached 200–300 nM. These DNA aptamers 
represent a novel class of IgE inhibitors that may prove useful in the fight against allergic diseases. 
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6.4. Aptamer-based therapy against cancer 

Cancer has been one of the diseases most targeted by aptamers. Alteration of the signaling pathways 
results in the escape of tumor cells from the control of cell division and apoptosis. The formation of 
metastases is also promoted. All of these processes have been the target of aptamers. The tyrosine 
kinase receptors (TKR) has been targeted by two aptamers: RET (rearranged during transfection) and 
HER 3 (human epidermal growth factor receptor). The RET aptamer, D4, a 2’-FY aptamer, was 
isolated by ex vivo selection against the extracellular mutant RETC634y receptor [89]. Briefly, an RNA 
population was incubated against a parental PC12 cell line and variants expressing different RET 
mutants as a negative selection step. The unbound fraction of RNA molecules was recovered and 
incubated against PC12 cells expressing the recombinant RETC634y receptor. The selected D4 aptamer 
inhibits neurite outgrowth and reverts the neoplastic phenotype of NIH/MEN2A cells in vitro [89] and 
in three dimensional collagen gel matrix cultures [90]. The HER-3 aptamer, a 2’-FY aptamer, known 
as A30, was isolated against the HER-3 monomeric extracellular domain; this prevents HER-2 
signaling via HER-3 heterodimerization in cell culture [91].  

Cell adhesion misregulation involved in metastasis has also been prevented by aptamers. The 
plasminogen activator inhibitor-1 (PAI-1) is overexpressed in breast cancer cells and binds to 
vitronectin, leading to the loss of adhesion. A 2’-FY aptamer known as SM-30, specific for 
plasminogen activator inhibitor-1 (PAI-1), restores cell adhesion to vitronectin-coated plates in vitro 
[92,93].  

Another type of therapeutic signaling modulation is the targeting of nuclear factor κB (NF-κB) 
inside cells. Maher’s group isolated two RNA aptamers, α-p50 and R1, by two independent in vitro 
selection procedures. These bind NF-κB p50 and p65 isoforms in vitro respectively [94,95]. These 
aptamers underwent further ex vivo selection using the yeast three-hybrid system [96,97]. The 
inhibition of NF-κB might be of therapeutic interest in different types of cancer, HIV-1 infection and 
inflammatory diseases. In fact, gene therapy with different anti-NF-κB aptamers administered via an 
adenoviral vector suppresses doxorubicin resistance in vivo in a lung tumor xenograft mouse model 
[98,99]. The inhibition of nucleophosmin oligomerization by an aptamer promotes higher p53 levels 
and, consistently, sensitizes cells to DNA-damaging-agent-induced apoptosis in cell culture [100]. 

The stimulation of the immune system can also be used in anti-cancer therapy. The activation of 
CD8+ T cells within a tumor would promote its cytotoxic involution. In this respect, the modulation of 
cytotoxic T-cell antigen-4 (CTLA-4), 4-1BB and OX40 receptors by aptamers has been explored. 
Multimeric aptamer forms frequently improve aptamer signaling properties and have proven especially 
importance in this area. It has been shown that an antagonist RNA aptamer against CTLA-4, a negative 
regulator of T-cell activation, inhibits its function [101], while an agonistic aptamer against 4-1BB, a 
major co-stimulatory receptor, leads to the activation of T cells [102]. Immunity against the tumor is 
induced in vivo in both cases. A specific aptamer for the dimeric murine OX40 combined with a 
dendritic cell-based tumor vaccine promotes tumor immunity in a xenograft melanoma model in  
mice [103].  

Aptamers have also been shown able to promote tumor cell death. When expressed in cells, an 
aptamer selected against nucleophosmin was shown to prevent the latter’s oligomerization. Higher p53 
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levels were therefore promoted that led to apoptosis. In addition, the sensitivity of cells to DNA-
damaging agents in cell culture was increased [100].  

Research into anti-angiogenesis aptamers has provided some very interesting results. Sullenger’s 
group reported the selection of specific RNA aptamers against the Ang1 and Ang2 genes [36,104]. 
Aptamer ANG9-4 binds to Ang1 and inhibits its signaling pathway, leading to the reduced survival of 
HUVEC cells in vitro [36]. Similarly, intraocularly administered aptamer 11-1.41 binds to Ang2 and 
inhibits angiogenesis in rat corneal micropockets [104]. A 3’ deoxythymidine cap protects this aptamer 
from RNases. The PEGylated version of this molecule was shown to inhibit tumor angiogenesis and 
growth in an in vivo murine metastatic colon cancer model following systemic administration [105]. 

While the large majority of aptamers have been isolated by SELEX [106], the anti-proliferative 
DNA aptamer AS-1411 was developed based on observations that guanosine-rich oligonucleotides 
have antiproliferative effects in tumor cells [107]. Molecular studies have shown that this aptamer 
binds to the cell surface protein nucleolin and inhibits the activity of NF-KB, a ubiquitous transcription 
factor, through intracellular complex formation [108]. Clinical studies of AS-1411 have focused on 
patients with renal, pancreatic and other solid tumors. The aptamer was administered to patients as a 
continuous infusion for 4 or 7 days.  

Selectins are a family of cell adhesion molecules expressed by leukocytes, endothelial cells and 
platelets [109]. They are involved in a number of inflammatory diseases as well as tissue injury and 
infection. DNA selection against the L-selectin/IgG fusion protein (LS-Rg) was performed to find 
aptamers that could be tested in vivo [110]. Aptamers LD201, LD174 and LD196 all bound with a Kd 
of 1.8 nM at 37 ºC. Truncated versions of these aptamers inhibited SL-Rg binding to its ligand sialyl 
Lewis X (sLeX) with an IC50 of 3 nM. Aptamer LD201t1 blocked L-selectin-mediated adhesion of 
human lymphocytes and neutrophils and inhibited human cell trafficking to peripheral and mesenteric 
lymph nodes in SCID mice. 

Platelet-derived growth factor (PDGF) is a ubiquitous mitogen and chemotactic growth factor in the 
form of three disulphide-linked dimers made of two homologous chains, A and B. It is involved in 
wound healing and is linked to the progression of numerous diseases, including atherosclerosis and 
glomerulonephritis [111,112]. A hallmark of malignant transformation is the loss of dependence on 
exogenous mitogenic stimulation; many tumor cell lines are thought to produce and secrete PDGF for 
this reason [113]. DNA selection against recombinant human PDGF-AB yielded DNA specific 
aptamers of the PDGF B-chain that bound with subnanomolar affinity [114]. The consensus secondary 
structure motif for most of the high-affinity ligands is a three-way helix junction with a three-
nucleotide loop at the branch point. The PDGF aptamers inhibited the mitogenic effects of PDGF-BB 
in cells that expressed PDGF β receptors [114,115]. PEG-modified aptamers in a rat model of 
mesangioproliferative glomerulonephritis led to a 64% reduction in mitoses by day 6, and 78% by day 
9. There was also a 95% reduction of proliferating mesangial cells by day 9 and a markedly reduced 
glomerular expression of the endogenous PDGF B-chain. Aptamer-treated animals also showed a 
reduced influx of monocytes/macrophages and the overproduction of glomerular extracellular matrix 
on day 6 [109]. Further studies revealed the inhibition of other disease mechanisms by the above 
aptamer in experimental glomerulonephritis [116,117].  

The expression of PDGF β receptors in tumors is associated with increased interstitial fluid pressure 
(IFP) in the dermis. This reduces the gradient between capillaries and the interstitium and impedes the 
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exchange of solutes, such as anticancer agents, over the capillary membrane [118]. Increasing this 
gradient may facilitate the transport of anticancer drugs to tumors [119]. To reduce the IFP, the PDGF-
B aptamers [109] were tested in a rat tumor model. The treated animals had an IFP of 9.7 mm Hg 
compared to 14.6 mm Hg in scrambled-RNA-treated animals [120]. Another DNA aptamer known as 
E1-0030 that targets the PDGF-B subtype is currently undergoing Phase I clinical trials as an anti-
vascular endothelial growth factor compound [121].  

6.5. Anti-vascular diseases aptamers 

Blood fluidity and blood vessel resistance are involved in numerous vascular diseases such as 
coronary and thrombotic syndromes and myocardial infarction. Certainly, these factors must be 
carefully controlled during coronary surgery. The proliferation of cardiac and vascular cells is key in 
the development of vessel resistance in diseases such as cardiac intimal hyperplasia, cardiac 
hypertrophy and atherosclerosis, as well as in the development of malignancies [122,123]. A recent 
study has reported the development of an RNA aptamer able to specifically recognize members of the 
E2F transcription factors involved in cell proliferation. The binding of the 2’-FY aptamer 8-2 mainly 
to E2F3, reduces intimal hyperplasia and the pathological proliferation and migration of vascular 
smooth muscle cells (VSMCs) after bypass surgery in a mouse model [124]. This aptamer avoids the 
side effects derived from cross reactivity with other members of the E2F family.  

In a different approach, SELEX has been performed with the E2F1 protein to find in vitro selected 
RNA aptamers that bind to and inhibit E2F activity. Clone E1 RNA was found to bind to E2F1 and 
blocked the latter’s attachment to its DNA binding site [125]. By impeding E2F activity, the E2F RNA 
aptamer inhibited S-phase induction by 90% compared to controls. Thus, both natural and in vitro 
selected aptamers appear able to limit cell proliferation. 

The coagulation signaling cascade offers several targets for the modulation of blood fluidity. The 
conversion of pro-thrombin to thrombin is delayed by a long half-life (15 h) 2’-FY aptamer targeting 
the catalyst factor VIIa in a dose dependent manner [126]. Nevertheless, the rapid restoration of 
cascade integrity is needed to prevent the harmful effects of coagulation deficiency. With this aim, an 
RNA-based aptamer-antidote system has been developed [127,128]. The REG-1 RNA aptamer targets 
factor XIa. An antisense RNA molecule was designed to specifically bind the 5’-half of the aptamer 
(the antidote). Binding of the antidote abolishes the aptamer’s binding to its target, thereby reversing 
the anticoagulant effect (Figure 4). Neither antidote nor aptamer have been seen to cause any adverse 
effect in Phase I clinical trials (Ia and Ib) when given to healthy people and patients with stable 
cardiovascular disease receiving antiplatelet therapy [61,63]. The results of another Phase I clinical 
trial (Ic) indicate that the anticoagulation effect can be modulated by varying the dose of antidote RNA 
[62]. In a recent Phase IIa trial, percutaneous coronary injection of the aptamer increased the activated 
clotting time (ACT) in patients immediately after its administration, reaching values close to those 
obtained with heparin. ACT values were restored 15 min after the administration of the antidote [129].  

Thrombin is a natural target for anticoagulation therapy and numerous aptamers have been 
generated with different capacities to inhibit its activity in vitro [56,70]. The Archemix Corp., in 
collaboration with ARCA Biopharma Inc. (formerly Nuvelo Inc.), has tested NU-172, a DNA aptamer 
against thrombin. In Phase I clinical trials, NU-172 was administered intravenously as a continuous 
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infusion to healthy volunteers. The results showed an increase in activated clotting time with a return 
to baseline when administration ceased (see Archemix Corp. website). A Phase II clinical study is 
currently underway with the goal of using NU-172 in coronary artery bypass graft surgery and 
percutaneous coronary intervention.  

Figure 4. Mechanism of the apatamer-antidote pair for anticoagulant therapy.The intrinsic 
pathway of the blood coagulation cascade involves the activation of factor X. 
Anticoagulation system REG1 consists of RB006 (drug), an injectable RNA aptamer that 
specifically binds to activated factor IX (IXa) and prevents the proteolytic cleavage of 
factor X; and RB007 (antidote), a RNA antisense oligonucleotide that neutralizes the 
anticoagulating effect of the aptamer RB006. In the presence of the antidote, the aptamer is 
released from factor IXa and clotting parameters return to normal. Together with activated 
factor VIII (VIIIa), factor IXa catalyzes the cleavage of factor X (pro-enzyme) to yield 
activated factor X (Xa), which is required for the blood clotting cascade. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A DNA/RNA aptamer conjugated to PEG, known as ARC-1779, generated against vWF (von 

Willebrand factor), a central factor in the adhesion of platelets to the endothelial surface at vascular 
injury sites [130], has been examined in a Phase I trial in healthy volunteers. The aptamer increased 
platelet function in a whole-blood assay sensitive to vWF-mediated platelet inhibition. Moreover, a 
slow intravenous bolus followed by 4 h of continuous infusion inhibited more than 95% of vWF 
function, which returned to baseline over 12-16 h after administration was suspended. 

NF-κB is involved in inflammation responses and modulates the synthesis of chemokines, 
interferons, major histocompatibility complex (MHC) proteins, growth factors, and the cell adhesion 
molecules that play a role in ischemia-reperfusion injuries seen in most myocardial infarctions [131]. 
A natural double stranded DNA aptamer was found that binds to NF-κB with high affinity. In a rat 
cardiac ischemia-reperfusion model, this aptamer significantly reduced the expected injury [115]. In a 
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rat cardioplegic arrest model, animals transfected with the NF-κB DNA aptamer showed improved 
recovery of left ventricular function as well as coronary flow three days post-transfection compared to 
scrambled-DNA controls (97% vs. 61%) [132]. The aptamer-treated group also showed a lower 
percentage of neutrophil adhesion to endothelial cells (38% vs. 81%) and a lower level of interleukin 
IL-8 (109 vs. 210 ng/mg). The same aptamer was also studied in a murine model of nephritis, in which 
it abolished glomerular inflammation and the expression of inflammatory markers IL-1α, IL-1β, IL-6, 
ICAM-2 (intracellular adhesion molecule 2), and VCAM-1 (vascular cell adhesion molecule 1) [133]. 
A rat global brain ischemia model showed inhibition of TNF-α, IL-1β and ICAM-1 expression in NF-
κB aptamer-treated animals after 1 h of ischemia. Moreover, 7 days after ischemia, neuronal damage 
was significantly attenuated in the NF-κB-aptamer-treated group compared to controls [134]. 

6.6. Anti-pathogen applications of selection procedures. 

The proteins of different pathogens have also attracted the attention of researchers as targets for 
inhibitory nucleic acids. A recent study reported the use of a 2’-FY aptamer against the extracellular 
domain of the erythrocyte membrane protein 1 (PfEMP1) of the parasitic protozoan Plasmodium 
falciparum, achieving the efficient inhibition of erythrocyte rosseting in blood cultures [135]. 

RNA viruses, especially HIV-1 and HCV, have been the main targets for therapeutic nucleic acids 
with catalytic activity. Rossi’s group designed a very interesting ex vivo selection procedure to identify 
anti-HIV hammerhead ribozymes. A pool of hammerhead catalytic domains containing randomized 
binding arm sequences was assayed against an HIV-1 chimera containing the thymidine kinase gene. 
After cell transfection of the ribozyme population expressed under the control of the U16snoRNA 
promoter, gancyclovir-resistant cells were selected. Such antibiotic resistance suggests the presence of 
an active anti-HIV ribozyme [136]. 

Banerjea’s group designed a strategy to identify accessible cleavage sites within the HIV-1 gag 
RNA and to pick out DNAzymes effective against this target [137]. Two DNAzyme variant 
populations were synthesized. The specificity of the first was limited to all possible AUGs in the target 
RNA, whereas the second population was designed to cleave any potential target site. These options 
were made possible by either fixing the nucleotides immediately preceding the catalytic motif to CA 
(for AUG cleavage) or totally randomizing the seven bases on either side of the catalytic motif. 
DNAzymes selected from both populations showed target-specific cleavage activities in the presence 
of Mg2+, and significantly interfered with HIV-1-specific gene expression. This strategy could be used 
for the selection of effective target sites in any target RNA [137]. 

Viral proteins are favorite targets for the development of therapeutic aptamers. RNA aptamers have 
been selected against different viral enzymes and proteins involved in host-cell interactions, such as 
HIV-1 reverse transcriptase (RT), HIV-1 glycoprotein 120, HCV RNA-dependent RNA polymerase 
(RdRp), SARS coronavirus NTPase/helicase, and the hemagglutinin protein of human influenza virus 
B, all of which show efficient viral inhibition [138-143]. Human influenza B virus hemagglutinin 
protein has been inhibited in vitro by the RNA pool resulting from 15 rounds of in vitro selection 
[143]. Further studies are required for the identification of independent aptamers. 

Recently, a DNA aptamer (termed 93del) has been described that adopts a novel type of dimeric 
quadruplex folding and shows anti-HIV1 integrase activity in the nanomolar range in vitro by blocking 
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several catalytic amino acid residues essential for integrase function. Several other G-rich DNA 
aptamers have been identified as remarkable HIV1-IN inhibitors with IC50 values in the nanomolar 
range. T30695 is one such aptamer, and has been well studied in recent years, [144,145].  

Astier-Gi’s group described the characterization of two DNA aptamers (27v and 127v) that 
specifically bind to hepatitis C virus (HCV) RNA polymerase (NS5B), inhibiting its activity in vitro 
[146]. Aptamer 27v competed with the RNA template for binding to the enzyme and blocked both the 
initiation and elongation phases of RNA synthesis, whereas aptamer 127v exclusively inhibited 
initiation events. The authors also determined that, in addition to an in vitro inhibitory effect on RNA 
synthesis, aptamer 27v interfered with the multiplication of HCV JFH1 in Huh7 cells. The efficient 
cellular entry of these short DNAs, and the inhibitory effect observed in human cells infected with 
HCV, indicate that aptamers are useful tools for the study of HCV RNA synthesis; their therapeutic 
against HCV infection is also attractive [146]. 

An alternative and innovative potential therapeutic approach that has attracted much hope is the 
targeting of the structural domains of viral genomes which are frequently concentrated within 
untranslated terminal regions (UTRs). The HIV-1 trans-activation response (TAR) element is a 
polyfunctional RNA domain mainly involved in the activation of transcription by its binding to the 
viral protein Tat. Aptamer R06 binds the TAR element in vitro by a loop-loop interaction [147]. The 
intracellular expression of the aptamer by the nucleolar U16 RNA promoter inhibits HIV-1 infection 
by more than 90%. This strategy takes advantage of HIV-1 RNA nucleolar-trafficking to efficiently 
colocalize the aptamer and target [148]. The same R06 aptamer has been improved by the inclusion of 
extra binding RNA domains targeting additional 5’-UTR sites [149]. Our own results show that pre-
synthesized aptamers, or aptamers produced intracellularly via U6 RNA promoter-driven expression, 
both with multiple binding sites targeting the whole HIV-1 5’-UTR, efficiently inhibit HIV-1 
replication in cell culture (Sánchez-Luque et al., unpublished).  

There have been different attempts to isolate RNA aptamers against different domains of the HCV 
internal ribosome entry site (IRES) located within the 5’-UTR [150-152]. Aptamer 3-07 binds domain 
III-IV of HCV IRES inhibiting its activity in cell-free systems [151]. This inhibition was further 
improved by conjugation of 3-07 with 2-02 in a chimeric molecule that targets domain II [153]. RNA 
aptamer AP30 isolated against the HCV (-) strand IRES domain I partially inhibits HCV RNA 
replicase-mediated (+) strand synthesis, probably by interfering with (-) strand binding [154]. A step 
forward was the design of an innovative selection approach to identify chimeric ribozyme/aptamer 
RNA molecules against the entire HCV-IRES. Each selection cycle includes two consecutive selection 
steps for binding and cleavage of the viral RNA [155]. After six selection rounds, seven families of 
inhibitor RNAs were identified simultaneously targeting two sites within the HCV-IRES, one for each 
inhibitory domain. These chimeric RNA inhibitors promoted IRES inhibition by up to 95% in cell 
extracts, identifying new targets for the development of anti-HCV agents. Further characterization 
revealed up to 50% inhibition of viral translation and replication in a human liver cell line [156,157]. 

6.7. Aptamers working as antidotes. 

The ability of SELEX to generate aptamers against any kind of target provides the possibility of 
their being used as therapeutic antidotes or palliatives. Ricin is a toxic heterodimeric lectin from the 
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castor bean plant Ricinus communis. It disrupts protein synthesis by inactivation of the ribosomes. An 
aptamer isolated against the A chain partially restores protein synthesis levels in cell free translation 
systems and cell cultures [158]. A different approach has been explored for cocaine and anti-
convulsant MK-801 alleviation. Both compounds preferentially bind the open isoform of nicotine 
acetylcholine receptors (nAChRs) found at neuromuscular junctions, autonomic ganglia and in the 
central nervous system. RNA aptamers developed against nAChRs with equal binding affinity for both 
open and closed sodium-potasium channel isoforms partially restore isoform equilibrium, alleviating 
drug channel inhibition in cells [159-161]. 

6.8. Aptamers as delivery tools 

Aptamers can distinguish between different isoforms of the same protein or different members of 
the same family. Aptamer-siRNA/toxin conjugates have been developed to deliver therapeutic agents 
within a specific target cell. Ex vivo selection procedures performed against a specific cell type have 
yielded aptamers that are very efficiently taken up by those cells; they could therefore be used as a 
specific delivery tool. The TTA1 aptamer of Tenascin C, selected against the human glioma U251 cell 
line [110,162], was efficiently taken up by human tumor cells in a xenograft glioblastoma and breast 
tumor model [163]. Aptamers targeting the prostate-specific membrane antigen (PSMA) are those 
most used as delivery tools. Coffey’s group reported two 2’-FY RNA aptamers, A9 and A10, that bind 
specifically recombinant PSMA [164]. Since PSMA is continually recycled from the cell surface, these 
aptamers are appropriate vehicles for delivering therapeutic compounds via the endosomal pathway. 
Small interfering RNAs against pro-survival factors over-expressed in prostate cancer cells, such as 
Plk-1 and Bcl-2 and eukaryotic elongation factor 2, have been delivered by the A10 aptamer [165] 
[166]. The aptamer-driven uptake of Plk-1 Bcl-2 siRNAs leads to the death of PSMA-positive cells 
and tumor regression following intra-tumoral injection in mice xenograft models [165]. The 
improvement of the delivery vehicles were achieved in several ways and tumor regression through the 
almost complete loss of cell viability was observed when the eukaryotic elongation factor 2 siRNA 
was delivered by a dimeric aptamer [166]. 

The delivery of pharmacological compounds by aptamers has also been studied by different 
approaches. Doxorubicin (Dox) is a chemotherapeutic intercalating agent used against cancer. Dox 
intercalates between the aromatic rings of the GC pairs of the A10 aptamer, enhancing its cytotoxicity 
against PSMA-expressing cells and reducing the same in non-expressing cells [167]. The same results 
have been reported when using the A9-genolin conjugate, a toxin that blocks protein synthesis [168]. 
Side toxicity of the chemotherapeutic compound can be further prevented by encapsulating it within 
nanoparticles or nanoconjugates [169-171]. 

Aptamer B40, specific for HIV-1 gp120 [140], has also been used to deliver siRNA against infected 
cells. HIV-1 gp120 is found on the surface of infected cells and promotes cell fusion. Consequently, 
besides neutralizing infective particles, the B40 aptamer can be used for anti-HIV-1 siRNA delivery to 
infected cells. The first attempt involved a chimera of the B40 aptamer and siRNA targeting the 
overlapping rev tat region [172]. The chimera was internalized in an aptamer-dependent manner, with 
inhibition dependent on the interference machinery. The aptamer-siRNA linkage was further improved 
for the easy combination of siRNAs to the aptamer and better siRNA processing by the cellular 
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machinery. This improved chimera resulted in the specific inhibition of HIV-1 replication and 
infectivity in PBMC and cultured CEM T cells [173].  

Finally, aptamers can also be used to colocalize RNA inhibitors with their specific target molecules 
at the subcellular level. Aptamers can target RNA domains, e.g., in viral RNA genomes; they can 
therefore improve trans-cleaving ribozymes by anchoring them to their target. Chimeric molecules 
composed of a hammerhead ribozyme and an aptamer both targeting the HCV IRES have efficiently 
inhibited IRES activity in human hepatocyte cell cultures [156,157]. 

7. Conclusions 

The procedures used to identify DNA and RNA molecules of interest in large populations of variant 
nucleic acid molecules have contributed significantly to the development of nucleic acid-based 
therapeutic drugs. Aptamers show high specificity for their targets and have low toxicity and 
immunogenicity profiles. Since the 1990s, the design and isolation of specific aptamers using selection 
and evolution techniques has been optimized and even automated. This has lead to great advances in 
our knowledge of aptamers as therapeutic agents and has expanded our bank of inhibitory nucleic acids 
and their possible targets, which now include cytokines, cell receptors, viruses and even whole cells. 
An aptamer drug is now on the market, and several mid and late clinical trials in progress that appears 
to confirm the great potential of these tools. With the improvement and optimization of selection 
strategies, and the ongoing discoveries made in this field, success in the development of nucleic acid-
based therapeutics protocols might be predicted. 
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