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Abstract: Undue elevation of ROS levels commonly occurs during cancer evolution as a result of
various antitumor therapeutics and/or endogenous immune response. Overwhelming ROS levels
induced cancer cell death through the dysregulation of ROS-sensitive glycolytic enzymes, leading to
the catastrophic depression of glycolysis and oxidative phosphorylation (OXPHOS), which are critical
for cancer survival and progression. However, cancer cells also adapt to such catastrophic oxidative
and metabolic stresses by metabolic reprograming, resulting in cancer residuality, progression, and
relapse. This adaptation is highly dependent on NADPH and GSH syntheses for ROS scavenging
and the upregulation of lipolysis and glutaminolysis, which fuel tricarboxylic acid cycle-coupled
OXPHOS and biosynthesis. The underlying mechanism remains poorly understood, thus presenting
a promising field with opportunities to manipulate metabolic adaptations for cancer prevention and
therapy. In this review, we provide a summary of the mechanisms of metabolic regulation in the
adaptation of cancer cells to oxidative stress and the current understanding of its regulatory role in
cancer survival and progression.

Keywords: metabolic reprogramming; oxidative stress; metabolic adaptation; cancer stemness;
tumor metastasis

1. Introduction

Redox homeostasis is essential to maintain the normal structure and functions of
cellular components, but oxidative stress frequently occurs in cancer cells as a result of
oncogene activation, hypoxia, inflammation, and therapeutics [1–4]. Abrupt accumulation
of reactive oxygen species (ROS) has detrimental effects on various components of cancer
cells, leading to cellular dysfunction or even cell death [5–8]. In particular, metabolic en-
zymes are sensitive to ROS, with the most noted examples being glyceraldehyde-phosphate
dehydrogenase (GAPDH) and pyruvate kinase M2 (PKM2) in the glycolytic pathway [9].
The wide application of 2-flourine-18[(18)F] fluoro-2-deoxy-D-glucose (FDG) positron
emission tomography–computed tomography (PET–CT) demonstrated the glycolytic phe-
notype in most cancers. Therefore, ROS-induced oxidation and inactivation of GAPDH
and PKM2 can cause the depression of both aerobic and anaerobic glycolysis, leading to
decreased proliferation and/or cell death due to shortages of energy and tricarboxylic
acid cycle (TCA)-derived biosynthesis, especially in cancer cells in early stages that are
more dependent on glycolysis [10–12]. Despite these reports linking overt ROS damage
to metabolic pathways and other cellular components, it is noteworthy that cancer cells
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also adapt to such overwhelming ROS levels and metabolic impairment [13,14]. It has been
well documented that the oxidative pentose phosphate pathway (PPP) and the synthesis
of reduced glutathione (GSH) are enhanced, largely contributing to the production of
nicotinamide adenine dinucleotide phosphate (NADPH) and GSH, the most prominent
antioxidant molecules [15,16]. On the other hand, cancer cells tend to recruit carbon flux
from lipids and glutamine into nucleotide synthesis through the non-oxidative PPP [17–19]
and into TCA-coupled oxidative phosphorylation (OXPHOS) and biosynthesis [20,21],
which meet substrate and energy requirements. This relies on the wide crosslinks in the
metabolic pathways of glucose, lipids, and amino acids. This metabolic regulation is
known to be driven by a complex network consisting of several metabolic modulators,
including nuclear factor erythroid 2-related factor 2 (NRF2), hypoxia-inducible factors
(HIFs), forkhead box proteins (FOXOs), nuclear factor kappa-B (NF-κB), and/or RAC-alpha
serine/threonine-protein kinases (AKTs). Their activations depend on ROS levels and their
specific inducers, suggesting the heterogeneity of metabolic adaptation under different
pro-oxidant conditions.

Accordingly, metabolic regulation plays a central role in cancer adaptation to oxidative
stress. Mounting evidence has shown that metabolic regulation, involving the activation of
different metabolic modulators with oncogenic properties, metabolic reprogramming, and
optimized ROS levels, is tightly linked with cell fate decisions in cancer [22–25]. A better
understanding of how cancer cells orchestrate these metabolic modulators to achieve stress
adaptation has potential implications for developing redox- and metabolism-targeting
therapeutic strategies.

2. Oxidative Stress in Cancer Cells

Oxidative stress in cancer cells is induced by various endogenous or exogenous pro-
oxidant elements, such as hypoxia, inflammation, and numerous therapeutics. Upon these
stimuli, overwhelming ROS may be produced through a host of oxidoreductases in several
compartments of cells, primarily including mitochondria, cytoplasm, and the endoplasmic
reticulum (ER), inter alia [6,26].

Mitochondria contribute the most to both physiologically and pathologically endoge-
nous ROS [9,27,28]. Numerous studies have revealed that cancer cells exhibit remarkable
plasticity in metabolic phenotypes [29,30], with the most notable example being glucose
catabolism, which impacts endogenous ROS generation [31,32]. The selective switch to
anaerobic glycolysis in rapidly proliferating cancer cells, even under sufficient nutrition
and O2 (Warburg effect), favors the acquisition of a ‘pro-oxidant state’ partly due to the
diversion of pyruvate away from the mitochondria [33–35]. Despite the previously held
notion that cancer cells selectively rely on the Warburg effect, there is ample evidence to
indicate that cancer cells can switch between glycolysis and OXPHOS to cater to impend-
ing energy demands [33,34,36]. To this end, high OXPHOS-coupled aerobic glycolysis
is also a potential source of increased ROS levels in cancer cells [37–39]. For example,
CEM leukemia and HeLa cervical cancer cells overexpressing BCL-2 were shown to have
increased OXPHOS and mitochondrial ROS generation [40–42]. This suggests that both
hypo-functional and/or hyper-functional mitochondria are linked to the increased genera-
tion of ROS. Intriguingly, various antitumor drugs, as well as radiation, induce significant
oxidative distress in cancer cells [43–46], due in part to the impairment of mitochondrial
function and metabolism [40,45,47] (Figure 1). For example, the doxorubicin, bleomycin,
or platinum coordination complexe causes mitochondrial DNA damage or prevent DNA
synthesis by inducing cellular oxidative distress [47,48]. Furthermore, genetically unstable
clones generated upon irradiation also displayed higher intracellular ROS levels, potentially
due to reduced mitochondrial activity and respiration [49,50]. In addition, cancer cells
under hypoxia are associated with an increase in ROS, likely because of the deficiency in
O2 that prevents electron transfer across the mitochondrial complexes, thereby increasing
the possibility of electron leakage to generate ROS [27,51,52]. These findings indicate that
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the plasticity of mitochondrial function, under the control of various pro-oxidant elements,
contributes significantly to ROS regulation in cancer cells.

Figure 1. Oxidative stress and metabolic impairment in cancer cells. Mitochondria contribute the most
to both physiology- and pathology-derived ROS, of which a fraction is generated by tricarboxylic acid
cycle (TCA) enzymes, while the major portion is produced along the electron transport chain (ETC)
due to electron leakage at complexes I, II, and III. NOXs are another major source of ROS production
in cancer cells. These ROS-generating enzymes function by transmitting one electron from cytosolic
NADPH to O2 to produce a superoxide anion radical (O2

•−) that can be transformed to H2O2

immediately by superoxide dismutase (SOD) families. There are seven human NOX homologues,
NOX1–5, dual oxidase 1 (DUOX1), and DUOX2, distributed at the cell membrane, mitochondria, ER,
and nucleus. They can be activated by a wide variety of ligands, such as tumor necrosis factor (TNF),
angiotensin II, platelet-derived growth factor (PDGF), and pro-epidermal growth factor (EGF). The
endoplasmic reticulum (ER) serves as a repository wherein nascent proteins are folded and modified,
in which disulfide bond formation is essential for the primary structure of proteins and is catalyzed
by protein disulfide isomerase (PDI), which can be reduced by ER oxidoreductases, represented
by oxidoreductase 1 (ERO1), to generate H2O2 as a byproduct. Furthermore, several glycolytic
enzymes are vulnerable to elevated ROS levels and can be inactivated by redox modification, such as
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and pyruvate kinase M2 isoform (PKM2),
which collaboratively cause metabolic stress characterized by a deficiency of carbon sources for ATP
generation, lactate secretion, and TCA-driven anabolic biosynthesis.

Cytoplasmic ROS-producing enzymes are represented by members of the NADPH
oxidase (NOX) family, such as NOX1-4, whereby cancer cells respond to various extra-
cellular stimuli [53,54]. Several studies have shown the role of ROS generation in cancer
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cells, particularly from the standpoints of oncogene activation, chemoresistance, survival,
inflammation, and metastasis. For instance, NOXs can be activated by a wide variety
of ligands, such as tumor necrosis factor (TNF), angiotensin II, platelet-derived growth
factor (PDGF), and pro-epidermal growth factor (EGF) [55,56] (Figure 1). Furthermore, the
function of NOX1 in generating superoxide anion radicals (O2

•−) was shown to be critical
in RAS-mediated cell transformation [57]. Similarly, the introduction of the dominant
negative mutant (N17) of GTPase RAC1, a subunit of NOX, reduced superoxide levels,
thus inhibiting the growth of mutant KRAS-driven cells [58].

The ER is also a ROS factory where nascent proteins are folded and modified to become
functional [59]. Disulfide bond formation is essential for the primary structure of proteins
and is catalyzed by protein disulfide isomerase (PDI). In a normal state, the oxidized
PDI can be reduced by ER oxidoreductases, represented by oxidoreductase 1 (ERO1), to
generate H2O2 as a byproduct [60], which maintains a high basic level of ROS in ER [61,62].
Furthermore, ROS production and release from the ER are significantly increased during
ER stress [63,64]. When misfolded proteins accumulate beyond a tolerable threshold within
the ER, an unfolded protein response (UPR) is induced to mobilize protein-folding capacity
and otherwise to promote cell apoptosis [60,65]. ER stress is frequently documented in
chemotherapies and radiotherapies because DNA and enzyme damage basically produce
a large amount of abnormal proteins [66,67]. In addition, NOX4 and NOX5 were found
in the ER and act, in a way, as their cytoplasmic members. However, the restoration of
ROS levels with the endogenous antioxidant N-acetylcysteine (NAC) did not significantly
prevent cancer cell death [68], indicating that ER stress-derived ROS seldom causes cancer
cell death directly.

3. Metabolic Stress Due to Overwhelming ROS

Excessively high ROS levels can induce damage to many cellular macromolecules,
including DNA, lipids, and proteins, which are essential for the cellular functions of cancer
cells [69,70]. Numerous metabolic enzymes are especially sensitive to oxidative stress, the
impairment of which results in metabolic stress.

Glycolysis and its coupled TCA and mitochondrial OXPHOS are essential for the rapid
proliferation of cancer cells, especially during tumorigenesis or macro-metastasis [10,71].
However, several glycolytic enzymes are vulnerable to elevated ROS levels and can be
inactivated by redox modification. For example, GAPDH, a key enzyme in glycolysis
that catalyzes the first step of the pathway by converting glyceraldehyde 3-phosphate
(GA-3P) into 3-phospho-glyceroyl phosphate (3P-G), can be redox-modified and -inhibited
to form sulfenic acids or S-glutathionylated at Cys152 in response to oxidative stress [72],
which leads to decreased carbon flux into anaerobic and aerobic glycolysis, as well as
endogenous serine and one-carbon synthesis. Similarly, pyruvate kinase M2 isoform
(PKM2), a glycolytic limiting enzyme catalyzing phosphoenolpyruvate (PEP) to form
pyruvate, can undergo oxidative modifications and inhibition at Cys358, thus leading to
the depression of carbon flux into lactate synthesis and TCA [62,73]. The inhibition of
GAPDH and PKM2 collaboratively causes a deficiency of carbon source-supported ATP
generation, lactate secretion, and TCA-driven biosynthesis (Figure 1). In addition, the
activity of the mitochondrial trifunctional protein subunit β (TPβ), a critical enzyme in
fatty acid oxidation that catalyzes 3-ketoacyl-CoA to form acetyl-CoA, can be inhibited by
Cys458 oxidation, thus restraining the carbon compensation to TCA from fatty acids [74,75].
Accordingly, oxidative stress can impair glycolysis and TCA function, thereby leading to
proliferation arrest or even death of cancer cells.

4. Metabolic Adaptation in Response to Oxidative and Metabolic Stresses

ROS detoxification is carried out by a group of non-enzymatic molecules and enzymes
represented by GSH, NADPH, thioredoxin (Trx), and superoxide dismutase (SOD). Among
these, SODs are antioxidant enzymes that catalytically dismutate O2

•− into H2O2 [76,77].
The Trx/thioredoxin reductase (TrxR) system exerts a similar mechanism to GSH in ROS
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scavenging [78,79], mediating repair of oxidized proteins [80]. The antioxidative capacity
of these enzymes is determined by their expression, which is transcriptionally activated
by certain transcriptional factors, indicating that they may not be involved with timely
response to oxidative distress. In contrast, the GSH-correlated system is the most promi-
nent and rapidly regulated antioxidant defense mechanism, comprising the antioxidative
molecule GSH that reduces H2O2 and ROOH into H2O and ROH, respectively. Weighted
equally with GSH in this antioxidant system is NADPH, a molecule mainly derived from
the oxidative PPP [81], which reduces oxidized glutathione (GSSG) back to GSH through
the action of glutathione reductase (GR) [9,82]. In addition to ROS scavenging, cancer cells
are likely to strengthen carbon flux from lipids and/or glutamine into TCA and lactate, thus
meeting essential energy and biosynthesis demands. Notably, these adaptive metabolic
changes are performed, alternatively, through the activation or inactivation of metabolic
enzymes in certain steps that are systemically controlled by several metabolic modulators
which also act as ROS sensors [83]. The activation of these metabolic modulators and their
processes of metabolic remodeling are the mechanisms of adaptation to oxidative stress
and metabolic impairment that are tightly linked with oncogene activation, therapeutic
resistance, hypoxic resistance, and immune escape.

4.1. Activation of ROS Sensors and Metabolic Modulators

Compared with intricate metabolic reprogramming, upstream metabolic modulators,
represented by NRF2, HIF, FOXO, NF-κB, and AKT, may present more druggable targets
for modulation. ROS sensors and metabolic modulators can be activated by direct oxidative
modification or through other ROS signaling, which processes depend on their specific
inducers. For example, HIF pathways are generally induced by hypoxic stress and elevated
ROS [84]. Similarly, NF-κB is mainly responsible for metabolic and redox responses to
immune and inflammatory stimuli. On the other hand, the basal activity or expression of
these ROS sensors and metabolic modulators has been wildly reported as being upregulated
in cancers, which suggests their oncogenic properties that render an intrinsic capacity for
metabolic adaptation in oxidative distress. These ROS sensors and metabolic modulators
therefore play a central role in redox regulation by sensing ROS levels as well as driving
gene expression to cause metabolic reprogramming, thus optimizing cancer cell survival
and proliferation upon oxidative stress.

4.1.1. NRF2

NRF2 is a non-specific ROS sensor and powerful metabolic modulator [85–87], which
functions via a specific DNA sequence, referred to as the antioxidant response element
(ARE), a cis-regulatory element found in the promoter region of several antioxidant genes,
including SODs, as well as a number of critical enzymes and transporters in substrate and
energy metabolic pathways [71,88]. NRF2 is known to be upregulated by ROS stimulation
and oncogenic activation. The NRF2-Kelch-like ECH-associated protein 1 (KEAP1) sys-
tem represents the paradigmatic ROS sensor apparatus [24,89]. Under resting conditions,
NRF2 is constitutively degraded by the KEAP1-Cullin 3 (CUL3) E3 ligase complex. Dur-
ing oxidative stress, the KEAP1 system is directly modified by ROS, thereby leading to
conformational changes in the KEAP1–CUL3 complex that disable the ubiquitination of
NRF2, allowing nascent NRF2 to freely translocate into nuclei (Figure 2) [90]. In addition,
there is mounting evidence showing the oncogenic activation of NRF2 in various malignant
processes as a result of gene mutation and/or activation of other oncogenes or signaling
pathways governing the transcription or degradation of NRF2, thereby conferring on cancer
cells a more reduced intracellular environment [91,92]. Interestingly, DNA sequencing of
human-derived and lab-induced tumor tissues revealed that both NRF2 and KEAP1 are
commonly mutated in the region encoding their binding domain, resulting in dissociation
and subsequent degradation of NRF2 [93–96]. Additionally, some malignant markers, such
as DPP3, PAQR4, and BRCA1, were found to competitively bind to KEAP1 or NRF2, thus
interfering with their interaction (Figure 2) [97–99]. Notably, the transcription of NRF2
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can be activated by several oncogenes, such as KRAS, B-RAF, and c-MYC, to elevate its
basal level, mediating oncogene-induced tumor initiation and progression [99–101]. A
recent study also showed that the removal of a post-translational modification, glycation,
from NRF2, mediated by Fructosamine-3-kinase, is critical for the oncogenic function of
NRF2 [102]. NRF2 expression and activity in response to oxidative stress largely deter-
mine the metabolic program and antioxidant capacity of cancer cells [71,87,92]. A host
of metabolic enzymes are transcriptionally upregulated by NRF2 (Figure 3), including
enzymes in the oxidative and non-oxidative PPPs [71,103], serine/glycine biosynthesis [87],
GSH synthesis, glutaminolysis [104], and lipolysis [105,106]. This suggests that NRF2
activation has multiple purposes in supporting energetic, anabolic, and antioxidant needs
in response to oxidative stress.

Figure 2. Activation of ROS sensors and metabolic modulators. NRF2-Kelch-like ECH-associated
protein 1 (KEAP1) system represents the paradigmatic reactive oxygen species (ROS) sensor apparatus.
Under normal conditions, NRF2 is degraded by the KEAP1–Cullin 3 (CUL3) E3 ligase complex.
During oxidative stress, the KEAP1 system is directly modified by ROS, which leads to conformational
changes in the KEAP1–CUL3 complex, thus disabling ubiquitination and degradation of NRF2.
During normoxia, the proline residues of hypoxia-inducible factor α (HIFα) are hydroxylated by
prolyl hydroxylases (PHDs) in the presence of oxygen (O2), iron (Fe2+) and α-ketoglutarate. Under
hydroxylation, HIFα is polyubiquitylated by the von Hippel–Lindau tumor suppressor protein
(pVHL) complex and guided for proteasomal degradation. Homodimers of IKKγ can be formed
through ROS-induced disulfide bonds, thus potentiating its downstream effect on NF-κB. The
PI3K-AKT pathway can be stimulated by ROS through phosphorylation and inhibition of tensin
homolog (PTEN). In addition, AKT also controls the activity of NRF2, HIFα, NF-κB, and FOXO. The
FOXO family are activated by ROS signaling but inhibited by the canonical insulin receptor through
PI3K/AKT in the presence of growth factors. Furthermore, ASK1/JNK pathways mediate FOXO
activation upon oxidative stress, in which ROS-induced homodimers of ASK1 directly lead to the
activation of JNK, a kinase predominantly facilitating the nuclear translocation and activation of
FOXO through phosphorylation.
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Figure 3. Metabolic adaptation to oxidative stress and metabolic impairment. Several metabolic
enzymes are vulnerable to elevated reactive oxygen species (ROS) levels, including glyceraldehyde-
3-phosphate dehydrogenase (GAPDH), pyruvate kinase M2 isoform (PKM2), and mitochondrial
trifunc-tional protein subunit β (TPβ). Metabolic adaptation during oxidative stress depends on
the collaboration of several metabolic modulators that serve to promote metabolic reprograming
through regulating the expression of metabolic enzymes. The transcriptions of a host of enzymes in
the pentose phosphate pathway (PPP), the serine (Ser)-one carbon pathway, the glutathione pathway
(GSH), and glutaminolysis are driven by nuclear factor erythroid 2-related factor 2 (NRF2), including
hexokinase 2 (HK2), glucose-6-phosphate dehydrogenase (G6PD), phosphogluconate dehydro-
genase (PGD), transaldolase (TALDO), transketolase (TKT), putrescine aminopropyltransferase
(PAPT), methylenetetrahydrofolate dehydrogenase 2 (MTHFD2), phosphoglycerate dehydrogenase
(PHGDH), phosphoserine phosphatase (PSDH), phosphoserine aminotransferase 1 (PSAT1), serine
hydroxymethyltransferase 2 (SHMT2), glutamate-cysteine ligase (GCL), cystine/glutamate trans-
porter (xCT), solute carrier family 1 member 5 (GLC1A5), and malic enzyme 1 (ME1), while several
other enzymes involved in the de novo synthesis of fatty acids are transcriptionally inhibited by
NRF2, such as acetyl-CoA carboxylase 1 (ACC1), ATP-citrate lyase (ACL), and fatty acid synthase
(FAS). Hypoxia-inducible factor (HIF) members promote the expression of enzymes involved in
anaerobic glycolysis, de novo synthesis of fatty acids, and glutaminolysis, including glucose trans-
porters (GLUTs), GAPDH, PKM, siah E3 ubiquitin protein ligase 2 (SIAH2), pyruvate dehydrogenase
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kinase (PDK), lactate dehydrogenase A (LDHA), and glutaminase GLS; on the other hand, HIFs
inhibit the expression of enzymes governing the degradation of fatty acids, such as acyl-CoA dehydro-
genase long chain (LCAD) and acyl-CoA dehydrogenase medium chain (MCAD). Several enzymes
involved in the PPP, degradation of fatty acids, and glutaminolysis, including GLUT, PGD, TALDO,
ribulose-5-phosphate-3-epimerase (RPE), acetyl-CoA synthetase (ACSS), and glutamate dehydroge-
nase (GDH), are transcriptionally activated by forkhead box protein O (FOXO). Nuclear factor-κB
(NF-κB) promotes the transcription of PKM and glutamic-oxaloacetic transaminase 2 (GOT2). In
addition, the activity of TKT, PDK, and ACL is regulated by Serine/Threonine Kinase 1 (AKT).
G-6P, glucose-6-phosphate; 6P-GL, glucono-1,5-lactone-6-phosphate; 6P-G, gluconate-6-phosphate;
RL-5P, ribulose-5-phosphate; R-5P, ribose-5-phosphate; IMP, inosine 5’-monophosphate; F-6P, fructose-
6-phosphate; GA-3P, glyceraldehyde-3-phosphate; 3P-P, 3-Phosphonooxypyruvate; Gly, glycine; Me-
THF, methylenetetrahydrofolate; Cys, cysteine; Glu, glutamate; 1, 3BP-G, glycerate-1, 3-biphosphate;
3P-G, glycerate-3-phosphate; PEP, Phosphoenolpyruvate; MCTs, monocarboxylate transporters;
PDH, pyruvate dehydrogenase; A-CoA, acetyl-CoA; OAA, oxaloacetate; α-KG, α-ketoglutarate;
OGDH, oxoglutarate dehydrogenase; Gln, glutamine; FA, fatty acid; OXPHOS, oxidative phosphory-
lation; CD36, fatty acid translocase; M-CoA, malonyl-CoA; FABP, fatty acid binding protein.

4.1.2. Hypoxia and HIFs

HIFs are a family of transcription factors that are activated in hypoxic states and stabi-
lized by hypoxia-induced ROS [107–109]. They consist of three α-subunits (HIF1α, HIF2α,
and HIF3α) and one β-subunit (HIF1β), which serves as a heterodimer with one α-subunit
and the β-subunit [110]. During normoxia, the proline residues of HIFα are hydroxylated
by prolyl hydroxylases (PHDs) in the presence of O2, iron (Fe2+), and α-ketoglutarate. Un-
der hydroxylation, HIFα is polyubiquitylated by the von Hippel–Lindau tumor suppressor
protein (pVHL) complex and guided for proteasomal degradation. Hypoxia prevents HIFα
hydroxylation and pVHL-dependent degradation, allowing HIFα to translocate to the
nucleus and dimerize with HIF1β to form an active transcriptional complex that binds
to the hypoxia-response element (HRE) (Figure 2). Through this process, mitochondria-
derived ROS likely facilitate the stabilization of HIFα, as genetically or pharmacologically
decreasing ROS levels were shown to reduce HIFα protein level [51,111,112]. Although the
mechanism underlying ROS-induced HIFα stabilization remains largely unknown, Fe2+

oxidization may be a reason [110].
Therefore, HIFs were not regarded as a strict ROS sensor and modulator until it was

found that H2O2 treatment of HeLa cells enhanced the transactivation of HIF1 by stabi-
lizing and re-distributing Sentrin/SUMO-specific protease 3 (SENP3) from the nucleoli
to the nucleoplasm, thus promoting the SUMOylating and activity of p300, a co-activator
of HIF1α [113,114]. In another study, NOX-mediated ROS production was shown to
trigger HIF1α activation via the ERK pathway in breast cancer cells [115]. Furthermore,
several subsequent studies on fibroblasts reported a positive effect of ROS on HIF1α trans-
lation [116,117]. Taken together, elevated ROS levels increase HIF activity via multiple
processes, thereby regulating metabolic adaptation to hypoxia-linked oxidative stress as
well as hypoxic stress. There is mounting evidence of metabolic modulations by HIFs,
including increased uptake of glucose, fatty acids, and glutamine [18,20,118], and upregu-
lated glycolysis, the non-oxidative PPP [18], lipid storage [118,119], GSH synthesis, and
glutaminolysis [20] (Figure 3). Additionally, HIF-induced metabolic modulation is also
mediated by NRF2, since the activation of HIFα was shown to promote nuclear local-
ization of NRF2 [120,121]. Accordingly, HIFs are responsible for metabolic adaptation
during oxidative stress under hypoxic conditions via supplying energetic, anabolic, and
antioxidant demands.

4.1.3. Inflammation and NF-κB

NF-κB was known to serve as a molecular lynchpin that links chronic inflammation to
increased cancer risk [122]. Classical NF-κB signaling is activated by several IKK-activating
cytokines, including TNF and IL-1, produced by macrophages and other immune cells,
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resulting in the crosstalk between cancer cells and the immune system [122,123]. Upon stim-
ulation, NF-κB signaling is activated following the phosphorylation and degradation of the
inhibitor of NF-κB (IκB) mediated by a IκB kinase (IKK) heterotrimer (IKKγ/IKKα/IKKβ).
This allows NF-κB to translocate to the nucleus and activate gene transcription (Figure 2).
Notably, an increase in ROS generation is invariably associated with immune activation
and inflammation, which affects the activity of NF-κB [124,125]. However, ROS-induced ox-
idative modifications of different effectors may lead to either a positive or a negative effect
on NF-κB activity [126,127]. An intricate crosstalk between NF-κB activation and intracel-
lular ROS amplification has been implicated in various processes of carcinogenesis and/or
cancer cell survival [128,129]. For example, NF-κB could potentially be involved in ROS
production as it has been shown to control the expression of COX2 and 5-LPO, two sources
of ROS generation [45]. In turn, NR-κB can be activated as a result of Zinc-doped copper
oxide nanocomposite (nZn-CuO NP)-induced ROS production in the growth of human
cancer cells [130]. Under H2O2 treatment, a homodimer of IKKγ can be formed through
ROS-induced disulfide bonds, thus potentiating its downstream effect on NF-κB [131]. On
the other hand, oxidation of IKKβ on Cys179 or oxidation of p52 on Cys62 may inhibit
NF-κB [126]. Nevertheless, due to its ability to positively influence the transcription of
antioxidant proteins, such as NRF2 and SOD, NF-κB is a redox-modulating transcription
factor and this antioxidant property is believed to be, at least in part, responsible for its
survival-promoting effect in cancer cells. As a metabolic modulator, NF-κB was found to
cause metabolic reprogramming of anaerobic glycolysis by upregulation of GLUT3 upon
deletion of p53, a transcriptional factor favoring mitochondrial respiration [132]. In a sepa-
rate study, NF-κB knockdown was found to stimulate OXPHOS through the upregulation
of mitochondrial synthesis of cytochrome c oxidase 2 (COX2), which was mediated by
p53 activation [133,134]. As such, the function of NF-κB in metabolic remodeling has a
tight link with p53. Furthermore, EGFR-induced activation of NF-κB was shown to inter-
act with HIF1α, thus leading to the upregulation of glycolysis through transactivation of
PKM2 [135]. Accordingly, NF-κB contributes to metabolic reprogramming to anaerobic
glycolysis under oxidative stress and inflammatory stress.

4.1.4. Nutrients and AKT

The PI3K-AKT pathway is one of the most commonly activated pathways in hu-
man cancers. It is activated in response to nutrient-correlated factors, such as insulin,
growth factors, and various cytokines, thus regulating key metabolic pathways, including
glucose metabolism and maintenance of redox homeostasis [17]. As ROS accumulation
may stimulate AKT activation through phosphorylation and inhibition of tensin homolog
(PTEN) [136,137], the PI3K-AKT pathway also acts as a ROS sensor and metabolic modula-
tor during oxidative stress. AKT activates enzymes involved in the non-oxidative PPP and
TCA-derived fatty acid synthesis, which indicates its role as a biosynthesis driver [138,139]
(Figure 3). Notably, AKT also controls other metabolic modulators, including NRF2, HIFα,
NF-κB, and FOXO [17] (Figure 2). In this way, FOXO was found to be inhibited due to
phosphorylation by AKT, which may provide a feedback loop among ROS, AKT, and
FOXO, ensuring a balance of FOXO activation. In addition, NRF2, HIFα, and IKKγ can
be dephosphorylated and activated via the phosphorylation and inhibition of glycogen
synthase kinase 3 (GSK3) by AKT [17]. Therefore, the PI3K-AKT pathway also plays a
positive role in mediating metabolic regulation in oxidative stress.

4.1.5. ASK1/JNK and FOXOs

Several studies have consistently revealed that FOXOs are required for normal stem
cells to resist oxidative stress [22,140,141]. Long known as an effector in the PI3K/AKT
pathway, FOXOs are involved in many cellular processes, including cell cycle regulation,
apoptosis, and metabolism [142]. The human FOXO family consists of four members,
FOXO1, FOXO3, FOXO4, and FOXO6, which are activated by ROS signaling but inhib-
ited by the canonical insulin receptor through the PI3K/AKT pathway in the presence of
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growth factors [17,142]. Under oxidative stress, redox modifications of transportin-1 and
FOXO4 result in interprotein disulfide-bridge formation and binding, which are required
for nuclear localization and activation of FOXO4 [143] (Figure 2). Additionally, ASK1/JNK
pathways mediate FOXO activation upon oxidative stress, in which the ROS-induced
homodimer of ASK1 directly leads to the activation of JNK, a kinase predominantly facil-
itating the nuclear translocation and activation of FOXO through phosphorylation [144].
As a metabolic modulator, FOXO3 was shown to drive the transcription of groups of
metabolic enzymes involved in glycolysis, the PPP, lipolysis, glutaminolysis, and GSH syn-
thesis in normal stem cells (Figure 3), which was confirmed by FOXO3 knockout [145,146],
though the role of FOXO as a metabolic modulator in oxidative stress has not been well-
defined. Nevertheless, FOXOs have also been well defined as negative effectors of cancer
stem cell (CSC) properties in various cancers [147–151], suggesting their tight relationship
with metabolic modulation in cancer cells. It has been reported that FOXOs response to
hypoxia-induced oxidative stress in cancer cells through suppressing nuclear-encoded
mitochondria-regulating genes [152,153], which suggests a role for FOXO3 in coopera-
tion with HIFs in serving metabolic adaptation to hypoxic oxidative stress. The effects of
FOXOs on cellular ROS levels are debatable, with one study having showed that FOXO3
knockdown led to decreased ROS levels in cholangiocarcinoma cells, which also protected
cells from oxidative-stress-induced cell death [154]. In this study, FOXO3 was found to
promote the transcription of KEAP1, and this FOXO3–KEAP1 axis was downregulated with
a corresponding hyperactivation of NFR2 in clinical cholangiocarcinoma samples [154]. In
contrast, several other studies have demonstrated that ROS levels were elevated following
FOXO3 knockdown in normal stem cells as a result of downregulation of genes involved
in the OXPHOS, PPP, and GSH synthesis pathways [145,146]. These contradictory results
indicate the potential functional differences of FOXOs in cancer cells compared with nor-
mal stem cells, which is likely dependent on their crosslinks with other ROS sensors and
metabolic modulators. Nevertheless, exogenous H2O2 treatment was found to activate
FOXO3 [155], while a separate study showed that FOXO3 depletion sensitized cholan-
giocarcinoma cells to H2O2-induced damage [154], demonstrating its role in controlling
adaptation to oxidative stress.

4.2. Adaptive Metabolic Reprogramming

Metabolic adaptation during oxidative stress often depends on the collaboration of sev-
eral metabolic modulators because more than one metabolic modulator will be activated
even in a certain specific inducer. It has been well documented that the activation of these
metabolic modulators by ROS can often be independent of their inducers [20,104,118,154].
For example, hypoxic oxidative stress may result in the activation of HIFs, NRF2, and
FOXO [20,152,156], and p53 deletion-induced oxidative stress may give rise to NRF2 and
NF-κB [132,157]. Furthermore, oxidative stress can be simply induced by H2O2 treatment
in vitro, but it always occurs along with other stresses in vivo; in other words, oxidative
stress is generally not the only consequence of its inducer, especially in hypoxia, which
leads to metabolic impairment through oxidative stress and oxygen deficiency [158]. Nev-
ertheless, these processes of metabolic remodeling also share common features, such as the
potentiation of anaerobic glycolysis, the PPP, GSH synthesis, and TCA-linked biosynthesis,
along with the inhibition of carbon flux from pyruvate to acetyl-CoA and OXPHOS.

4.2.1. PPP Upregulation

The PPP contributes to most NADPH and pentose, providing essential antioxidants, as
well as materials for the de novo synthesis of nucleotides, which is vital for cell proliferation
and the repair of DNA damage in cancer cells during oxidative stress [159–161]. It was
shown that drug or hypoxia resistance in CSCs correlated with elevated PPP activity and
NADPH generation [34,149,162]. During oxidative stress, glucose uptake is increased as a
result of the overexpression of glucose transporters (GLUTs) driven by FOXO, HIF1, NF-κB,
and AKT [132,145,163]. Furthermore, the carbon flux of glucose in the course of glycolysis
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is powerfully directed into the PPP through the activation of several enzymes in both
the oxidative and non-oxidative PPPs. For example, glucose-6-phosphate dehydrogenase
(G6PD) and 6-phosphogluconate dehydrogenase (6PGD), the two rate-limiting enzymes of
the oxidative PPP, can be transcriptionally upregulated by NRF2 and FOXO [71,145,164],
thereby increasing the generation of NADPH to support ROS clearance and de novo
nucleotide synthesis.

In addition, transaldolase (TALDO) and transketolase (TKT) in the non-oxidative PPP
are also transcriptionally controlled by NRF2, HIF, and FOXO, leading to increased intra-
cellular ribulose-5-phosphate (R-5P) [18,71,145]. In this process, TKT was also found to be
phosphorylated and activated by AKT [139]. Meanwhile, the expression of phosphoribosyl
pyrophosphate amidotransferase (PPAT) and methylenetetrahydrofolate dehydrogenase 2
(MTHFD2), two enzymes involved in the conversion of R-5P to inosine monophosphate
(IMP), are also upregulated by FOXO and NRF2, consecutively [145,165]. The potenti-
ation of the non-oxidative PPP provides abundant materials for the de novo synthesis
of nucleotides.

4.2.2. Reinforcement of Anaerobic Glycolysis

Reinforcement of anaerobic glycolysis is another common response of cancer cells to
oxidative stress (Figure 3). Cancer cells tend to produce ATP through anaerobic glycolysis
in response to oxidative stress, especially during hypoxia, potentially due to the fact that
mtOXPHOS-linked ATP generation would produce additional ROS. With the increased
uptake of glucose, as mentioned above, the expression of GAPDH and PKM2 can be
activated by HIF1 and NF-κB [135,158,166,167], thus promoting the synthesis of glucose-
derived pyruvate. Recently, it was found that the transcriptions of hexokinase 2 (HK2), an
enzyme phosphorylating glucose to produce glucose-6-phosphate (G-6P), and GAPDH can
be significantly upregulated through NRF2-dependent BTB and CNC homology 1 (BACH1)
activation [168]. Meanwhile, ROS-caused GAPDH and PKM2 inactivation is also attenuated
as a result of ROS scavenging. Furthermore, the increased pyruvate is more likely to
be directed into lactate synthesis (Warburg effect) rather than TCA because pyruvate
dehydrogenase (PDH), an enzyme catalyzing the synthesis of pyruvate-derived acetyl-CoA,
is inhibited by PDH kinase 4 (PDK4), which can be phosphorylated and activated by AKT or
transcriptionally activated by HIF1 and FOXO3 [20,145,152]. The conversion from pyruvate
to lactate is further supported by the activation of lactate dehydrogenase A (LDHA), an
enzyme that can be transcriptionally controlled by HIF1 [18,119]. In addition, separate
studies have found that the increased pyruvate is also derived from malate, a substrate in
TCA, due to the catalyzation of malic enzyme 1 (ME1), whose transcription is driven by
NRF2 during oxidative stress [71,169]. Therefore, the reinforcement of anaerobic glycolysis
during oxidative stress results in the increased lactate synthesis that is required for cancer
growth [170,171]. This is consistent with the upregulated synthesis of one-carbon units,
another group of materials essential for cell proliferation. This is mediated by the activation
of several enzymes, such as phosphoserine aminotransferase 1 (PSAT1) [172], in the course
of de novo synthesis of serine, indirectly driven by NRF2, which subsequently supplies the
synthesis of one-carbon units under the catalyzation of serine hydroxymethyltransferase
2 (SHMT2) [87]. Therefore, the reinforcement of anaerobic glycolysis is vital to meet the
energetic and anabolic demands of cancer cells during oxidative stress.

4.2.3. Increased Utilization of Glutamine

Mounting evidence shows metabolic remodeling to depend more on glutamine in
cancer under oxidative stress [173,174], one key reason being the increased GSH synthesis
that is critical for cancer cell survival against overwhelming ROS, and another reason being
the glutaminolysis which is a major source for TCA-derived biosynthesis. Several metabolic
modulators were shown to be responsible for the activated GSH synthesis pathway, includ-
ing NRF2, HIFs, and FOXO [20,71,145] (Figure 3). For example, the SLC1A5 and SLC7A11
(xCT) membrane transporters mediating the uptake of glutamine and cysteine, respec-
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tively, are positively regulated by NRF2 [157,174]. Furthermore, the glutamyl-cysteinyl
ligase (GCL), the rate-limiting enzyme catalyzing GSH synthesis, is also transcription-
ally activated by NRF2 [71,87,104]. In addition, the expression of SLC1A5 on both the
cytomembrane and the mitomembrane, as well as the GLS1, an enzyme mediating the
transformation of glutamine into glutamate, can be increased by HIFα [20,175,176].

On the other hand, separate studies showed potentiated glutaminolysis as a result
of the activation of glutamate dehydrogenase (GDH), regulated by NRF2, HIF1, and/or
FOXO during oxidative stress [104,145,177]. This leads to the production of α-ketoglutarate
(α-KG), a central substrate fueling TCA-linked biosynthesis, including the syntheses of
lactate, lipids, and pyrimidines, which are required for the proliferation of cancer cells due
to the blockage of the native TCA source, pyruvate-derived acetyl-CoA, as discussed before
(Figure 3). In particular, malate is increasingly converted into pyruvate given the trans-
activation of ME1 by NRF2, as mentioned above, which further facilitates lactate synthe-
sis [71,169]. In addition, glutaminolysis-dependent syntheses of aspartate and its linked
pyrimidine in B-cell lymphoma cells are upregulated as a result of the transactivation of as-
partate aminotransferase 2 (GOT2) by NF-κB, thus supporting cell proliferation [178]. Inter-
estingly, a recent study showed that GDH1-derived α-KG can directly bind to and activate
IKKb and NF-κB signaling, thus promoting glucose uptake by upregulating GLUT1 [163].
Despite the reinforcement of TCA through glutaminolysis, OXPHOS is still suppressed
due to the inhibited expression of ECT genes by FOXO3 and NF-κB, such as COX1 and
COX2 [133,152,179,180]. Given this, metabolic remodeling to increase the utilization of glu-
tamine is essential to meet ROS scavenging and anabolic demands in response to oxidative
stress, thus favoring the survival and growth of cancer cells.

4.2.4. Remodeling of Fatty Acid Metabolism

Fatty acids serve as another important carbon source fueling the TCA through β-
oxidation, which can also be impaired by ROS, thereby resulting in ATP reduction [110,181].
The metabolic remodeling of fatty acids tightly depends on the oxygen state. In normoxia,
ROS-impaired fatty acid oxidation can be reinforced by the activation of NRF2 and FOXO.
For instance, the expression of CD36, a transporter importing fatty acids across mitochon-
drial membranes, is positively regulated by NRF2, contributing to increased fatty acid
uptake into mitochondria [182]. Additionally, FOXO is found to promote the transcription
of acetyl-CoA synthetase (ACSS), a critical enzyme mediating the synthesis of fatty acid-
derived acetyl-CoA [145]. On the other hand, the de novo synthesis of fatty acids derived
from citrate is inhibited as a result of attenuated expression of several intrinsic enzymes
regulated by NRF2, such as ATP-citrate lyase (ACL), acetyl-CoA carboxylase 1 (ACC1), and
fatty acid synthase (FAS) [164,183,184] (Figure 3).

Increased uptake and de novo synthesis of fatty acids results in lipid storage [118,185,186].
In particular, the expressions of both medium- and long-chain acyl-CoA dehydrogenases
(MCAD and LCAD), enzymes initiating β-oxidation, are inhibited by HIF1 [119] (Figure 3).
Another study showed that the glutamine-dependent synthesis of fatty acids is potentiated
in cancer cells in response to hypoxia, which is mediated by HIF1-driven activation of
E3 ubiquitin-protein ligase SIAH2, and leads to ubiquitination and degradation of α-KG
dehydrogenase (OGDH) and blockage of the conversion of α-KG into succinate [185].
Instead, the glutamine-derived α-KG is reversely converted into citrate, which initiates
the de novo synthesis of fatty acids [107,158]. In addition, the transcription of fatty acid
binding proteins (FABPs) 3 and 7, two fatty acid transporters on the plasma membrane,
are driven by HIF1, thus promoting fatty acid uptake from the exterior [118]. In the same
study, the intracellular lipid storage of cancer cells is known to protect against ROS and
support survival in hypoxia–reoxygenation [118].
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5. Metabolic Adaptation-Mediated Cancer Progression

Redox regulation has long been associated with cancer initiation and progression [187,188].
The activation of ROS sensors and metabolic modulators is involved in the regulation of
tumorigenesis or metastasis by metabolism-dependent and -independent ways.

5.1. Cancer Cell Stemness

ROS sensors and metabolic regulators were shown to have wide crosslinks with
CSC regulators, such as SOX2 and CD44, as well as CSC-related signaling pathways,
such as the Notch pathway and the Wnt pathway, thus contributing to the self-renewal
and proliferation of cancer cells. In a KrasG12D-driven pancreatic ductal adenocarcinoma
(PDAC) mouse model, upregulated NRF2 led to the MDM2-mediated activation of the
Notch pathway, a signaling pathway involved in multiple aspects of CSC biology [189],
thereby accelerating neoplastic progression [190]. Several HIF family members were
validated to regulate the expression of SOX2 and MYC [107]. In turn, MYC expression was
shown in another study to cause HIF-1α accumulation by enhancing OXPHOS and ROS
generation [191], which suggests that HIFs stimulate the expression of CSC markers in a
positive-feedback manner. Mounting evidence has validated that NF-κB mediates CSC
induction and maintenance [192,193]. Further, NF-κB p65 was found to form transcriptional
super-enhancers (SEs) at several CSC genes, including tumor protein p63 (TP63), MET
Proto-Oncogene (MET), and FOS Like 1 (FOSL1) [194]. Additionally, NF-κB was reported
to facilitate CSC properties by inducing the expression of lipid desaturases [195] and
the secretion of multiple cytokines [196], resulting in enhanced tumor formation. In
contrast, FOXOs have long been viewed as negative effectors of CSCs via downregulating
β-catenin [155,197], SOX2 [198–200], and CD44 [151].

In addition, several ROS-induing metabolic properties play roles in CSC regulation. It
was shown that NRF2-induced increased utilization of glutamine is required for the tumori-
genesis of Kras-driven spontaneous lung adenocarcinomas in mice [174]. The upregulation
of the PPP, another core event that promotes tumorigenesis, was shown to be associated
with the activation of NRF2 and PI3K-AKT in non-small-cell lung cancer (NSCLC) mouse
models [201]. Consistently, another study revealed that knockout of TIGAR, an enzyme
supporting PPP activation, by hydrolyzing both F-2,6BP and F-1,6BP back into F-6P, re-
duced proliferation and intraepithelial neoplasia precursor lesions in Kras-driven PDAC
mouse models [202]. Due to the demands of redox homeostasis and anabolic programs,
PPP-fueled tumorigenesis is believed to rely on the intrinsic synthesis of NADPH and
nucleotides [71,169,203]. Most notably, glucose and glutamine are known as major energy
and material resources of cancer cells and it has been well documented that they play
critical roles in CSC regulation, though this remains controversial. Numerous studies
have demonstrated that quiescent CSCs are dependent on OXPHOS, which is generally
fueled by aerobic glycolysis [34,191,204,205]. On the other hand, signaling that promotes
metabolic dependency on anaerobic glycolysis was reported to reinitiate tumor formation,
which is known to be driven by active CSCs (Figure 4A,B). For example, in response to p53
deletion, activation of anaerobic glycolysis was found to facilitate oncogene-induced cell
transformation of mouse embryonic fibroblasts through a positive feedback loop with NF-
κB signaling [132]. In contrast, HK2 deficiency-induced suppression of anaerobic glycolysis
markedly inhibited tumor development and extended lifespan in a mouse model [138]. In
this context, anaerobic glycolysis-dependent lactate accumulation and secretion into the
extracellular microenvironment may lead to acidosis and immunosuppression, favoring
immune escape and proliferation [206]. Several other studies consistently showed that
glutamine metabolism is critical for tumor growth in several types of cancer, including
acute myeloid leukemia [207,208], hepatocellular carcinoma (HCC) [169], pancreatic can-
cer [173,175], lung cancer [104,157], and neck tumors [185]. Mechanically, the maintenance
of a cellular redox state by the synthesis of GSH and ME1-catalyzing NADPH is believed
to facilitate cancer cell survival and proliferation [71,209]. Furthermore, a recent study
found that glutamine-deriving α-KG mediates the activation of NF-κB signaling through
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directly binding to IKKs, thereby promoting glucose uptake and tumor growth [163]. As
proliferating cells require abundant nutrients, thus shunting their metabolites into anabolic
pathways [71], the de novo syntheses of fatty acids and pyrimidines that fuel the duplica-
tion of the plasma membrane and nucleic acids, respectively, are also critical in supporting
cancer cell growth and proliferation [119,178,185].

Figure 4. Metabolic adaptation-linked cancer stemness and progression. Cancer cells may present
distinct metabolic phenotypes (oxidative phosphorylation, OXPHOS, or Warburg) or biofunctions
(tumorigenesis or metastasis) at certain reactive oxygen species (ROS) levels, depending on the
circumstances and intrinsic responses. For example, at normal ROS levels, cancer cells of the OXPHOS
phenotype depend on aerobic glycolysis, glutaminolysis, and lipolysis for fueling tricarboxylic acid
cycle (TCA)-coupled OXPHOS. This highly efficient usage of nutrients for ATP generation facilitates
the survival, rather than the proliferation, of cancer cells when facing a shortage of these nutrients (A).
On the other hand, cancer cells of the Warburg phenotype at normal ROS levels also depend on
glycolysis primarily for supporting lactate production and TCA-coupled biosynthesis, rather than
OXPHOS, such as the de novo synthesis of amino acids and fatty acids, which is known to facilitate
proliferation of cancer cells (B). Cancer cells during metastasis and tumor initiation share similarly
high ROS conditions and metabolic phenotypes. Extensive ROS blocks aerobic glycolysis, resulting
in lactate accumulation (C,D) and perhaps pentose phosphate pathway (PPP) activation when
proliferation is required in tumorigenesis (C). On the other hand, glutamine uptake and glutathione
(GSH) generation are upregulated (C,D). In addition, TCA function is recovered by glutaminolysis
and lipolysis when proliferation requires reactivation for tumorigenesis (C). PPP, pentose phosphate
pathway; GSH, glutathione.

5.2. Cancer Metastasis

The canonical process of cancer metastasis involves a complex succession of cellular
biological events, collectively termed the invasion–metastasis cascade, during which cancer
cells in primary tumors invade locally, survive in the vasculature, home into secondary
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sites, and reinitiate proliferation, thereby generating macroscopic, clinically detectable
metastatic colonizations [210]. Redox regulation has long been correlated with cancer
metastasis. Several studies showed that endogenous ROS accumulation, induced by
antioxidant factor deletion or ROS-producing enzyme activation, mediates the distant
metastasis of established tumors, which could be blocked by using exogenous antioxidants
NAC or vitamin E [202,211,212]. The wide crosslinks between redox regulation and cancer
metastasis continue to be investigated in an increasing number of studies that collectively
suggest that the fate decision of cancer cells largely depends on their adaptive changes
under oxidative stress. In these contexts, various metabolic factors were found to be
involved in the regulation of cancer metastasis, such as antioxidant capacity in a stressful
circulating environment, immune modulation, and energy supply for motility.

Several groups have validated the upregulated antioxidant factors within metastatic
lesions compared to primary tumors, such as SOD, GCL, G6PD, and NRF2 [211,213–215],
while separate studies have shown that elevated GSH promotes metastasis in both melanoma
and liver cancer [216,217], collectively indicating the importance of increased antioxidant
potential during metastasis. Compared to CSC properties, cancer metastasis is more likely
to depend on anaerobic glycolysis rather than the PPP (Figure 4D). For example, knockout
of TIGAR, a protein supporting PPP activation by hydrolyzing F-2,6BP and F-1,6BP back
into F-6P, promoted invasion and metastasis, meanwhile it reduced proliferation and in-
traepithelial neoplasia lesions in KRAS-driven PDAC [202]. Interestingly, in the same study
it was shown that knockout of NRF2 mimicked the effects of TIGAR knockout in promoting
invasion and metastasis in KRAS-driven PDAC [202]. Another study showed that NRF2 ac-
tivation, through KEAP1 loss, also facilitated cell migration and metastasis in KRAS-driven
NSCLC [96,168]. In the same study, BACH1-induced metastasis through upregulation of
glycolysis can be blocked by treatment with AZD3965, an inhibitor of the lactate secretory
channel [168], suggesting the critical role of lactate in mediating cancer metastasis. Lactate
secretion has been well documented to promote metastasis through stimulating angiogene-
sis and immunosuppression [206]. In addition, mtOXPHOS suppression is also believed to
facilitate cancer metastasis, potentially because cancer cells that depend on OXPHOS have
high endogenous ROS and may be more sensitive to stressful circulating environments [37].
For instance, BACH1-induced metastasis through upregulation of anaerobic glycolysis was
partially inhibited by dicholoroacetate, a PDK inhibitor that facilitates pyruvate conversion
into acetyl-CoA [168]. Furthermore, direct blocking of OXPHOS through the nonlethal
reduction of NAD(+) levels by interfering with nicotinamide phosphoribosyltransferase
expression was found to increase the metastasis of breast cancer [218]. Another study
found that a switch of metabolic dependency from OXPHOS to the Warburg phenotype by
silencing of peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC1α) [34]
conferred poorly metastatic melanoma cells with highly invasive potential [219], suggesting
that suppression of OXPHOS may promote metastasis at least partially through a feed-
back potentiation of anaerobic glycolysis and lactate synthesis. In this context, hypoxia
is known to play an important role, cancer cells being especially dependent on anaerobic
glycolysis to meet essential energetic requirements. Hypoxia-induced HIF activation also
leads to fatty acid synthesis and lipid storage, which regulates metastasis by stimulating
angiogenesis, immunosuppression, and migration [220,221]. Lipid droplets, in particular,
were shown to promote resistance to ROS in hypoxia–reoxygenation [118], which may
facilitate the survival of cancer cells that shuttle from hypoxic locations into normoxic
circulating environments. In addition, metabolic regulators can also stimulate cancer
metastasis in metabolism-independent ways. For example, NF-κB activation was shown
to result in the production of VEGF to stimulate angiogenesis and series of chemokines
to recruit immune cells into the tumor microenvironment, resulting in the promotion of
epithelial-to-mesenchymal transition (EMT), invasion, and metastasis [142].
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6. Summary and Perspectives

The criteria for “natural selection” apply equally to cancer cells and organisms. Under
harmful oxidative stress, cancer cells can survive only if they have sufficient antioxidant
capacity or escape from the stressful environment and eventually maintain a redox home-
ostasis that ensures normal biochemical and cellular biology. As discussed above, whereas
abnormally high ROS levels will promote cell death via apoptosis, necroptosis, and/or
ferroptosis, the fate decision of cancer cells under oxidative stress is crucially determined
by the outcomes of ROS scavenging and adaptive metabolic programs. The heightened
metabolic adaptation of cancer cells is closely associated with resistance to chemo- and
radiotherapy, as several commonly used anticancer drugs exhibit cytotoxicity at least par-
tially through excessive oxidative stress [47,222]. Notably, electrophiles, the molecules
generated simultaneously with ROS, are also responsible for resistance to ROS-producing
therapeutic chemicals in cancer therapy. During cellular redox reactions, ROS and reac-
tive electrophilic species are concurrently produced from the same compounds and then
attack various proteins in an independent manner [223]. It has been speculated that these
electrophilic derivatives may compete with ROS for binding to nucleophilic amino acids,
leading to tumor progression and masking the effect of ROS-inducing drugs [223]. There-
fore, identifying the protein targets of electrophiles may be a feasible strategy to deal with
chemoresistance caused by electrophilic stress. In a recent study, researchers created a
library of cysteines reactive to 285 electrophiles through streamlined cysteine activity-based
protein profiling (SLC-ABPP) [224]. This may further facilitate electrophilic stress-based
therapeutic regimens.

Interestingly, a group of metabolic modulators that also act as ROS sensors enhance
the expression of genes for ROS elimination and metabolic phenotype transition, thereby
helping cancer cells to adapt to and survive through oxidative stress or to escape from
the stressful environment by initiating the metastasis cascade. The dual functions of these
ROS sensors and metabolic modulators are supposed to be elaborately controlled, so that
cancer cells reach a balance between proliferation and metastasis. Furthermore, these
ROS sensors and metabolic modulators can be stimulated by ROS independently of their
specific inducers [113,124,142], which means that more than one metabolic modulator
may be activated in a certain oxidative condition. This highlights the importance of an
overview of the systemic control of metabolic adaptation collaboratively by these metabolic
modulators during oxidative stress, especially when it comes to a countereffect of two
different metabolic modulators, with a typical example being the fatty acid metabolism
regulated by NRF2 and HIF1 [119,164]. Nevertheless, the metabolic remodelings controlled
by these different metabolic modulators share major effects, such as upregulation of the
PPP, glutamine metabolism, and lactate synthesis, and suppression of mtOXPHOS, all
of which are required for cancer cell survival. Furthermore, the PPP and glutaminolysis
coupled TCA together provide requisite substrates supporting cancer cell growth and
proliferation, while the lactate advantage over mtOXPHOS plays a central role in driving
metastasis. These shared processes of metabolic remodeling provide clues for therapy de-
signs targeting enzymes performing critical functions, such as GLUT and SLC1A5 ensuring
the uptake of glucose and glutamine, respectively; G6PD and TKT limiting the oxidative
PPP and the non-oxidative PPP, respectively; PDK blocking aerobic glycolysis; and GDH
controlling glutaminolysis. However, there are still several problems that remain confusing.
For example, well-compensated TCA produces large amounts of NADH, leading to its
advantage over NAD+ due to mtOXPHOS suppression. This indicates that there may be
another means of consuming NADH that may be required by cancer cells for survival and
proliferation. In this context, NOXs may be a candidate, which were reported to oxidize
both NADH and NADPH [225], and to support glycolysis in cancer cells with mitochon-
drial dysfunction [226]. Furthermore, glutaminolysis is based on double deamination of
glutamine, which produces large amounts of ammonia that need to be transported outside
the cell. This suggests another important role for pyruvate, which receives an ammonium
to be converted into lactamine via the catalyzation of glutamic-pyruvic transaminase (GPT),
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which is another essential pathway in cancer cells. Notably, cancer cells undergo progres-
sion through stepwise transitions, from quiescent tumor initial cells (TIC) to proliferative
phenotypes, thus facilitating tumorigenesis, and, in turn, from proliferative phenotypes to
quiescent metastatic cells [227]. This may highlight the importance of the high plasticity of
metabolic programs in promoting metastasis in cancer; however, this is a subject that needs
further investigation.
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