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A multi modal approach 
to microstructure evolution 
and mechanical response 
of additive friction stir deposited 
AZ31B Mg alloy
Sameehan S. Joshi1,2, Shashank Sharma1,2, M. Radhakrishnan1,2, Mangesh V. Pantawane1,2, 
Shreyash M. Patil1,2, Yuqi Jin1,2, Teng Yang1,2, Daniel A. Riley1,2, Rajarshi Banerjee1,2 & 
Narendra B. Dahotre1,2*

Current work explored solid-state additive manufacturing of AZ31B-Mg alloy using additive friction 
stir deposition. Samples with relative densities ≥ 99.4% were additively produced. Spatial and 
temporal evolution of temperature during additive friction stir deposition was predicted using multi-
layer computational process model. Microstructural evolution in the additively fabricated samples 
was examined using electron back scatter diffraction and high-resolution transmission electron 
microscopy. Mechanical properties of the additive samples were evaluated by non-destructive 
effective bulk modulus elastography and destructive uni-axial tensile testing. Additively produced 
samples experienced evolution of predominantly basal texture on the top surface and a marginal 
increase in the grain size compared to feed stock. Transmission electron microscopy shed light on fine 
scale precipitation of Mg

17
Al

12
 within feed stock and additive samples. The fraction of Mg

17
Al

12
 reduced 

in the additively produced samples compared to feed stock. The bulk dynamic modulus of the additive 
samples was slightly lower than the feed stock. There was a ∼   30 MPa reduction in 0.2% proof stress 
and a 10–30 MPa reduction in ultimate tensile strength for the additively produced samples compared 
to feed stock. The elongation of the additive samples was 4–10% lower than feed stock. Such a 
property response for additive friction stir deposited AZ31B-Mg alloy was realized through distinct 
thermokinetics driven multi-scale microstructure evolution.

Magnesium alloys find applications in automobile, aerospace, and biomedical industries due to high specific 
strength resulting from a low density of these  materials1–5. Mg alloys also have excellent bio-compatibility6,7 and 
electromagnetic shielding  capability8. However, Mg alloys have tendency to oxidize during casting and they 
develop strong texture during deformation, thus putting limitations on processing of Mg alloys using conven-
tional methods such as casting and cold  working4,9. Therefore, researchers explored strategies to overcome these 
limitations by using additive manufacturing (AM) routes such as laser beam additive manufacturing (LBAM), 
wire arc additive manufacturing (WAAM), and additive friction stir deposition (AFSD)10–12. LBAM and WAAM 
techniques are based on fusion of the feed material which is in the form of powder or wire. Both LBAM and 
WAAM techniques depend on melting and consolidation of the precursor material. On the other hand, AFSD is 
a solid state method. The feed material used during AFSD is in the form of rods or chips that are available com-
mercially avoiding the usage of  powder13. This is especially important for Mg as its powder is highly  pyrophoric14.

AFSD works on the principle similar to friction stir processing (FSP). However, instead of a solid tool utilized 
for FSP, a hollow non-consumable tool is employed during AFSD. The feed material is fed through the hollow 
rotating tool which deforms plastically due to frictional heat generated between the tool, feed material, and the 
substrate. Such a friction results in softening of the feed material followed by its extrusion underneath the tool. 
The tool is then traversed for subsequent deposition of a layer. AFSD has evolved recently with development 
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of AM machines such as  MELD®. It has the ability of producing fully dense large components with complex 
 geometries15,16. AM of conventional  ferrous17 and non-ferrous18–20 alloys has been explored through AFSD.

Till date there have been very few reports published related to AFSD of Mg  alloys21–23. Work by Calvert 
demonstrated successful deposition of WE43 Mg alloy through ASFD, but it lacked in explaining the evolution 
of microstructures in correlation to the process  attributes21. Robinson et. al. demonstrated AFSD of AZ31B-Mg 
and examined the microstructural as well as mechanical property  evolution22. The tensile test results showed that 
there was ∼ 20% drop in 0.2% proof stress (0.2% PS) and identical ultimate tensile strength (UTS) for the AFSD 
processed AZ31B-Mg compared to the wrought AZ31B-Mg material. This work provided a limited explanation 
and rationale behind such a lowering of the mechanical properties. In another effort, Williams et. al. deposited 
WE43 Mg alloy through  AFSD23. Although these authors reported a ∼ 22 times reduction in grain size for the 
AFSD fabricated material compared to the feed stock, they still observed a ∼ 80 MPa reduction in 0.2% PS, ∼ 
100 MPa reduction in UTS, and 11% reduction in elongation compared to the feed material. Whilst this work 
examined various processing conditions during AFSD, it lacked in physical explanation about the structure-
property evolution in AFSD WE43 Mg alloy.

Based on above discussion, the mechanisms behind process-structure-property response in AFSD produced 
Mg alloys are not fully explored. Furthermore, compared to conventional FSP, AFSD involves addition of multi-
ple layers which may result in subjecting the previously deposited material to repetitive thermokinetics thereby 
potentially impacting the microstructure evolution. Experimental monitoring of thermophysical parameters 
during such a complex process is difficult and limited in terms of spatial as well as temporal resolution. In light 
of this, computational modeling of the multi layer additive deposition process can provide insights into the 
thermokinetic effects experienced by the AFSD produced material throughout the process. Such predictions 
of thermokinetics could be vital in uncovering the processing-structure-property response in the AFSD fabri-
cated material. While there are multiple computational modeling efforts related to conventional FSP and rotary 
friction welding (RFW)24–27, there is sparsity of literature related to simulation of AFSD process. Recently, a 
smooth particle hydrodynamics-based AFSD model has been  proposed28. However, the model was restricted to 
a single deposition track, thus lacking in prediction of the effects of repetitive thermokinetics associated with 
subsequently added layers. Furthermore, the reported computational run time was substantially high (> 30 hrs).

In light of the limited experimental and computational efforts related to the AFSD process highlighted above, 
the current work systematically investigated the multi scale microstructure evolution and resultant mechanical 
property response in AFSD AZ31B-Mg alloy. The microstructure observations were explained using spatial and 
temporal thermokinetics predicted by a multi layer computational process model. The mechanical properties of 
the AFSD AZ31B-Mg were evaluated using non destructive effective bulk modulus elastography (EBME) and 
destructive uni-axial tensile tests. The observed property response was analyzed based on the micro and nano 
scale structural changes experienced by the AFSD processed material compared to the feed stock. The current 
work formed as a part of continuation of efforts by the present research group focusing on the advanced process-
ing of the Mg  alloys2,6,29–37.

Methods and materials
Additive friction stir deposition. AFSD fabrication was conducted on  MELD® machine equipped with a 
hollow cylindrical tool containing coaxial cavity of 9.5× 9 .5 mm2 cross-section (Fig. 1a). Outer diameter and 
height of the AFSD tool were 38.1 mm and 138 mm respectively. Commercially available AZ31B-Mg (chemical 
composition in wt%: Mg-3w%Al-1%Zn-0.5%Mn) bar stock in H24 temper condition with dimensions 9.5× 9

.5× 460 mm3 was fed into the actuator setup through the hollow AFSD tool. The H24 temper treatment for the 
feed material consisted of forming the material below 160 °C followed by annealing in the temperature range of 
150–180 °C38. AZ31B-Mg plate was utilized as the substrate plate during AFSD. It is worth noting here that, the 
current study formed as a continuation effort of the previous publication by the authors related to the process 
optimization aspects of the AFSD fabrication of AZ31B Mg  alloy37. Several preliminary trials were conducted to 
carry out AFSD of AZ31B Mg material to select the AFSD process parameters leading to successful AFSD fab-
rication of AZ31B Mg. The tool rotation velocity was maintained at 400 rpm, whereas, the tool linear velocities 
of 4.2 and 6.3 mm/s were implemented in the AFSD processing during the current work. It was observed during 
initial multiple trials that the successful deposition with minimal flash occurred when the feed rate for the bar 
stock was maintained at ∼ 50% of the tool linear velocity. A layer of material was deposited with 140 mm length 
and the tool was shifted upwards by 1 mm to deposit a subsequent layer. A total of 5 layers were deposited with 
each set of processing condition. The onboard sensors monitored variation in tool torque and actuator force as 
a function of time during each AFSD condition. A type K thermocouple was embedded 4 mm below surface 
of substrate plate at a location directly below the center of AFSD deposit to monitor the temporal variation of 
temperature during deposition.

The tool residence time (ttool ) and feed residence time (t feed ) were estimated using following equations

where R tool is the outer radius of the tool and V linear is the tool linear velocity

where R feed is the equivalent circular radius of the feed material (5.3 mm).
The heat input imparted by the tool (Htool ) due to tool torque was expressed  as39,40

(1)ttool =
2× Rtool

Vlinear

(2)tfeed = 2× Rfeed

Vlinear
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where ω is the rotational velocity of tool-feed assembly, τtool average is the average torque experienced by the AFSD 
tool during the deposition (Fig. 1 b), A tool is the area of cross-section of the tool, and A feed is the area of cross-
section of the feed. Similarly, the heat input corresponding to the feed stock (H feed ) was derived as  follows39,40

where µ is the coefficient of friction (0.6) between feed stock and the base  plate41, F actuator average is the average 
actuator force acting upon feed material during deposition (Fig. 1 b), and h is the layer thickness.

Finally, the total energy input per unit area Q total was estimated as

where Q feed and Q feed are energy inputs per unit area for tool and feed stock respectively. The process parameters, 
values of average tool torque, average actuator force, and computed total energy inputs are presented in Fig. 1b. 
Further details about the computations of heat and energy inputs during AFSD process can be located in previ-
ous publication by the present research  group37.

Examination of multi-scale microstructure. As an initial step, the as fabricated samples were visu-
ally observed and then sectioned for successive analysis. Density of the sectioned samples was evaluated using 
Archimedes method with the aid of a high precision Sartorius micro-balance based on the protocol provided 
in ASTM B962  standard42. At least 3 samples were evaluated for density for each AFSD processing condition. 

(3)Htool =
4π2

3
ω

(

τtool average

Rtool(Atool − Afeed)

)

(R3

tool − R3

feed)

(4)Hfeed = 4π2

3
µω

(
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)

(R3

feed − 3R2
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+ Hfeed .tfeed
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Figure 1.  Schematics of (a) the AFSD process, (b) important AFSD process parameters and attributes employed 
in the current work,  (c) non destructive testing via EBME Method, and (d) location of tensile specimen 
machined along tool traverse direction through the thickness of the AFSD deposits.
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Microstructural characterization of the as-received feed stock and AFSD processed AZ31B-Mg samples was 
performed in X-Z plane by electron back-scattered diffraction (EBSD) in a scanning electron microscope (SEM) 
and transmission electron microscopy (TEM) techniques. The samples were sectioned from the central steady 
state zone. Samples for EBSD were prepared with preliminary mechanical polishing employing SiC papers in 
the range of 800–1200 grit with ethanol as a lubricant. The samples were then transferred to Buehler textmet 
cloths containing diamond suspensions with average particle sizes of 1 and 0.25 μm respectively to obtain a mir-
ror finished surface. The mechanically polished AZ31B-Mg samples appeared to develop the oxide layer, which 
prevented obtaining Kikuchi signals during EBSD. This issue was addressed by ion polishing using a Gatan 682 
precision etching coating system with the ion beam current of 190 μA and voltage of 5 keV. The sample surface 
was inclined at 4° with respect to the ion beam and polished for 30 s. EBSD was performed using a Thermo-
Fisher Nova NanoSEM 230 operating at 20 keV equipped with a Hikari super EBSD detector. The sample surface 
was tilted with respect to the primary electron beam by mounting on 70° pre-tilted holder kept at a working 
distance of 12 mm. The generated data were further analyzed in TSL OIM analysis 8.0 software, where orienta-
tion image maps (OIM) and pole figures were generated. To represent the micro-texture on normal plane of the 
processed samples, measured data in the X-Z plane of the AFSD sample were rotated by 90° around X-axis. A 
similar approach was adopted for the feed stock material. For better statistics and data consistency of grain sizes 
and micro-texture, multiple OIM scans (5) were taken from each sample condition.

Cross-sectional TEM foils were prepared using a Thermo-Fisher Nova 200 Nanolab dual beam focused ion 
beam (FIB) microscope. A 30 KV Ga2+ beam was used in making trenches and for initial thinning of the foils. 
Final thinning to foil thickness less than 100 nm was made with a 5 keV Ga2+ beam. A platinum coating was 
deposited to protect the processed sample surface from ion beam damage. TEM imaging was performed using a 
Thermo-Fisher Tecnai G2 F20 microscope operating at 200 keV to obtain  both bright field and dark field micro-
graphs along with corresponding selected area diffraction patterns (SADP).

Mechanical evaluation. As a first level of mechanical property evaluation, dynamic elastic constants of 
the feed stock and AFSD samples were measured using the non-destructive EBME method (Fig. 1c). These tests 
were performed inside a 480 mm× 300 mm× 180 mm glass tank filled with commercially available cutting oil, 
where the sample and longitudinal transducer were completely immersed, as depicted in Fig. 1c. An Olympus 
V211 0.125-inch diameter 20 MHz planar immersion-style transducer was used to excite a broadband pulse 
from 13 to 27 MHz with a repetition rate of 2 ms. The scanning motion was accurately controlled by the UR5 
robotic arm using MATLAB script. A JSR Ultrasonic DPR 500 Pulse/ Receiver provided the pulse source and 
time trigger, and the data was collected by a Tektronix MDO 304 at 1 GHz sampling rate. The contours were 
raster-scanned with the areas of 100 mm× 25 mm with 1 mm spatial intervals. At each scanned location, the 
scan was paused for 20 s for collecting the average of the 512 acoustic signals. The transducer surface aligned 
parallel to the sample surface (XY plane) with a distance of more than 2 wavelengths. In present experiments, 
the recorded signals were the reflections from the upper and lower sample surfaces. The additional fundamental 
details of the EBME process employed to obtain the dynamic elastic constants are provided in the earlier reports 
of the  authors43,44.

Next level of mechanical evaluation of AZ31B-Mg feed stock and AFSD samples was carried out using uni-
axial tensile testing. Flat dog bone shaped tensile specimen with the gage length of 25 mm and thickness of 1.5 
mm in accordance with ASTM E8  standard45 were machined out along the length of the deposited sample using 
wire electrical discharge machine (EDM) (Fig. 1d). The tensile tests were conducted as per ASTM E8 stand-
ard employing a strain rate of 10−4 /s on 25 kN load cell Instron universal testing machine equipped with an 
extensometer. At least 4 samples were tested for each AFSD condition and the feed material. Values of Young’s 
modulus, 0.2% PS, UTS, and % elongation were estimated from the recorded engineering stress-strain curves.

Multi layer computational process model. A computational model of multi-layer process was 
employed to predict the spatial and temporal variation in temperature during AFSD fabrication of AZ31B-Mg 
alloy. AFSD comprises of multiple unique phenomena such as feed rod deformation, material extrusion, stir-
ring and deposition compared to other friction based processing  techniques18. Sequential events of interactions 
among feed, tool, and substrate materials during AFSD as discussed in the “Introduction” section were taken 
into consideration while formulating the computational process model (Fig. 2a–c). These steps were repeated 
during simulation of total 5 layers. In AFSD, the primary source of heat generation can be attributed to frictional 
contact between feed rod/substrate interface and the extruded material/tool shoulder interface (Fig. 2). A multi-
layer frictional heating thermal model for AFSD was developed employing the governing equation pertaining to 
conduction-based heat transfer as expressed below:

In the above equation, T is temperature, t is time, ρ represents density (kg/m3 ), C p is specific heat (kJ/mol), and 
�u is advection velocity. Importantly, the term q p′′′ represents volumetric heat generation. In context of AFSD q p 
can be related to volumetric heat generation due to plastic deformation. However, formulation of q p′′′ requires 
detailed information about plastic strains rates and flow stress, which is computationally taxing (thermomechani-
cal or CFD model is required) and challenging, especially for multi-layer modeling  framework25,46. In light of 
this, only frictional heating during AFSD was considered in a surface heat flux boundary condition based on a 
simple theory of pure conduction models associated with friction stir welding (FSW)24,47. Thus, the boundary 
heat flux q f  due to frictional contact between feed rod/substrate interface can be expressed as:

(6)ρCp
∂T

∂t
+ ρCp(�u · ∇T) = ∇ · (k∇T)+ qp

′′′
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Figure 2.  Schematics of multi-layer computational model methodology adopted in the current work showing 
(a) steps in AFSD process, (b) model boundary conditions, (c) multi layer formulation approach, and (d) 
validation exercise with the aid of time temperature plots showing thermocouple readings and multi layer 
computational process model predictions.
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τyield corresponds to shear stress experienced by the deforming material at the feed rod/substrate interface and 
R is the distance from center of the feed towards the feed edge. The assumption underlying above formulation 
is based on the existence of a fully sticking contact at the interface under plastic deformation of the feed mate-
rial (Fig. 2b). When the feed material thermally softens via plasticization, the shear stress τyield under sticking 
assumptions can be expressed  as48

where σyield is the temperature dependent yield strength of the depositing material available for AZ31B-Mg alloy 
in the open  literature41. Similarly, the surface heat flux at extruded material/tool shoulder interface (Fig. 2b) can 
be expressed as following

δ corresponds to slip-rate signifying the sliding/sticking contact state of the extruded material under tool shoul-
der. Thus, δ = 0 corresponds to fully sticking regime and δ = 1 denotes fully sliding regime. Thus, in case of 
sliding/sticking regime the value of δ ranges anywhere from 1 to 0. The term M tool average is derived from back 
calculation using experimentally obtained tool torque τtool average data during  deposition37, as explained below

where η is mechanical efficiency. Furthermore, the slip  rate49 can be expressed as

where  δo is a scaling constant and ωo is the reference value for the rotational tool speed. According to experimen-
tal observations, these values are adjusted to represent material flowability under the tool shoulder. For instance, 
for a given material that gets readily extruded, covering a large portion of the tool shoulder area, the term (1− δ) 
should gradually shift from 1 towards zero as R changes from Rfeed to Rtool and vice versa. Thus, the above two 
position-dependent boundary heat flux conditions prescribe the thermal contribution in the developed model.

Figure 2b illustrates the schematic representation of the longitudinal cross-section of the computational 
domain. A quiet element activation/deactivation strategy was employed to incorporate the multi-layer 
 deposition50,51. For any given point during deposition, the material preceding the moving tool area corresponds 
to deposited material. Hence, the material properties of the consolidated material were assigned to those ele-
ments. For the rest of the elements, material properties of air were assigned.

Lastly, all the boundaries associated with deposited material (contingent upon tool position and activation 
status) were assigned convective and radiative boundary conditions as expressed below:

where q loss is flux due to heat losses, h ∞ is the convection coefficient, T ∞ is the ambient temperature, ǫ is the 
emissivity, σ is Stefan-Boltzmann constant. The thermophysical parameters discussed above are temperature 
dependent. The above mathematical model was executed on commercial FEA software  COMSOL® Multiphys-
ics. An adaptive meshing strategy (dependent upon temperature and thermal gradient of mesh elements) were 
employed to achieve reasonable computational time considering the pure conduction problem. The dimension 
of each deposited track was 140×38× 1 mm3 . Accordingly, the adaptive meshing strategy ensures a minimum 
element size of 1 mm in the thermally optimum region. The choice of 1 mm element size was based on mesh 
sensitivity analysis. The computational time for consecutive 5-layer deposition was less than 20 minutes on an 
Intel(R) Xeon (R) (Gold 6252 CPU @2.10 GHz–190 GB) processor.

The validation of the proposed thermal model was assessed using thermocouple temperature measurements. 
Figure 2d depicts the comparison between thermokinetic parameters (time and temperature) at any given loca-
tions within the AFSD layers measured by a thermocouple and predicted by a computational simulation. The 
temperature-time cycles in Fig. 2d are associated with the locations at the center of each AFSD layer correspond-
ing to thermocouple based measurements and computational predictions. As can be observed, the thermal model 
provides reasonable agreement with the actual thermal evolution during the AFSD process. The minor variations 
from the actual temperature profile (Fig. 2d) can be attributed to heat generation due to plastic dissipation being 
neglected in the thermal model and smaller computational domain size compared to the experimentally used 
AZ31B-Mg base plate. Nevertheless, the proposed thermal model provides valuable information on layer-by-layer 
thermal evolution during AFSD. As a side note, a parallel study is underway in the current research group focus-
ing on coupled thermal and thermomechancial phenomena during AFSD process and authors intend to report 
these results in a separate manuscript. Nonetheless, attempts were made to explain the microstructure evolution 
in correlation with the computationally predicted thermokinetic parameters in AFSD fabricated AZ31B-Mg.

(7)qf = τyield × (ωR − Vlinear sinθ); 0 < R ≤ Rfeed

(8)τyield = σyield√
3

(9)qs = Mtool average × (1− δ)× (ωR − Vlinear sinθ); Rfeed < R ≤ Rtool

(10)τtool average =
∫

2π

0

∫ Rtool

Rfeed

η × r ×
(

Mtool averageR dR dθ
)

(11)δ = 1− exp

(

−δoω
(

R − Rfeed
)

ωo

(

Rtool − Rfeed
)

)

(12)qloss = h∞(T∞ − T)+ εσ(T4

∞ − T4)
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Results and discussion
The AFSD fabricated samples were  examined visually prior to cutting for microstructure observations. Although 
oxidation is a concern during additive fabrication of Mg based materials, and it is likely that there may be some 
oxygen pickup during AFSD of AZ31B Mg, no oxide layers were detected during visual observations of the AFSD 
fabricated samples. In general, AFSD being a solid-state process, the oxygen diffusion in solid is likely to be slow 
to introduce recognizable amount of oxygen in AZ31B Mg during processing. After visual observations, the 
samples were cut and prepared for successive set of observations. The Archimedes density of sectioned samples 
was measured as per ASTM B962  standard42. The average density values were 1.761± 0.006 and 1.768± 0.006 
g/cm3 for the samples corresponding to input energies of 82 and 116 J/mm2 respectively as against the density 
value of 1.77 g/cm3 for the feed stock material. This corresponds to relative density values of 99.4 and 99.8% 
for 82 and 116 J/mm2 samples respectively indicating that a reasonable consolidation of material was achieved 
during AFSD process under the set of processing parameters employed in the present efforts.

First level of microscopy observations on AFSD AZ31B-Mg were performed using SEM-EBSD. OIM maps 
qualitatively indicated that the AFSD samples experienced a recognizable increase in the grain size compared to 
the feed stock (Fig. 3). This was also statistically confirmed from the grain size distribution, where the average 
grain size in both 82 J/mm2 (15 ± 4 μm) and 116 J/mm2 (18 ± 3 μm) AFSD samples was 1.4–1.6 fold higher 
compared to the feed stock (11 ± 3 μm) (Fig. 3). An increase in grain size after the AFSD process can occur due to 
dynamic recrystallization and grain growth mechanisms as the feed stock undergoes severe plastic deformation 
accompanied by the simultaneous generation and accumulation of heat during the AFSD  process52.

In addition to grain size, the crystallographic texture evolution after the AFSD process can also be noticed 
in 0001 pole figures (Fig. 3). The crystallographic textures in all three samples were close to basal plane texture, 
and the texture appears to sharpen with an increase in the input energy from 82 J/mm2 to 116 J/mm2 . The feed 
stock exhibited a substantially large spread ( ∼ 30°) around the maximum texture intensity and the location of 

Figure 3.  EBSD data showing OIM, texture plots, and grain size distributions corresponding to (a) feed stock, 
(b) 82 J/mm2 , and (c) 116 J/mm2 samples.
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maximum intensity was 15° away from the ideal basal pole location (Fig. 3a). For 82 J/mm2 and 116 J/mm2 
samples, the maximum texture intensities were observed to deviate 35 and 15.5° respectively from the basal pole, 
and the orientation spread was found to be ∼ 25° around the maximum intensity in both the cases (Fig. 3b, c).

To seek further insight into microstructure and phase evolutions, the AZ31B-Mg feed stock and AFSD sam-
ples were observed using high resolution TEM imaging (Fig. 4). The bright field (BF) TEM image corresponding 
to the feed stock revealed a uniform distribution of nm sized second phase precipitates (Fig. 4a). These precipi-
tates exhibited both spherical and elongated morphologies in these TEM images. However, it should be noted 
that both morphologies are likely to be the same type of precipitate, viewed along two orthogonal directions. 
Therefore, it is likely that these precipitates have a cylindrical or cigar shaped morphology in three dimensions 
(inset of Fig. 4a). The sizes of the precipitates ranged between 20 and 60 nm. Although, the fraction of pre-
cipitates in both the AFSD samples was significantly reduced (Fig. 4b, c) compared to the feed stock (Fig. 4a), 
these second phase precipitates possessed an atomically coherent interface with the matrix (Fig. 4d). The SADP 
analysis revealed matrix as α-Mg phase (Fig. 4e) while the second phase precipitates were β Mg17Al12 phase as 
confirmed by the FFT pattern (Fig. 4f). In addition, no oxide phases were detected during high resolution TEM 
observations which was consistent with the visual observations noted before. A qualitative comparison of the 
microstructures suggests that with increasing deformation energy imposed during the AFSD processing, the 
fraction of precipitates significantly reduced. Additionally, the AFSD processed samples exhibited coarser grain 
size (Fig. 4b–c) as confirmed earlier through EBSD analysis (Fig. 3). In addition, the matrix grains of both the 
AFSD samples (82 and 116 J/mm2 ) appeared to be free of dislocation contrast pointing towards possible restora-
tion mechanisms (Fig. 4b–c). The process-induced dissolution of precipitates is attributed to the combination of 
spatial and temporal thermokinetic effects, which are discussed in the subsequent paragraphs.

In order to realize the thermokinetic effects of AFSD process on the distinct microstructure evolution in 
processed AZ31B-Mg described above, the spatial and temporal variation of temperature during AFSD as pre-
dicted by the multi layer computational process model was examined (Fig. 5). The temperature was probed at 
the center of AFSD track at the interface between layer 1 and the substrate as well as at a location within layer 
3 (100 μm above interfaces between layers 2 and 3). A virtual probe location at the interface of layer 1 and the 
substrate experienced a first single thermal cycle during fabrication of layer 1, where it achieved the maximum 
temperature of 430 °C for 82 J/mm2 sample (Fig. 5a) and 450 °C for 116 J/mm2 sample (Fig. 5b) at the instance 
of deposition. Subsequent thermal cycles (#s-2, 3, 4, and 5) were experienced by the probe location during the 
fabrication of successive layers (layer 2–5) resulting in the reheating of deposited material at the probe location 

Figure 4.  TEM data showing bright field images for (a) feed stock with inset showing magnified view of 
the precipitates, (b) 82 J/mm2 AFSD sample, (c) 116 J/mm2 AFSD sample, and (d) high resolution view of 
precipitate in 82 J/mm2 AFSD sample with inset showing the coherent interface between precipitate and the 
matrix.   The selected area diffraction pattern in (e) corresponds to  α-Mg matrix and (f) is the fast Fourier 
transform image depicting β Mg17Al12 precipitate.
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in the corresponding preceding layers for both the AFSD conditions. The peak temperatures developed during 
deposition of subsequent layers were above 400 °C at any virtual location in layer 1 for both the AFSD conditions 
(Fig. 5). Notably, a slight increase ( ∼ 5–10 °C) in the maximum temperature of the second reheating thermal cycle 
due to heat accumulation was observed in both the AFSD samples (Fig. 5a and b). The maximum temperature 
achieved at any virtual location in layer 1 due to subsequent reheating thermal cycles (corresponding to layers 
3–5) decreased gradually in both the AFSD samples as a result of increasing distance between the probing loca-
tion and the layer being deposited (Fig. 5a and b). The lowest temperature within layer 1 during reheating cycle 
while layer 2 was deposited on the top of it was above 150 °C and subsequent deposition of layers 3-5 reheated 
the material in layer 1 above 200 °C.

It is apparent that the probe location in layer 3 experienced thermal cycles only thrice during the fabrication of 
layers 3, 4, and 5, as predicted in Fig. 5. The heat accumulation effect is distinct from the maximum temperature 
of first thermal cycles experienced by location in layer 3 compared to that of the location lying at the interface of 
substrate and layer 1 for both AFSD conditions (Fig. 5). In addition, due to higher linear deposition velocity of 
6.3 mm/s for 82 J/mm2 compared to 4.2 mm/s for 116 J/mm2 , the average durations of corresponding thermal 

Figure 5.  Predicted time-temperature plots for AFSD process using a multi layer computational process model 
corresponding to (a) 82 J/mm2 and (b) 116 J/mm2 samples. Important phase transition and conventional heat 
treatment temperature ranges are indicated for reference.
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cycles were ∼  30 and 38 s respectively (Fig. 5). Such distinct characteristics of heating-reheating cycles imposed 
on AFSD fabricated material influenced the microstructure evolution as described below.

According to the equilibrium Mg–Al phase diagram, above 200 °C, the β phase (Mg17Al12 ) is thermodynami-
cally unstable and undergoes dissolution to form a single-phase α-Mg53. As discussed before, during the entire 
AFSD process, the reheating experienced by the previously deposited material kept the temperatures in the single 
α-Mg phase regime at any virtual location within the previously deposited material (Fig. 5). The solutionizing 
temperatures for AZ31B-Mg have been reported to be in the range of 250–400 °C54,55. Upon conclusion of the 
AFSD process, the deposit cooled down to room temperature with the cooling rates in the range of 1–2 °C/s. 
However, the re-precipitation of β phase may occur below the 200 °C provided there is no significant diffusion 
of Al away from the precipitate. In conventional processing, the aging of few hours is required to uniformly 
precipitate β  phase56. Based on the spatial and temporal thermal history predicted by the computational process 
model (Fig. 5), it was likely that the deposited AZ31B-Mg material remained in single α-Mg phase field during 
the entire time of the AFSD process. To further quantitatively verify the dissolution of β phase during deposi-
tion and possibility of re-precipitation of β phase during cooling, extent of Al diffusion affected by process 
thermokinetics was computed for both the AFSD conditions. The computationally predicted thermal cycles, 
especially those corresponding to the location lying within the layer 3 were more relevant to understand the β 
precipitate dissolution/re-precipitation as the microscopy observations were conducted in this region. Since the 
β precipitate becomes thermodynamically unstable above 200 °C, precipitate dissolution occurs and aluminum 
atoms driven by local temperature rise can diffuse away from the precipitate site. The solution to Fick’s second 
law of diffusion with varying diffusion coefficients gives concentration spread with distance and time. Using its 
general solution, the diffusion length (x’) could be estimated over a period of time as follows:

where D(T) is the diffusion coefficient as a function of temperature. The diffusion coefficient is expressed in 
Arrhenius form giving its temperature dependence as follows:

where D 0 is the diffusion constant (3.275×10−5 m 2/s57), R is the gas constant (8.314 J/(mol K)), and E is the 
activation energy corresponding to stress-free lattice (E= 130.4×103 J/mol57). However, E is also affected by the 
overall residual stress present in the material. The nature of stress present decides the resultant value of the acti-
vation energy. For instance, overall compressive stress would increase the activation energy while tensile stress 
would decrease  it58. Accordingly, the following equation of diffusion coefficient dependent on temperature and 
stress was considered.

where σ is the stress (130 MPa as limiting experimentally observed value in the present case) and  � is the molar 
volume (1.399× 10

−5 m 3/mol). With the above equation, diffusion is primarily dependent on temperature. How-
ever, with the temperature-time relation obtained from the computational model (Fig. 5), diffusion coefficient 
dependence on time was obtained. This exercise allowed integration of Eq. 13 over a definite time range as follows:

The above equation was solved numerically to obtain the diffusion length of Al during heating and cooling events 
of each thermal cycle experienced by a location in layer 3. Figure 6 provides cumulative diffusion length with each 
thermal cycle in 82 J/mm2 and 116 J/mm2 samples. The total diffusion spread of Al atoms in 116 J/mm2 sample 
is broader (14 μm) compared to 82 J/mm2 (4 μm) due to comparatively lower linear deposition speed and higher 
heat accumulation for the 116 J/mm2 sample. Such broad diffusion lengths of Al atoms can effectively dissolve 
the precipitate and homogenize the alloy during the thermal process such as AFSD. During the cooling phase, 
the diffusion of Al in Mg decelerated and became sluggish making it difficult for the β phase to re-precipitate. 
Therefore, the AFSD samples had a significant reduction in β phase fraction (Fig. 4b–c). Such a thermokinetics 
driven microstructure evolution affected the mechanical response of the AFSD samples.

The AFSD samples were first examined using non destructive EBME technique described in the “Methods 
and materials” Section. The scanned data of the three-dimensional volume of the AFSD samples from the top XY 
plane was collected and rendered as contour plots of the average spatial distribution of dynamic bulk modulus. 
Along the same lines, the contour plot of dynamic bulk modulus was rendered for the feed stock scanned from 
the normal plane. These contour plots of dynamic bulk modulus are presented in Fig. 7a, b, and c, correspond-
ing to feed stock, 82 J/mm2 , and 116 J/mm2 , respectively. The spatial distribution of dynamic bulk modulus for 
the feed stock was confined to the narrow range of 57.5–60.0 GPa (Fig. 7a). A similar range of dynamic bulk 
modulus (57.0–60.5 GPa) was recorded for the 82 J/mm2 AFSD sample (Fig. 7b). However, this range was con-
siderably shifted towards lower modulus values of 54.5–57.0 GPa for the 116 J/mm2 AFSD sample (Fig. 7c). The 
values of dynamic bulk modulus obtained via ultrasound qualitatively reflect the extent of residual stress in the 
 material43,44. The elastic modulus is the inherent property of the material associated with inter-atomic potential 
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√
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energy and spacing. The presence of residual stress is associated with the elastically strained lattice, which affects 
the inter-atomic spacing and decreases the potential energy, thereby reducing the elastic modulus of the material.

The feed stock is likely to have the lowest residual stresses as it received H24  treatment38, which justifies a 
higher dynamic modulus of feed stock. However, the difference in the dynamic moduli of AFSD samples indi-
cates a difference in residual stress. This discrepancy can be addressed by analyzing the OIM micrographs at 
higher magnification (Fig. 7d–f). The OIM micrographs taken at higher magnification indicated the presence 
of mechanical twins in both AFSD samples, while they were not observed in the feed stock. Moreover, it can 
be observed that mechanical twins were more prevalent in 82 J/mm2 sample while they were scarcely observed 
in 116 J/mm2 sample (Fig. 7e and f). The presence of mechanical twins in the 82 J/mm2 sample indicates that 
deformation is heavily accompanied by twins in addition to slip. Moreover, the formation of mechanical twins 
accommodates extensive lattice  strain59,60, thereby reducing the overall residual stress in 82 J/mm2 sample, which 
is also reflected in its EBME map with a dynamic modulus similar to feed stock (Fig. 7a and b). On the contrary, 
the scarcity of mechanical twins in 116 J/mm2 sample suggests deformation majorly via slip. Moreover, the strain 
rate generated during the 116 J/mm2 sample fabrication due to lower linear velocity is likely to be  lower37. Also, 
the longer duration of thermal cycles associated with the fabrication of 116 J/mm2 sample sustains the heat for 
a longer duration (Fig. 5b). These rationalize the scarcity of mechanical twins in 116 J/mm2 sample. As the slip 
accommodates lower lattice strain, the residual stress in 116 J/mm2 sample is likely to be higher compared to 
82 J/mm2 sample, which is justified through EBME maps showing reduced dynamic modulus (Fig. 7b and c).

Engineering stress stain curves for AZ31B-Mg feed stock and AFSD samples possessed nearly identical slope 
in the elastic regime indicating similar Young’s modulus of 40 GPa for these samples (Fig. 8). However, there was 
a reduction of ∼ 30 MPa in the 0.2% PS for the AFSD samples compared to the feed material at 158 ± 15 MPa 
(Fig. 8). Such a reduction could be attributed to an increase in the average grain size by 4–7 μm (Fig. 3) and the 
reduction in fraction of Mg17Al12 precipitates in the AFSD samples compared to the feed stock (Fig. 4). These 
two effects simultaneously led to reduction in the barriers for dislocation motion, thus lowering the 0.2% PS for 
the AFSD samples compared to the feed stock. The UTS of feed stock was 258 ± 8 MPa which was marginally 
higher by 10 MPa and 26 MPa compared to 82 J/mm2 and 116 J/mm2 AFSD samples respectively (Fig. 8). The 
AZ31B-Mg feed stock material elongation was 20 ± 2%. On the other hand, the AFSD samples exhibited lower 
elongation of 16 ± 4% and 10 ± 4% for 82 J/mm2 and 116 J/mm2 samples respectively (Fig. 8). Such a reduction 
in elongation could be attributed to evolution of strong basal texture on the XY surface/subsurface of the AFSD 
samples (Fig. 3). The samples were loaded in Y direction (perpendicular to the build direction)(Fig. 1c). During 
uni-axial tensile loading, the lattice rotates in such a way that the basal slip plane normal is tilted towards load-
ing  axis61. The material accommodates deformation until the basal plane normal becomes perpendicular to the 
loading axis at which the Schmid factor of the slip planes approaches zero. In the current case, the base material 
was associated with a diffused basal texture with 15° offset from the 0001 basal pole (Fig. 3a). On the other hand 
the 82 J/mm2 sample possessed a sharp basal texture with 35° offset (Fig. 3b). Such an offset with sharper texture 
requires higher amount of deformation for bringing the basal plane normal perpendicular to the loading axis. 
As a result, the 82 J/mm2 sample experienced a higher elongation among the AFSD samples. On the other hand, 
although the basal texture was sharp, the offset was lower for the 116 J/mm2 sample (Fig. 3c), hence accommodat-
ing lesser deformation than the 82 J/mm2 sample, before the basal plane normal was aligned perpendicular to 
the loading axis, resulting in lower elongation. As a note, reduction in mechanical properties for AFSD fabricated 
Mg alloys has been reported before 22,23. However, these works lacked the explanation about the correlation of 
process thermokinetics driven multi scale microstructure evolution with the resultant mechanical behavior.

As a next step in analysis, the fracture surfaces of the broken samples from the tensile tests were observed 
using secondary electron mode SEM (Fig. 8b–d). The fracture surfaces revealed a quasi brittle failure mode with 

Figure 6.  Computed cumulative diffusion lengths over the entire AFSD cycle for 82 J/mm2 and 116 J/mm2 
conditions.
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cleavage like fracture for both feed stock and AFSD AZ31B Mg samples. It has been reported that Mg based 
materials inherently have a low fracture toughness and usually exhibit a cleavage fracture mode during quasi-
static tensile loading in a vast temperature  range62–64.

Conclusions
Current work explored solid state additive manufacturing of AZ31B-Mg alloy via AFSD process. The average 
Archimedes density values of AFSD fabricated samples were 1.761± 0.006 and 1.768± 0.006 g/cm3 for the 
processing conditions corresponding to the input energies of 82 and 116 J/mm2 respectively compared to the 
Archimedes density value of 1.77 g/cm3 for the feed stock material. This translates into relative density values of 
99.4 and 99.8% for 82 and 116 J/mm2 samples respectively indicating a reasonable consolidation of the AFSD 
fabricated AZ31B Mg material. The temporal and spatial variation of temperature during AFSD process was 
predicted using a multi layer computational process model. The temperature experienced by the material during 
the deposition and due to subsequent reheating as a result of added layers on the top remained in single α-Mg 

Figure 7.  Bulk modulus data obtained by EBME technique corresponding to (a) feed stock, (b) 82 J/mm2 , and 
(c) 116 J/mm2 samples along with high magnification OIM data for (d) feed stock, (e) 82 J/mm2 , and (f) 116 J/
mm2 samples.
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phase field region (above 200 °C). Such distinct thermokinetic conditions led to an average grain size of 15 ± 4 
and 18 ± 3 μm for 82 J/mm2 and 116 J/mm2 AFSD conditions respectively compared to 11 ± 3 μm for the feed 
stock. The AFSD processed samples developed a strong basal texture on the top surface. The feed stock exhibited 
a diffused texture aligned 15° offset to 0001 pole. Both AFSD samples possessed a strong basal texture on the top 
surface aligned 35 and 15° offset to 0001 pole for 82 J/mm2 and 116 J/mm2 conditions respectively. The higher 
temperatures experienced by the AFSD material (greater than 200 °C) during deposition followed by cooling 
down to room temperature with 1–2 °C/s rates resulted in a marked reduction in fraction of nano scale β phase 
in the AFSD samples compared to the feed stock material. AFSD sample deposited with 82 J/mm2 revealed a 
higher amount of twinning compared to 116 J/mm2 and feed stock material. As a result, the non destructively 
evaluated bulk modulus was lower for 116 J/mm2 sample (54.5-57.0 GPa) compared to the 82 J/mm2 sample 
(57.0-60.5 GPa) and feed stock (57.5-60.0 GPa). Feed stock and AFSD AZ31B-Mg samples exhibited nearly same 
Young’s modulus of ∼ 40 GPa during uni-axial tensile tests. However, AFSD sample deposited with 82 and 116 J/
mm2 input energies possessed a 0.2%PS of 132 ± 15 MPa and 129 ± 13 respectively which was lower than 0.2% 
PS of 158 ± 15 for the feed stock. UTS of AFSD samples was 248 ± 10 and 232 ± 19 MPa for 82 and 116 J/mm2 
conditions respectively. The feed stock UTS was 258 ± 8 MPa. The elongation of the AFSD AZ31B-Mg was lower 
by 4 % and 10 % for 82 and 116 J/mm2 process conditions respectively compared to the feed stock at 20%. The 
distinct thermokinetic effects involving multiple reheating cycles during AFSD led to the unique microstructure 
having a coarser grain size and reduced fraction of β phase leading to such a reduction in tensile properties for 
the AFSD AZ31B-Mg compared to the feed stock.

Data availibility
The data sets used and/or analyzed during the current study will be made available from the corresponding 
author on a reasonable request.
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