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ABSTRACT
Gynecological cancers are known for being very aggressive at their advanced 

stages. Indeed, the survival rate of both ovarian and endometrial cancers is very low 
when diagnosed lately and the success rate of current chemotherapy regimens is 
not very efficient. One of the main reasons for this low success rate is the acquired 
chemoresistance of these cancers during their progression. The mechanisms 
responsible for this acquired chemoresistance are numerous, including efflux pumps, 
repair mechanisms, survival pathways (PI3K/AKT, MAPK, EGFR, mTOR, estrogen 
signaling) and tumor suppressors (P53 and Par-4). To overcome these resistances, 
a new type of therapy has emerged named targeted therapy. The principle of targeted 
therapy is simple, taking advantage of changes acquired in malignant cancer cells 
(receptors, proteins, mechanisms) by using compounds specifically targeting these, 
thus limiting their action on healthy cells. Targeted therapies are emerging and many 
clinical trials targeting these pathways, frequently involved in chemoresistance, 
have been tested on gynecological cancers. Despite some targets being less efficient 
than expected as mono-therapies, the combination of compounds seems to be 
the promising avenue. For instance, we demonstrate using ChIP-seq analysis that 
estrogen downregulate tumor suppressor Par-4 in hormone-dependent cells by 
directly binding to its DNA regulatory elements and inhibiting estrogen signaling 
could reinstate Par-4 apoptosis-inducing abilities. This review will focus on the 
chemoresistance mechanisms and the clinical trials of targeted therapies associated 
with these, specifically for endometrial and ovarian cancers.

INTRODUCTION

Gynecological cancers are pathologies developing 
in the women’s reproductive organs, mainly located in 
the uterus and ovaries. Overall, these cancers accounts for 
more than 10% of cancer deaths and new cases among 
women, each year in North America and Europe [1-6]. 

Ovarian cancer is hard to diagnose because of 
the almost total lack of symptoms during the early 
development stages of the tumor. Considering that 
more than 75% of the cases are detected at an advanced 
stage, ovarian cancer has a high mortality rate being the 
gynecological cancer with the lowest average 5-year 
survival rate (46%) (Figure 1A) [1-7]. An important 
fact to consider about ovarian cancer, as well as its low 

survival rate, is the current treatments low efficiency; 
current treatments become ineffective after a few cycles 
of administration, with a risk of recurrence estimated at 
80-85% [4, 8].

Uterine cancer is the most frequent gynecological 
cancer and is frequently diagnosed early leading to a 
better outcome for the patient [1-5, 9]. Most of the cancers 
occurring in the uterus begin in the endometrium ( > 
95%) and this subtype is called endometrial cancer [5]. 
Considering this fact, endometrial cancer will be mainly 
discussed here. Although the prognosis of endometrial 
cancer is good, more than 25% of patients are diagnosed 
at an advanced stage (Stage > 1) with an invasive primary 
tumor and subsequently accompanied by metastases [10]. 
One considerable hurdle for these patients diagnosed with 
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an advanced/recurrent cancer, even though they are treated 
with aggressive therapies, is that the survival rate is very 
low ( < 20%) (Figure 1B) [5].

In the last decades, treatments for gynecological 
cancers have not much advanced beyond the platinum-
based chemotherapy when compared with many other 
types of cancer; nor has the patient survival and cure rates 
increased much (Figure 1) [5, 6, 11, 12]. Reasons for the 
low survival outcome of gynecological cancers diagnosed 
lately/recurrent are the resistance to chemotherapy 
acquired by cancer cells and the non-selectivity of current 
treatments. This problematic lead to highly damageable 
side effects for the patients, thus limiting the use of drugs 
and how they are administered. Because of the inefficacy 
of the current chemotherapeutic regimens, more research 
and improvement of the current treatments are required to 
overcome this challenge.

In this manuscript, we will review the current 
treatments, their limitations against gynecological cancers 
and the molecular pathways responsible for the acquired 

chemoresistance thus leading to the current use of targeted 
therapies in clinical trials to increase the efficiency of 
treatments, which prevents recurrent cancers and increases 
survival of women suffering from these types of cancers.

CURRENT TREATMENTS

Current treatments for both ovarian and endometrial 
cancers are known for being very similar. Initially, surgery 
is conducted in order to remove the vast majority of the 
tumor localized in its corresponding organ. Concerning 
advanced cancers, the remaining mass following the initial 
surgery is a good prognostic for survival. If needed, further 
treatments need to be administered to completely eliminate 
the tumor left and its distant metastases depending on the 
stage of the cancer [5, 13-15].

Radiation and hormone therapies are two potential 
methods of elimination of the remaining cancer cells, 
which can be used in both types of gynecological cancers. 
These two types of treatment are rarely used for ovarian 

Figure 1: Ovarian and endometrial cancers statistics. A. Ovarian and B. endometrial cancers statistics for new cases, deaths and 
5-year survival). Data for new cases and deaths are represented by the number per 100 000 females (1975 to 2013), the 5-year survival 
rate (%) is available for all diagnosed patients (1975-2008) in a table or specifically sorted by tumor stage (2006-2012) in a histogram. The 
tumor stage is a factor related the chemoresistance. Data were obtained from seer.cancer.gov.
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Table 1: Chemoresistance mechanisms in ovarian and endometrial cancers
Mechanism Tissue Resistance Comments Reference

Efflux pumps

↑ P-glycoprotein Ovary and 
endometrium

Taxanes and 
doxorubicin  [34-37] 

↑ ATP7A/ATP7B Ovary and 
endometrium Platinum  [38-42] 

DNA Repair mechanisms
↑ NER Ovary Platinum  [48-53] 

↓ MMR Ovary and 
endometrium Platinum   [56-61, 64, 

65]

↓ BRCA1 Ovary Taxane provides sensitivity to platinum compounds [80-85] 
↓ BRCA2 Ovary  - provides sensitivity to platinum compounds [85, 86]
Signaling pathways
↑ PI3K Ovary Platinum  [94, 95] 

↑ AKT Ovary and 
endometrium

Platinum, 
taxanes and 
doxorubicin

 [95-105, 
120, 150]

↓ PTEN Ovary and 
endometrium Platinum  [91, 94, 

106-110] 

↑ XIAP Ovary and 
endometrium

Platinum, 
taxanes and 
doxorubicin

XIAP induces chemoresistance against 
cisplatin (endometrial and ovarian), taxane 
(ovarian) and doxorubicin (endometrial)

 [97, 100, 
113-118]

↓ JNK Ovary Platinum   [105, 125]

↓ p-38 Ovary Platinum    [105, 125, 
126]

↑ ERK1/2 Ovary Platinum [127] 
↑ EGFR Ovary Taxanes  [141] 

↑ ErbB2 Ovary and 
endometrium

Platinum and 
taxanes  [137-140, 

142] 

↑ GRP78 Endometrium Platinum and 
taxanes Estrogen-regulated [149] 

↑ ASK1 Endometrium Taxane Estrogen-regulated [150] 

↑ ERα Breast
Platinum, 
taxanes and 
doxorubicin

 [151] 

↓/mut P53 Ovary and 
endometrium

Platinum, 
taxanes and 
radiation

Resistance to radiation have been observed in 
ovarian cancer only

[99, 101, 
102, 118-
120, 157-

167]

↑ BCL-2  Ovary and 
endometrium Platinum   [168, 169]

↓ PAR-4 Ovary Taxane  [179] 

The table summarizes the mechanisms of chemoresistance observed in ovarian and endometrial cancers. The different column 
indicates the mechanism and its regulation, the tissues concerned, the drug resistance, additional comments as well as the 
bibliographical references.
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and endometrial cancers when compared with breast 
tumors. 

Concerning radiation, this method is rarely used 
as a treatment for ovarian cancer, considering their 
frequently late diagnosis, but is instead used as an option 
for recurrent cases, patients with high-risk of surgical 
mortality or those who cannot tolerate chemotherapeutic 
compounds. In the case of endometrial cancer, radiation 
is more frequently used considering the early diagnosis of 
the tumor; however, it is not as much used for advanced 
stages cancers [5, 14, 15]. 

Concerning hormonal therapies, a majority still 
expresses the estrogen receptors (mainly ERα) and 
progesterone receptor and those requiring hormones 
for growth can be classified as hormone dependent. 
Interestingly, hormone therapy has been used mainly to 
treat breast cancers and their effects are well known, but 
are sometimes prescribed in gynecological cancers despite 
the variability of their response rates [16, 17]. Not unlike 
breast cancer, mostly in the late stages, gynecological 
cancers can have mutations/inactivation leading to a 
loss of the expression of these hormone receptors or not 
responding to hormonal signals, becoming hormone-
independent, thus making hormonal therapies ineffective 
[16, 18-21]. The different treatment administered for 
hormone therapy in gynecological cancers still expressing 
the ER consists of progestin, Luteinizing hormone-
releasing hormone (LHRH) agonists and aromatase 
inhibitors [5, 14-17, 22-24]. The response rate of these 
types of treatment is moderate and they are mainly used 
for endometrial cancers expressing the ER. Notably, 
the success rate of hormonal therapy in gynecological 
cancers needs to be further investigated considering 
that many factors (receptor status, cancer stage, 
chemoresistance status, heterogeneity of the patients and 
drugs combination) can influence the efficiency of these 
treatments and were not always considered when used as 
a treatment in past studies [16, 17]. 

Lastly, the most frequently used method to eliminate 
the remaining gynecological cancer cells, widespread in 
the patient, is the chemotherapy approach. The principle 
of this method is to use anti-cancer drugs which generally 
target cells undergoing rapid division, a characteristic of 
cancer cells. The different chemotherapeutic drugs used 
for gynecological cancer consist mainly of platinum 
compounds (cisplatin or carboplatin), taxanes (paclitaxel 
or docetaxel) and doxorubicin [5, 10, 25]. Platinum 
compound mechanism consists of damaging DNA by 
forming platinum-DNA adducts leading to the inhibition 
of DNA replication and leading cells to apoptosis [26]. 
Taxanes mechanism is different and instead target 
microtubule polymerization, inhibiting mitosis and 
thus inducing apoptosis [27, 28]. Doxorubicin is an 
anthracycline compound which intercalate DNA, inhibits 
topoisomerase-II by stabilizing its complex and generate 
free radicals leading to cell death [29]. Some other 

chemotherapeutics drugs can also be helpful and used 
in gynecological cancers including cyclophosphamide 
(an alkylating agent), gemcitabine (a nucleoside analog), 
topotecan (a topoisomerase-I inhibitor) or vinorelbine 
(an inhibitor of mitosis through interaction with 
tubulin). These agents are mostly used in combination 
and the platinum-paclitaxel and platinum-doxorubicin 
combos have been designated as first-line treatment for 
gynecological cancers [5, 10, 30]. The response rate of 
these combinations is very good, being around 70% for 
ovarian cancer and 45% for endometrial cancer [5, 30]. 
However, a very frequent occurrence in gynecological 
cancers is that most of the patients relapse and the arising 
tumor becomes resistant to chemotherapeutic compounds, 
leading to a low survival rate [31, 32]. Overall, 
chemotherapy is a very efficient initial treatment but the 
recurrence of gynecological cancers and their acquisition 
of chemoresistance is a huge hurdle to overcome.

CHEMORESISTANCE IN GYNECOLOGICAL 
CANCERS

Chemoresistance is presumably responsible for 
causing treatment failure and mortality for more than 
90% of patients with cancer of advanced stage [13, 33]. 
This major hurdle, having an impact on patient survival, 
can be acquired via diverse modifications including the 
increase of efflux pumps to reject drugs and a decrease 
in cell division limiting the effect of chemotherapeutic 
compounds targeting mitosis arrest. At the molecular level, 
genes can be modified to influence the efficiency of repair 
proteins and diverse survival pathways while decreasing 
the level of different tumor suppressor. The following 
will discuss about the literature of known mechanisms 
of chemoresistance exclusively in gynecological cancers. 
A better understanding of these mechanisms will allow 
more efficient therapies to be administered to patients in 
the clinic. 

Efflux pumps

Overexpression of the multidrug-resistance gene 
MDR1 is associated with acquisition of chemoresistance, 
particularly against paclitaxel. This acquisition is 
explained by the increased level of the efflux pump 
P-glycoprotein (Pgp), thus eliminating more efficiently the 
presence of chemotherapeutic drugs in both endometrial 
and ovarian cancers [34-37]. Resistance to platinum 
compounds has also been related to increased levels of 
copper pumps [38-42]; indeed, it has been demonstrated 
that cisplatin-resistant ovarian cancer cell lines have 
acquired, in part, their resistance via an increased protein 
level of copper-transporting ATPases (ATP7A and ATP7B) 
[38, 42, 43]. In a patient-derived gene expression profile, 
ATP7B has also been associated as a chemoresistance 
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marker in ovarian carcinomas treated with cisplatin [39]. 
Concerning endometrial cancer, copper-transporter ATP7B 
overexpression in endometrial carcinoma is also related to 
cisplatin resistance and indicate an unfavorable outcome 
for patients [40].

DNA repair mechanisms

For a long time, mechanisms of DNA repair have 
been associated with chemoresistance in ovarian cancers 
[44-47]. 
Nucleotide excision repair process (NER)

One known mechanism responsible for the repair of 
platinum DNA adducts in ovarian cancer is the nucleotide 
excision repair process (NER) [48-51]. NER is a multi-step 
process implicating various proteins to remove and replace 
a sequence of nucleotides on a DNA strand. Enhanced 
NER is associated with increased resistance in ovarian 
cancer. The protein ERCC1, forming an endonuclease 
complex with XPF and involved in the 5’ incision of 
DNA adducts, has been reported to be correlated in the 
degree of sensitivity to platinum compounds in ovarian 
cancers [48-52]. XPF and XPG proteins, involved in NER 
process, are also reported to have an impact on platinum 
sensitivity of ovarian cancers [53]. On the contrary, very 
little association have been drawn between endometrial 
cancer and NER. 
Mismatch repair (MMR)

Another repair mechanism, mismatch repair (MMR), 
is also known to be associated with chemoresistance 
mechanisms of ovarian cancers. The principle of MMR 
is to recognize a mismatched or unmatched DNA base, 
repair and reassemble DNA correctly [54]. When platinum 
compounds are administered, the MMR process is unable 
to complete repairs of mismatched DNA, thus leading to 
apoptosis [55]. It is suggested that a MMR deficiency in 
ovarian cancers, mainly due to the loss of the MLH1 gene, 
allows the cells to continue proliferating, even in presence 
of cisplatin or carboplatin, thus enabling chemoresistance 
through the failure to enter apoptosis following exposure 
to chemotherapy [56-61]. Conversely, other studies seems 
to report that there is no significant association between 
MMR deficiency and resistance to platinum compounds 
[62, 63]. They suggest that the limited quantity of samples 
studied and the presence of other potential resistance 
mechanisms could explain the absence of a significant 
association with MMR and platinum resistance. Very little 
has been studied concerning chemoresistance and MMR 
deficiency in endometrial cancers. Few studies report the 
acquisition of chemoresistance associated with MMR 
via the use of HEC59 endometrial cancer cell line [60, 
64, 65]. Interestingly, endometrial cancer frequently has 
MMR deficiency associated with microsatellite instability 
which could have an impact on the efficiency of platinum 

compounds [66-69]. 
Homologous recombination (BRCA1/2 genes)

BRCA1 and BRCA2 are a known genes involved 
in an error-free repair mechanism via homologous 
recombination for double strand DNA breaks [70]. These 
genes are well known for increasing risks of breast as well 
as ovarian cancers when mutated and transmitted through 
by heredity [71-75]. Interestingly, mutations on BRCA1 
and BRCA2 genes have also been associated with an 
increased risk of endometrial cancer, but this relation was 
observed more frequently in association with tamoxifen-
treated women’s [76-78]. Downregulation of BRCA1 
is frequent ( > 72%) in high-grade ovarian cancers [79, 
80]. It was also observed with BRCA genes that they are 
involved in response to various chemotherapeutic drugs 
and consequently associated to chemoresistance [80]. 
Downregulation of BRCA1 in ovarian cancer provides 
sensitivity to platinum compounds while providing 
resistance to taxane drugs [80-85]. BRCA2 has also been 
associated with sensitivity to platinum compounds when 
mutated/downregulated in ovarian cancer [85, 86]. 

Survival pathways

Survival pathways play a major role in mechanisms 
of chemoresistance of gynecological cancers. 
PI3K/AKT pathway

The PI3K/AKT survival pathway is one major 
signaling cascade, which is frequently mutated/
hyperactivated at different levels in both ovarian and 
endometrial cancers [12, 87-91]. Using TCGA datasets, 
it is possible to observe that major components of the 
PI3K/AKT pathway present a high frequency of alteration 
in gynecological cancers ( > 40% in ovaries; > 90% in 
the uterus) (Figure 2A) [92, 93]. These alterations of 
the PI3K pathway are involved in the tumorigenesis of 
gynecological tumors but also their chemoresistance 
profile. PI3K is a kinase located on the cellular membrane, 
stimulated by growth hormones and responsible for 
phosphorylating PIP2 to PIP3. Once phosphorylated, 
PIP3 can activate downstream targets of the PI3K pathway 
such as AKT and PDK1 kinases, thus activating various 
downstream targets involved in protein synthesis and cell 
growth. PI3K and its subunits (mainly PIK3CA) are known 
for being highly mutated and responsible for increasing 
chemoresistance in ovarian cancer [94, 95]. Downstream 
of PI3K, AKT isoforms (AKT1-2-3) have been reported 
to also increase the chemoresistance against platinum 
drugs, taxane and doxorubicin, in both ovarian and 
endometrial cancers [95-104]. It has been demonstrated 
that only AKT1 and AKT2 isoforms are responsible for the 
acquisition of resistance against cisplatin and paclitaxel 
while all three isoforms of AKT increase doxorubicin 
resistance in endometrial cancer cells [98]. Concerning 
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ovarian cancer, it has been demonstrated that AKT2 
expression increase resistance to cisplatin [105]. PTEN is 
a tumor suppressor lipid phosphatase acting negatively on 
the PI3K pathway via its ability to dephosphorylate PIP3 
to PIP2, thus controlling the activity of PI3K downstream 
targets. A very interesting fact concerning PTEN is the 
high percentage of alterations observed in endometrial 
cancers ( > 65%), which is astonishing when compared 
to other cancers types (Figure 2B) [92]. Observations 
have been made concerning this protein, PTEN, and 

chemoresistance status of gynecological cancers. Indeed, 
downregulation/inactivity of PTEN (frequently mutated 
in the endometrium) leads to an increase of resistance 
against platinum compounds [91, 94, 106-110]. XIAP, an 
inhibitor of apoptosis, is involved in PI3K/AKT pathway 
to protect cells by acting as a promoter of AKT activity via 
its interaction with PTEN as an E3 ubiquitin ligase, thus 
regulating negatively PTEN protein level and its cytosolic/
nuclear localization [100, 111, 112]. XIAP is also involved 
in the chemoresistance against cisplatin (endometrial and 

Figure 2: Ovarian and uterine cancers major alterations. A. A histogram representing the frequency of alterations for genes from 
the PI3K pathway (PIK3CA, PIK3R1, PTEN, AKT1-2-3), specifically in ovarian and uterine cancers from 6 studies. B.-C. The histograms 
representing the frequency of alterations for B. PTEN or C. P53 in various cancer types from 126 studies. Only the first 30 studies are 
shown to first simplify the figure, but also to indicate the importance of these alterations in ovarian and uterine cancers. The studies shown 
in the histograms were sorted from those with the highest to the lowest frequency of alterations for the associated genes. Data were obtained 
using www.cbioportal.org database.

http://www.cbioportal.org
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ovarian), taxane (ovarian) and doxorubicin (endometrial) 
for both cancers [97, 100, 113-118]. P53 is another well-
known tumor suppressor involved in the development of 
resistance observed in relation to the PI3K/AKT pathway 
in gynecological cancers. Indeed, it has been demonstrated 
that P53 inhibits PI3K activity, and consequently AKT, by 
binding on one of PIK3CA gene promoters thus inhibiting 
its transcription in ovarian cancer [119]. AKT can also, 
inversely, inhibit P53 activation through MDM2 and thus 
inhibit mitochondrial P53-dependent apoptosis [101, 102, 
120]. Wild-type P53 is involved in the chemoresistance 
attributed to PI3K/AKT and XIAP in ovarian cancer. 
To overcome this resistance via the inhibition of PI3K 
pathway components, the presence of wild-type P53 is 
required for an optimal sensitization of the cancer cells 
[99, 101, 102, 118, 120]. 
MAPK pathway

Another survival pathway to consider in 
gynecological cancers is the MAPK pathway. MAPK 
pathway consists of cascades of protein kinases, which can 
be activated by various stimuli including growth factors 
or genotoxic stress. Following stimulation, MAPK play 
a major role for cell growth, survival and/or apoptosis. 
An important aspect of the MAPK pathway is the fact 
that upstream of one cascade lies the RAS oncogene, 
frequently deregulated in various cancers including those 
affecting gynecological tissues [121]. The activation of 
the MAPK pathway is divided in various cascades, the 
main ones being the ERK1/ERK2, JNK/SAPK and p-38 
MAPK [121, 122]. RAS activates RAF, subsequently 
leading to the ERK1/ERK2 cascade, which is stimulated 
mainly by mitogenic factors and is associated to cell 
division and survival. Chemotherapeutic compounds can 
also stimulate and increase ERK1/ERK2 phosphorylation 
allowing them to play a role of balance in apoptosis and 
cell survival [123, 124]. JNK and p-38 MAPK cascades 
are stimulated differently, via genotoxic stress including 
chemotherapeutics compounds, and play roles in cell 
growth arrest, inflammation and apoptosis [122, 123]. 
In ovarian cancer, decreased MAPK activity by the JNK 
and p-38 cascades has been associated with platinum-
resistant cancer models [125, 126]. On the contrary, 
ERK1/ERK2 are associated to survival and cell growth 
and their inhibition by the protein MKP3 sensitized 
ovarian cancer cells to cisplatin [127]. MAPK and PI3K 
pathways are interconnected and can influence each other 
[128]. In fact, the chemoresistance associated with AKT2 
in ovarian cancer is related to the inability of cisplatin to 
activate JNK and p-38 to induce apoptosis. Indeed, AKT2 
is responsible for inhibiting ASK1 and its downstream 
targets including JNK and p-38 [105]. Concerning 
endometrial cancer, MAPK and chemoresistance, not 
much has been studied so far but we can hypothesize that 
the effect observed would be similar to those reported in 
ovarian cancer models. 

HER family

Another family of oncogenes to consider in 
gynecological cancers is the epidermal growth factor 
receptors EGFR (HER-1) and ErbB2 (HER-2), which 
are known for being cell-surface receptors tyrosine 
kinases being structurally similar. Indeed, EGFR and 
ErbB2 are known for being overexpressed in advanced 
stages of both ovarian and endometrial cancers and being 
markers of poor prognosis [129-136]. Both EGFR and 
ErbB2 receptors can activate various signaling pathways, 
including both the PI3K and MAPK (via RAS-RAF 
oncogenes) which provide survival signaling, cell growth 
to tumors and contribute to the overall acquisition of 
chemoresistance in gynecological cancers. Interestingly, 
it has been demonstrated that EGFR and ErbB2 
overexpression, in association with the activation of PI3K 
and MAPK signaling pathways, increase resistance to 
cisplatin and paclitaxel in gynecological cancers [137-
142]. It is worth noting that the effect of EGFR and ErbB2 
on chemoresistance and prognosis is controversial in the 
literature. Some studies indicate no association with these 
oncogenes, but it is overall still worth considering for 
cancer research. 
Estrogen receptors

An important characteristic unique to gynecological 
cancers is the high presence of estrogen and its 
corresponding receptors (ERα/β), thus promoting cell 
proliferation and tumorigenesis [143]. Estrogen binds 
to its receptor, dimerize, allowing its translocation from 
the cytoplasm to the nucleus, then bind on ERE (DNA 
Estrogen Response Element) and act as a transcription 
factor [144, 145]. Estrogen can also act in a non-genomic 
manner by binding with estrogen receptors, located on the 
plasma membrane, which then interact with other receptors 
such as IGF-1R and ErbB2 [146, 147]. Estrogen can also 
directly bind on a G-coupled protein, the GPR30 receptor, 
independently of the estrogen receptors [147]. These non-
genomic interactions of estrogen induce activity for both 
the PI3K and MAPK pathways, pathways involved in 
the chemoresistance of gynecological cancer [146, 147]. 
It appears important to note that estrogen is strongly 
associated with chemoresistance mechanisms in both 
endometrial and ovarian cancers [148-150]. It has been 
demonstrated in endometrial cancer cells that estrogen can 
positively activate GRP78, thus preventing apoptosis and 
providing chemoresistance to both paclitaxel and cisplatin 
[149]. Another study demonstrated that estrogen can 
provide chemoresistance to paclitaxel treatment in ovarian 
cancer cells via the phosphorylation of AKT-ASK1 
complex [150]. The use of hormonal therapy is much more 
prevalent in the context of breast cancer; consequently, 
more data is available with this model. Results show that 
higher levels of ERα in breast cancer are correlated with 
a chemoresistance status against cisplatin, paclitaxel and 
doxorubicin [151]. 
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Tumor suppressors

Up to now, survival pathways were discussed in 
relation to chemoresistance of gynecological cancers, 
however, tumor suppressors also play an important role in 
these mechanisms. 
P53

A largely studied tumor suppressor in all cancers 
is P53. Briefly, P53 is a tumor suppressor protein who 
has various roles of protection against cancer including 
DNA repair, cell growth arrest and apoptosis which gave 
this protein the nickname ‘’guardian of the genome’’. 
P53 a tetramer tightly regulated by MDM2 and can 
be stabilized/activated upon diverse stimuli including 
oncogene activation, DNA damage, starvation or hypoxia. 
P53 can act as a transcription factor and is involved in the 
regulation of many genes from different mechanisms to 
keep the cell in good condition [152, 153]. Nonetheless, 
P53 is highly mutated in gynecological cancers ( > 90% 
in ovaries and 25-85% in the endometrium) being an 
important factor for tumorigenesis and cancer initiation 
(Figure 2C) [92, 152, 154]. Also noteworthy, ovarian 
and endometrial cancers frequently overexpress P53, 
WT or mutant [154-156]. Considering the importance 
of P53 apoptosis pathway, it appears clear that this 
protein is involved in gynecological cancers response 
to chemotherapy. As previously stated, P53 is involved 
in the chemoresistance associated to the PI3K pathway 
alteration in gynecological cancers [99, 101, 102, 118-
120]. Epithelial-mesenchymal transition (EMT), a 
process of tumor invasion and metastasis, is related to the 
inhibition of P53-dependent apoptosis mechanisms and 
involved in the resistance of ovarian cancer to paclitaxel 
and radiation [157]. P53 alterations are also associated, via 
many different mechanisms, to the resistance of platinum 
compounds in ovarian [158-165] and in endometrial 
cancers [166, 167]. P53 inactivation is associated with an 
increase of the mitochondrial BCL-2, an anti-apoptotic 
protein, and it has been demonstrated that upregulation of 
BCL-2 was responsible for the acquired chemoresistance 
to platinum compounds in gynecological cancers [168, 
169]. Overall, P53 is easily the most widely studied 
tumor suppressor in gynecological malignancies and its 
importance in these types of cancer is irrefutable.
Prostate apoptosis response-4 (Par-4)

Finally, an interesting tumor suppressor for 
therapies, and also related to chemoresistance, has 
recently taken interest in the scientific community and 
is named Prostate apoptosis response 4 (Par-4). Par-4 is 
a very interesting protein because of its unique ability to 
induce apoptosis in a cancer-selective manner [170, 171]. 
Indeed, this unique mechanism of selectivity has been 
demonstrated in various models and also seemed to be 
involved in chemoresistance (including Tamoxifen, taxane 

and platinum agents) and tumorigenesis mechanisms [172-
176]. As previously described, gynecological tissues are 
known for being hormone-dependent and, interestingly, 
it has been demonstrated that estrogen can downregulate 
Par-4 and thus could be involved in chemoresistance-
associated mechanisms [177, 178]. A study demonstrated 
that Par-4 increase the apoptotic response to paclitaxel 
treatment in ovarian cancer cells [179]. Our laboratory 
recently published a manuscript indicating that the cleaved 
form of Par-4 was highly reduced/absent in chemoresistant 
gynecological cancers indicating a potential venue for 
this protein to overcome this hurdle. This inhibition was 
post-translational and regulated by the PI3K and MAPK 
pathways, previously described as being involved in 
chemoresistance mechanisms [178]. Except these studies, 
the role of Par-4 on chemoresistance in gynecological 
cancer has received very little attention. We do believe that 
further studies of this promising tumor suppressor would 
be a very interesting avenue for gynecological cancer 
therapeutics.

A table summarizing the chemoresistance 
mechanisms discussed is available (Table 1).

TARGETED THERAPIES TO 
OVERCOME CHEMORESISTANCE

Considering current therapies are not sufficient to 
overcome advanced gynecological cancers, new therapies 
are still being researched by the scientific community. 
Targeted therapy is a new approach of treatment that 
uses compounds which aim, in a specific manner, the 
cancer cells by attacking its oncogenic mechanisms. 
These mechanisms are also often linked with their 
chemoresistance status, so targeting these could sensitize 
cancer cells to standard chemotherapy. This section will 
discuss of the current targets and their associated drugs 
currently under study, specifically in gynecological 
cancers. A figure summarizing the previous mechanisms/
pathways involved in chemoresistance as well as the 
molecules targeting these is available to ease the reading 
(Figure 3). A table is also available to summarize 
the different clinical trials discussed in this section 
(Supplementary Table 1).

Targeting efflux pumps

The p-Glycoprotein, involved in chemoresistance 
mechanisms, is a target of interest in cancers and some 
drugs have been tested under clinical trials, specifically 
on gynecological tissues. First- (verapamil; cyclosporine) 
and second-generation (PSC833; VX-710) have 
been developed but the results in clinical trials were 
disappointing considering their low potency, the low 
specificity and the increase of toxicity when combined 
with other chemotherapeutic drugs such as paclitaxel in 
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ovarian cancer patients [180-182]. 
Tariquidar (XR9576) is a third-generation Pgp 

inhibitor, showing increased specificity and potency to 
inhibit the drug efflux mediated by Pgp. In contrast to 
second-generation Pgp inhibitors, Tariquidar, combined 
with docetaxel, showed minimal toxicity, less systemic 
pharmacokinetic interaction and was well tolerated by 

patients (including ovarian and cervical cancers) [183]. 
Interestingly, both in vitro and in vivo experiments 
indicated that Tariquidar can completely reverse the 
resistance of ovarian cancer cells against doxorubicin 
and paclitaxel [184]. Ex vivo experiments using ovarian 
tumors biopsies also demonstrated that combination of 
Tariquidar with either doxorubicin or paclitaxel increased 

Figure 3: Summary of the diverse mechanisms/pathways involved in chemoresistance and their associated targeted 
treatments. A. Schematic representing most of the mechanisms/pathways (P-gp, MMR, PARP, aromatase, ER, EGFR, PI3K/AKT, 
MAPK, mTOR) discussed and their associated therapeutics molecules. B. Schematic of the P53 mechanisms discussed and the diverse 
targeted therapies previously tested on ovarian and endometrial cancers. C. Schematic of the Par-4 mechanisms and the targeted therapy 
approach suggested using recombinant proteins (Par-4 or SAC domain only) on cancer cells.
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the efficiency of these standards chemotherapeutic 
treatments by decreasing the chemoresistance status [185]. 
Further studies in clinical trials are needed to determine 
if the effect observed on chemoresistance and increase of 
efficiency is reproducible the toxicity of the compound on 
various types of cancer. 

Targeting repair mechanisms

PARP inhibitors

As previously introduced, BRCA mutations are 
frequent and involved in the chemoresistance mechanisms 
of gynecological cancers. One idea of therapy that has 
been developed involves the protein poly-ADP ribose 
polymerase (PARP), responsible for DNA repair of single 
strand break. The principle of this therapy is to inhibit 
PARP and thus reduce the ability of the cell to repair single 
strand breaks; these accumulated breaks will eventually 
lead to double strand breaks during cell DNA replication. 
Normal cells will be able to repair these double strand 
breaks, in part through homologous recombination 
repair, however, BRCA-1/2 deficient cancer cells will 
not and thus will undergo chromosomal instability and 
apoptosis. This is because the BRCA-1/2 genes, when 
mutated, induces a defect in homologous recombination, 
and pairing this with PARP inhibition allow synthetic 
lethality of cancer cells [186]. BRCA-1/2 deficiency is 
not required when using PARP inhibitors but they will be 
a lot more efficient with patients bearing this mutation. 
Some inhibitors of PARP previously used in clinical trials 
for gynecological cancers are the following: Olaparib, 
Veliparib, Niraparib, Iniparib and Rucaparib.

Olaparib has been widely studied in ovarian cancer 
disease. Indeed, many phase II trials have demonstrated 
an important improvement, using this PARP inhibitor as 
monotherapy, on the progression-free survival (PFS) and 
good response rate for women with advanced ovarian 
cancer [187-190]. The first study tested Olaparib on 33 
patients with advanced and recurrent ovarian cancer 
and 11 of these had an objective response rate (the sum 
of partial responses (PR) and complete responses (CR); 
ORR) [187]. The second study was large scale with 265 
platinum-sensitive relapsed patients randomized in 2 
groups (Olaparib versus placebo). The results obtained 
were significant with a median progression-free survival 
of 8.4 months versus 4.8 months for the Olaparib-treated 
versus placebo-treated patients respectively. Regardless 
of the BRCA status, patients treated with Olaparib had 
a decreased risk of progression on the long term [188]. 
Another trial tested Olaparib in 63 patients with advanced 
ovarian carcinoma. The findings were very interesting: 7 
of the 17 (41%) patients with BCRA1/2 mutations had 
an ORR to Olaparib while 11 of the 46 (24%) patient 
without mutations also had an ORR [189]. These results 
demonstrated that PARP inhibition can also be efficient 

in absence of BRCA mutations and that other proteins 
might be involved in the homologous recombination 
of cancer cells. A phase II trial also tested Olaparib in 
193 women with advanced platinum-resistant ovarian 
cancer and 60 obtained an ORR (31%) demonstrating 
again a clinical benefit similar to previous trials with 
chemoresistant patients [190]. Further studies tested 
Olaparib in combination with chemotherapy in ovarian 
cancers. A phase I/Ib study tested Olaparib in combination 
with carboplatin on 37 women with ovarian cancer 
and BRCA mutations. Their findings were 1 CR and 
15 PR, but also found out that FOXO3a expression, a 
transcription factor negatively regulated by AKT and 
involved in the regulation of genes in favor of apoptosis, 
may be predictive of the response to the treatment [191, 
192]. Another phase II trial tested Olaparib in combination 
with both paclitaxel and carboplatin in 162 women with 
recurrent and platinum-sensitive ovarian cancer. The 
progression-free survival was significantly improved 
in the combination group (12.2 months) versus the 
chemotherapy alone (9.6 months). Very interestingly, 
only 41 of 107 measurable patients had BRCA mutations, 
demonstrating again, a clinical benefit of PARP inhibitors 
on patients without BRCA mutations [193]. A phase II trial 
tested Olaparib in combination with cediranib, an anti-
angiogenic agent, in 90 patients with recurrent platinum-
sensitive ovarian cancer. Women treated with Olaparib 
alone had a median progressive-free survival of 9 months 
while those who received the combination had median 
of 17.7 months [194]. The combination of these drugs 
(Olaparib and cediranib) improved the survival of patients 
greatly and studies further testing this combination are 
currently going on. 

The other clinical PARP inhibitors also underwent 
a limited number of clinical trials in ovarian cancer. 
Veliparib was tested in a phase II trial as a single agent 
in ovarian cancer patients with BRCA mutations either 
platinum-sensitive (20 patients) or platinum-resistant (30 
patients). The ORR of all patients was of 26% (2 CR and 
11 PR) and when compared with their platinum-sensitivity, 
the ORR was of 20% for the resistant group versus 35% 
for the sensitive group [195]. A second study also tested 
Veliparib in combination with cyclophosphamide, an 
alkylating agent, in a study group of 72 women with 
BRCA mutated ovarian cancer. No significant results 
were obtained from these experiments and the addition 
of Veliparib did not improve the response rate nor the 
PFS [196]. Another PARP inhibitor selective for PARP-1 
and PARP-2, Niraparib, went under a phase I study (42 
ovarian/peritoneal cancer patients) and the preliminaries 
antitumor results were 8 PR and 2 SD among the 20 BRCA 
mutations carrier patients while being 5 PR and 3 SD 
among the 22 WT BRCA patients. Platinum sensitivity of 
patients was also considered when analyzing the response 
rate. No significant difference was observed in the CBR 
from BRCA mutation carrier (50% for sensitive and 50% 
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for resistant), however, CBR was twice lower in BRCA 
WT platinum-resistant patients (67% for sensitive versus 
32% for resistant) [197]. Iniparib, an additional PARP 
inhibitor, had a very promising phase II trial involving 
17 platinum-sensitive patients with recurrent ovarian 
cancer and was used in combination with carboplatin and 
gemcitabine, a nucleoside analog. The ORR of patients 
treated with carboplatin and gemcitabine alone is normally 
around 47% but adding Iniparib to the combination 
significantly increased the ORR to 71%. Additionally, the 
ORR did not seem to be associated with the BRCA status 
of the patients [198]. Iniparib, combined with paclitaxel 
and carboplatin, have also been tested in a group of 17 
women with advanced or recurrent uterine carcinosarcoma 
(displaying histological features from both endometrium 
and the outer layer of the uterus). The results obtained 
were limited considering that only 4 patients responded to 
the treatment [199]. Still, PARP1 overexpression is present 
in uterine carcinomas and studies with PARP inhibitors 
should not be neglected because of the failure of Iniparib 
in those latter studies. 

Finally, Rucaparib is another PARP1/2 inhibitor 
undergoing clinical studies in ovarian cancer. Rucaparib 
have been initially tested in a pre-clinical study with 39 
ovarian cancer cell lines characterized for BCRA1/2, 
PTEN and their chemosensitivity to platinum compounds. 
Responses to platinum chemotherapy was associated with 
Rucaparib responses and combining the PARP inhibitor 
with topotecan, carboplatin, doxorubicin, paclitaxel or 
gemcitabine provided additive or synergistic effects 
resulting in increased apoptosis [200]. Phase I trial has 
been done using Rucaparib and 29 patients with advanced 
solid tumors including ovarian/peritoneal cancer (7 
patients). Preliminary results were very interesting with 
2 PR and 10 SD among the various doses of Rucaparib 
tested. The most interesting part of this trial is the 
efficiency observed in ovarian/peritoneal cancer patients, 
which account for half of the response rates obtained and 
a CBR of 86% (1 PR and 5 SD) [201]. A phase II trial has 
also been done testing Rucaparib in women with BRCA 
mutated advanced breast and ovarian cancer. 22 of the 
27 patients tested for oral Rucaparib were ovarian cancer 
patients but the ORR with the different doses administered 
was only 15%. However, 12 of the 13 patients who 
received continuously Rucaparib achieved either CR, PR 
or SD for more than 12 weeks [202]. 

Even if BRCA mutations can also occur in 
endometrial cancers, they are sporadic and not much have 
been tested concerning these mutations through the use of 
PARP inhibitors. An aspect of endometrial cancers is their 
high mutation rates of PTEN (Figure 2B), which also has 
a phosphatase-independent role in genomic stability and 
homologous recombination [203]. Considering the repair 
role of PTEN for double strand break, Olaparib have been 
tested in endometrial cancers with this protein of interest 
(PTEN). Preclinical studies have been performed in 

endometrial cancer cells and one of these demonstrated, 
using 16 cell lines, that the PARP inhibitor Olaparib was 
efficient but not necessarily associated with the PTEN 
status of the cell line [204]. Another pre-clinical trial, 
however, demonstrated both in vitro and in vivo that 
Olaparib was efficient and the effect was related to the 
PTEN status of endometrial cancer cells [205]. A clinical 
case has also been done with Olaparib and a 58-year-
old woman with metastatic and recurrent endometrial 
cancer. After treatment with the PARP inhibitor Olaparib, 
a significant reduction of brain metastases was observed 
as well as improvement of tumor-associated symptoms. 
This clinical case report, after a biopsy, also mention the 
absence of BRCA mutations but a loss of PTEN instead, 
thus indicating that PTEN status should be considered for 
administration of PARP inhibitors against gynecological 
cancers [206]. Considering these preliminary results, 
endometrial and PARP inhibitors should be further studied. 

An important aspect of PARP inhibitors is their 
low toxicity for patients, a very desirable effect for 
cancer treatment and possible combination with other 
chemotherapeutic compounds. In addition, the platinum 
sensitivity of the patients was a good marker of efficiency 
when using different PARP inhibitors. Finally, patient 
who did not have BRCA mutations also had a clinical 
benefit, indicating that other biomarkers should be studied 
for PARP inhibitors efficiency, such as the protein PTEN 
which also has a role in genomic stability and homologous 
recombination. Further trials are thus required for 
measuring the efficiency of PARP inhibitors, which 
currently look like a very promising therapy to use in the 
context of advanced gynecological cancers.
Nucleotide excision repair (NER)

Nucleotide excision repair (NER) is also involved in 
the chemoresistance of gynecological cancer and therapies 
targeting this mechanism are also emerging. ERCC1 is a 
potential target involved in this repair mechanism and 
involved in platinum resistance. However no enzymatic 
activity related to this protein (ERCC1) is known, making 
it hard to target. Though, novel small molecules have been 
developed targeting the XPA-ERCC1 complex and thus 
reestablishing platinum sensitivity [207].
Mismatch repair (MMR)

Mismatch repair deficiency is known for 
being involved in cancer development as well as 
chemoresistance, and some research is currently going on 
to target this mechanism and provoke synthetic lethality, 
as previously discussed with PARP inhibitors and BRCA 
genes. The principle of synthetic lethality is based on the 
loss of two genes (one from the inhibitor and one from 
mutation) from the same pathway leading to cancer cell 
death while normal cells only lose one of these (from the 
inhibitor) and still survive. Potential targets have been 
identified to be targeted along with MMR deficiency: 
dihydrofolate reductase (DHFR), DNA polymerase β 
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(POLβ), DNA polymerase γ (POLγ) and PTEN-induced 
putative kinase 1 (PINK1), all causing accumulation of 
oxidative DNA damage when inhibited and combined 
with MMR deficiency (MSH1-2-6) [208-210]. However, 
synthetic lethality has not yet been tested in patients 
with advanced ovarian tumors [211]. Hypermethylation 
of hMLH1 gene is in part responsible for the MMR 
deficiency observed in ovarian cancer. Using Decitabine, 
a demethylating agent, on chemoeresistant/MLH1 
silenced ovarian cancer xenografts, an improvement of 
sensitivity to cisplatin, carboplatin, temozolomide (an 
alkylating agent), and epirubicin (an anthracycline drug) 
was observed. Additionally, Decitabine also permitted a 
re-expression of MLH1 in these ovarian cancer xenografts 
[212]. Phase I trial has been done with Decitabine 
combined with carboplatin on 10 patients with recurrent 
platinum-resistant ovarian cancers. Results were 1 CR and 
3 SD for more than 6 months. Noteworthy, HOXA11 and 
BRCA1 cancer associated genes were demethylated after 
treatment [213]. The same group is pursuing in a phase 
II trial with 17 patients with recurrent platinum-resistant 
ovarian cancer. They found out that Decitabine, followed 
by carboplatin treatment, allowed efficient demethylation 
of RASSF1A, HOXA10, HOXA11 and MLH1, which 
correlated with the progression-free survival of the patients 
(median of 10.2 months). The response rate obtained was 
of 35% and half of the patients were free of progression 
after 6 months [214]. The use of demethylating agent 
should be considered as a possible treatment to overcome 
chemoresistance in gynecological cancers presenting 
MMR deficiency and hypermethylation of genes.

Targeting PI3K/AKT and MAPK

Considering the PI3K/AKT pathway is one of the 
main pathways involved in tumorigenesis and being 
highly mutated in gynecological cancers, many drugs 
have been developed to target various proteins of this 
pathway and to increase the efficiency of anti-cancer 
treatment, partly via the loss of chemoresistance. First 
generation PI3K inhibitors, such as Wortmannin and 
LY294002, were developed and mainly used in promising 
pre-clinical studies to better understand this pathway and 
their implication in therapies against gynecological cancer 
cells. One of these pre-clinical studies demonstrated in 
vivo, using athymic mice bearing ovarian cancer cells, 
that administration of Wortmannin efficiently sensitized 
the cancer cells to cisplatin treatment [215]. Yet, because 
of their poor pharmacokinetics properties, a second 
generation of inhibitors have been developed being more 
selective and sometime isoform specific. Among these 
second-generation PI3K inhibitors, Buparlisib (BKM-
120), GDC-0941 and Pilaralisib (XL-147) are pan-class 
I PI3K inhibitors, which have been tested in few trials for 
gynecological cancers.

PI3K inhibitors

A previous study involving Buparlisib, in 
combination with Olaparib (PARP inhibitor), administered 
in vivo in mice with BRCA-1 mutations demonstrated an 
important synergy, which leads to a phase I trial with 34 
women bearing high-grade serous ovarian cancer or triple-
negative breast cancer [216, 217]. Among the patients, 26 
were known for having BRCA mutations, a biomarker 
of efficiency for PARP inhibitors. All dose combinations 
allowed the observation of clinical benefits among the 
patients being promising for further trials [217]. GDC-
041 has been tested in two phases I trial in patients with 
advanced solid tumors [218, 219]. The first trial was 
tested with 49 patients and minimal clinical results were 
observed with only two patients with a PR; one of these 
was an endocervical tumor with mutations on PIK3CA. 
CA125 responses were also observed in three patients with 
ovarian cancer including one with known high PIK3CA 
gene copy number [218]. The second phase I trial with 
GDC-0941 had similar results. Among the 42 patients 
tested, clinical activity was observed only on two patients, 
including one with a PTEN negative ovarian cancer [219]. 
Pilaralisib has been used in a phase II study in 67 patients 
with advanced or recurrent endometrial carcinoma. The 
ORR was minimal and only two patients had CR and 
two other patients had PR. No association was made 
between the molecular alterations of the PI3K pathway 
(three of these patients had wild-type PTEN with PIK3R1 
mutations, one had PTEN mutation) and the clinical 
activity observed [220]. BYL719 is a PI3KCA isoform 
specific inhibitor that has been tested in a phase I trial in 
36 patients with diverse tumors with PIK3CA mutations. 
Results were 7 PR (including one from cervical, one from 
endometrium and one from the ovary) [221].

As introduced, PI3K inhibitors had a considerable 
success rate in preclinical studies, however, the clinical 
studies of PI3K inhibitors presented in gynecological 
cancer were not as successful. The PI3K network is vastly 
complex and ramified, including feedback loops, alternates 
signaling cascades and crosstalk, all plausibly explaining 
the observed ineffectiveness. Inhibition of the PI3K 
pathway is known for also activating the MAPK pathway 
via crosstalk and dual inhibition with MAPK inhibitors 
could be considerable. The opposite is also true: inhibiting 
the MAPK upregulates PI3K/AKT activity [178, 222, 
223]. The PI3K inhibitor Buparlisib have been tested in 
combination with the MEK inhibitor Trametinib in a phase 
Ib trial with 113 patients with advanced solid tumors, 
including ovarian cancer. Results among the 21 patients 
with ovarian cancer were 1 CR, 5 PR and 10 SD for an 
ORR of 29%. Remarkably, Buparlisib was efficient almost 
exclusively in ovarian cancer, the exception being a PR 
observed in a KRAS mutated non-small cell lung Cancer 
patient. Also noteworthy was the fact that 19 ovarian 
cancer patients were KRAS mutated demonstrating an 
efficient way to overcome this aggressive mutation [224]. 
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The PIK3CA isoform inhibitor, BYL719, has been tested 
in combination with the MEK inhibitor Binimetinib in 
58 patients with advanced tumors and mutated with RAS 
or BRAF. Four patients with ovarian cancer had KRAS 
mutation and 3 of these had a PR with the combined 
treatment. A patient with endometrial cancer and a KRAS 
mutation also had a PR. Overall, among all patients, 5 had 
PR and 18 had SD indicating an interesting efficiency for 
advanced tumors, especially gynecological cancers [225]. 
This combination is of particular interest for patients 
with KRAS mutations considering this mutation is often 
associated with an absence of response when using PI3K/
AKT/mTOR inhibitor alone in gynecological cancers 
[226]. 

The use of dual-inhibiting PI3K and mTOR is also 
considered because of the intricate relationship between 
these complexes. Considering this fact, NVP-BEZ235 has 
been developed as a molecule capable of inhibiting both 
PI3K and mTOR. Preclinical studies have been performed 
in both gynecological cancers using this new inhibitor. 
One of these demonstrated, via 18 ovarian cancer cell lines 
(cisplatin sensitive and resistant models), sensitization to 
cisplatin and a correlation of the effect observed with those 
bearing PI3K-activations mutations or PTEN deletions. 
They also used a transgenic murine model of ovarian 
cancer (LSL-K-rasG12D/+PtenloxP/loxP) treated with NVP-
BEZ235 and observed a longer median of survival as well 
as apoptotic activity [227]. Another study made similar 
experiments, but this time using 13 endometrial cancer 
cell lines (possessing at least one alteration of PTEN, 
PIK3CA or KRAS) and xenografts in nude mice in vivo. 
NVP-BEZ235 was efficient to eliminate cancer cells both 
in vitro and in vivo. Interestingly, cancer cells with PTEN 
mutations but without KRAS alterations demonstrated a 
higher sensitivity to NVP-BEZ235 than those with KRAS 
alterations. Considering these observations, they added 
a MAPK inhibitor, PD98059 or U0126, and successfully 
sensitized the K-RAS mutants to NVP-BEZ235, again 
demonstrating the implication of MAPK in the efficiency 
of PI3K inhibitors [228].
AKT inhibitors

AKT is a downstream target of PI3K and an 
important kinase involved in many mechanisms. 
Considering PI3K is a kinase central to a large network, 
which entails all the previously stated problematic; 
targeting AKT, downstream of PI3K, is thus an 
interesting avenue. AKT specific inhibitors have been 
developed (MK-2206, Perifosine, AZD5363 and 
GSK2141795) and pre-clinical trials looked promising 
[229-235]. Following these, few trials have been done 
in gynecological cancer patients. MK-2206, an allosteric 
inhibitor of AKT, has been tested in a phase II trial in 
36 women with recurrent endometrial cancer. PIK3CA 
status was checked on patients; 9 were mutated and 27 
were wild-type. Each group only had one patient with 

a PR, indicating a limited activity of this AKT inhibitor 
administered as a single agent and independently of the 
PIK3CA status in endometrial cancer patients [236]. 
Phase I trial tested Perifosine, another AKT inhibitor, 
combined with docetaxel in 21 taxane-resistant ovarian 
cancer patients. One patient (PTEN mutant) had a 
PR, another patient (PIK3CA mutant) had a SD and 
two other patients (no PI3K mutations) also had a SD. 
Noteworthy, patients with KRAS mutations had a rapid 
progression indicating again a relation with this protein 
as an indicator of inefficiency for PI3K/AKT inhibitors. 
Again, the efficiency of this AKT inhibitor was limited 
and no direct correlation with mutations of the PI3K 
pathway was made [237]. AZD5363, a novel and potent 
AKT inhibitor, have been through a phase I trial with 92 
patients bearing advanced tumors. Among these patients, 
only 2 obtained a PR (one endometrioid cancer of the 
ovary and one cervical cancer with either PIK3CA or 
AKT1 mutation) and one got a SD (endometrioid cancer 
of the ovary with PIK3CA mutations) [238]. The results 
obtained showed that efficiency was, again, minimal. 
GSK2141795, another AKT inhibitor, have been tested 
in a phase I trial in 12 patients with recurrent platinum-
resistant ovarian cancer. 8 of the 12 patients had a SD 
while the 4 left had a progressive disease [239]. Another 
phase I trial tested GSK2141795, but with a large group 
of 66 patients with advanced tumors. Among these, 12 
were endometrial cancer patients and only 2 had a SD 
(PIK3CA mutant and/or PTEN loss) [240]. Similarly 
to PI3K inhibitors, GSK2141795 has been tested in 
combination with GSK1120212, a MEK1/2 inhibitor, in 
13 patients with diverse tumors. 3 of the 13 patients had 
weak tumor regression (2 patients with ovarian cancer and 
1 with endometrial cancer). The results were limited here. 
The study was a dose-escalating trials, which could have 
an impact on the efficiency observed [241]. Overall, AKT 
inhibitors clinical activity was also limited when tested 
on human patients with gynecological cancers in clinical 
trials.

To better estimate the expected results following 
chemotherapy regimens and increase the low response 
rate previously observed when using PI3K/AKT/mTOR 
inhibitors, biomarkers are a very interesting option. A 
study including 140 patients (breast, cervical, endometrial, 
and ovarian cancers) from phase I program treated with 
PI3K/AKT/mTOR inhibitors, measured different potential 
biomarkers (PIK3CA, KRAS, NRAS, and BRAF) to see 
if a correlation was possible with the response rate of 
patients. PIK3CA mutations were detected in 25 patients 
and their response rate to PI3K/AKT/mTOR inhibitors was 
significantly higher (30%) when compared with patients 
without the mutation (10%) [242]. The PI3K network is 
large and additional combinations of inhibitors would 
be necessary to overcome the inefficiency observed. As 
suggested by previous studies, KRAS mutations seemed 
to be a good indicator of resistance to PI3K inhibitors 
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and combination with MAPK inhibitors seemed to be 
one of the attractive avenues to overcome absence of 
response. Another interesting avenue could be the use of 
PARP inhibitors. PI3K inhibition has been associated with 
the loss of homologous recombination and the addition 
of a PARP inhibitor could provide synthetic lethality 
selectively to cancer cells [243]. Indeed, as previously 
stated, PTEN has a role in homologous recombination and 
its status is considerable for using PARP inhibitors [203]. 
All things considered, to overcome the limited benefit of 
PI3K/AKT/mTOR inhibitors, a better understanding of the 
patient’s mutation status combined with another inhibitor 
to prevent resistance to treatment would be an appealing 
avenue to increase the success rate of this targeted therapy. 

Targeting mTor

Mammalian target of rapamycin (mTOR) is the 
catalytic subunit of two distinct complexes, mTORC1 
and mTORC2. Both complexes associate with different 
proteins, thus regulating different substrates and play 
crucially important roles in protein synthesis, growth and 
survival. Interestingly, mTORC1 is sensitive to rapamycin 
while mTORC2 is not. It should be noted that mTOR 
lies downstream of the PI3K-AKT signaling cascade, a 
pathway frequently mutated in gynecological cancers and 
of paramount importance in the control of cell fate [244]. 

As such, it is a prime target for drug targeting and requires, 
in our opinion, further investigations. 

Temsirolimus, a water-soluble derivative of 
rapamycin, is a specific mTOR inhibitor which blocks 
protein synthesis related to survival and tumor growth 
of cancer cells. Temsirolimus only target mTOR activity 
in the mTORC1 complex. A phase II trial was done 
with temsirolimus on 54 patients with recurrent ovarian 
cancer. Results obtained were modest with 9 patients 
having a PR [245]. Another study tested temsirolimus on 
5 chemoresistant patients with clear cell carcinoma of the 
ovary. Of the 5 patients, 1 had a PR and another 1 had a 
stable disease (SD) [246]. Temsirolimus have been tested 
in combination with bevacizumab, an anti-angiogenesis 
compound under trial, enrolled with 31 women with 
recurrent ovarian cancer (17 chemosensitives versus 14 
chemoresistants). Of the 25 patients evaluable, 3 obtained 
a PR and 9 had a SD. Interestingly, the 3 PR were from the 
platinum-resistant group, a desirable effect on advanced 
and recurrent cancer therapy [247]. Overall, temsirolimus 
showed only a modest activity on chemoresistant women 
with ovarian cancer. Concerning endometrial cancer, 
clinical studies have also been performed. A phase II 
trial tested temsirolimus alone or in combination with 
hormonal therapies (a progestin and tamoxifen) on 
patients with advanced/recurrent endometrial cancer. This 
study was focused on the fact that the mTOR pathway 
could be involved in the resistance to hormonal therapy 

Figure 4 : Estrogen implication in Par-4 regulation. A. Ishikawa cancer cells were treated with either 0,1µM or 1µM estradiol (E2) 
for 4h. The levels of Par-4 and ERα were determined in treated cells using western blot analysis. GAPDH was used as a loading control. 
Results shown are representative of three independent experiments. B. ChIP-seq tracks showing ERα binding location on PAWR gene 
(Par-4) in control cells (top lane) and E2 treated cells (bottom lane) for 30 minutes. Genomic locations were obtained using the integrated 
genomic viewer (IGV 2.0). Red arrows indicate a novel ERα binding enrichment profile in the proximal region of Par-4 gene that can 
potentially be involved in negative regulation of the gene. Geo accession number: GSE23893.
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in endometrial cancers. Temsirolimus alone was tested 
with 50 patients divided in two groups, 29 with prior 
chemotherapy and 21 without prior chemotherapy. The 
response rate was similar between these two groups with 
an ORR of 22% (24% ORR prior chemotherapy; 19% ORR 
without prior chemotherapy). This study also concluded 
that combining megestrol acetate (a steroidal progestin), 
tamoxifen and temsirolimus did not improve the treatment 
efficiency and was associated with an increased toxicity 
[248]. Another phase II trial tested temsirolimus alone in 
54 recurrent and metastatic endometrial cancer patients. 
This study also considered if the patient had previously 
received chemotherapy, which were distributed in two 
distinct groups. Of the 29 chemo-naive patients, 4 had a 
PR and 20 a SD. From the 25 chemo-treated patients, 1 
had a PR and 12 a SD. The single agent activity was higher 
in chemo-naive patients and demonstrated a beneficial 
effect to arrest cancer progression in both groups. They 
also checked if PTEN status, related to the regulation of 
mTOR pathway, was associated with the response rate of 
temsirolimus and found no association. Therefore, they 
concluded temsirolimus response was PTEN-independent 
[249]. Two other phase II trials tested temsirolimus in 
combination with bevacizumab, an angiogenesis inhibitor, 
in recurrent endometrial cancers patients. One study had 
26 patients and obtained 5 PR and 12 were progression 
free at 6 months [250]. The second study had 49 patients 
and obtained 1 CR, 11 PR and 23 were progression free 
at 6 months [251]. Overall, these studies demonstrated a 
certain efficiency against recurrent endometrial cancer but 
also a considerable toxicity when combining both these 
compounds.

Everolimus (RAD-001) is another mTOR inhibitor 
with a mechanism similar to rapamycin and selective 
to mTORC1. A pre-clinical study has been done 
using 58 transgenic mice with bilateral ovarian serous 
adenocarcinomas developed accompanied by ascites 
and peritoneal dissemination. Treating these mice with 
everolimus alone reduced tumor burden by 84% and 
ascites and peritoneal dissemination were detected in only 
21% of the treated mice versus 74% in the placebo-treated 
animals [252]. They also tested everolimus alone and in 
combination with cisplatin against ovarian cancer both 
in vitro and in vivo. Using ovarian cancer cell lines, they 
found out that everolimus was efficient for inhibiting cell 
proliferation and when combined with cisplatin, enhanced 
apoptosis. They also observed similar findings in vivo 
using xenografts models (inhibition of tumor growth, 
decrease of ascites and increased treatment efficiency 
when combined with cisplatin). Noteworthy, everolimus 
was efficient only in cells with high AKT/mTOR activity 
[253]. These pre-clinical findings were promising for the 
treatment of ovarian cancers. In endometrial cancer, phase 
II trials have been done using everolimus. One of these, 
tested everolimus in patients with recurrent endometrial 
cancer that have previously received chemotherapy. After 

treatment, 6 of the 28 patients had a SD, thus a clinical 
benefit rate of 22% (CBR; sum of CR, PR and SD) 
[254]. They also performed another phase II trial testing 
everolimus in combination with letrozole, an aromatase 
inhibitor, with 35 patients with advanced endometrial 
cancer. Using hormonal therapy in combination with 
everolimus increased the CBR, as well as the addition of 
CR and PR to the results, to 40% indicating a high benefit, 
considerable for therapy [255]. Another phase II trial tested 
everolimus alone in 44 patients with advanced endometrial 
cancer (2/3 previously received chemotherapy). After 3 
months, 36% had a non-progressive disease and after 6 
months, 4 patients had a PR [256]. 

Considering the high level of PTEN mutations in 
endometrial cancer, many trials tested mTOR inhibitors 
in this tissue. Results obtained were overall interesting 
but the combination of an mTOR inhibitor with another 
drug/compound such as an aromatase inhibitor provided 
very interesting results and will be necessary for optimal 
therapies. It is also worth noting that these two compounds 
inhibiting mTOR (temsirolimus and everolimus) tested in 
clinics only inhibit the mTORC1 complex. The mTORC2 
complex is involved in the phosphorylation of the 
AKT protein at S473 leading to a full activation of this 
important kinase from the PI3K/AKT pathway, playing 
an important role in survival and proliferation [257, 258]. 
Another important fact concerning mTORC2 complex is 
that it can also subsequently activate the MAPK survival 
pathway [258]. An alternative pathway, insensitive to 
classical mTORC1 inhibition, is thus present and requires 
further attention to increase the efficiency of treatments.

Targeting EGFR

Considering the high level of mutation/
overexpression of EGFR in gynecological cancers, some 
therapeutics compounds targeting this family of oncogene 
have been tested in gynecological cancers.

Low molecular weight tyrosine kinase inhibitors 
Gefitinib (ZD-1839) and Erlotinib (OSI-774) have been 
developed to inhibit EGFR activity and prevent tumor 
growth. Gefitinib alone was administered in a phase II 
trial in 26 women with advanced endometrial cancer and 
the results obtained were four patients with a PFS of more 
than 6 months, one had a CR and 7 had a SD [259]. In 
ovarian cancer, phase II trials also tested gefitinib as a 
single agent. The results indicated that the inhibitor was 
able to decrease EGFR and p-EGFR protein levels but 
had minimal clinical benefits observed when using the 
agent alone [260, 261]. A phase II study decided to assess 
Gefitinib effectiveness in combination with tamoxifen 
with 56 women with ovarian cancer resistant to platinum 
and taxane therapies. The results were not conclusive 
because of the inefficacy of the treatment against the 
resistant cancers; no additional side effects were observed 
when combining tamoxifen with Gefitinib [262]. A phase 
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II trial assessed the efficacy of Gefitinib in combination 
with paclitaxel and carboplatin for both platinum-sensitive 
and platinum-resistant ovarian, tubal or peritoneal 
adenocarcinoma patients (total of 68 patients). The results 
obtained were interesting considering the ORR of 19.2% 
and 61.9% and the CBR was of 69.2% and 81.0% for 
resistant and sensitive groups respectively [263]. Phase I/
II trial combined Gefitinib with oxaliplatin and vinorelbine 
(an inhibitor of microtubule assembly) in 33 women with 
advanced ovarian cancer were divided between platinum-
sensitive and resistant groups. The ORR was of 23.8% (3 
CR and 2 PR) and 90% (4 CR and 5 PR) in the resistant 
and sensitive groups respectively [264]. These results 
show that Gefitinib present high effectiveness only when 
combined with chemotherapeutic compounds, particularly 
in chemosensitive cancers.

A phase II trial tested Erlotinib, as a single agent, 
in 32 women affected by advanced endometrial cancer 
and the results obtained were 4 PR and 15 SD [265]. 
Another phase II trial tested Erlotinib as a single agent, 
but this time in 34 women attained with advanced ovarian 
cancer. The results were 2 PR and 14 SD, similar to the 
results observed with endometrial cancers [266]. A phase 
IB trial tested Erlotinib combined with both carboplatin 
and docetaxel in 23 women with chemo-naive ovarian 
cancer. Results obtained were 5 CR and 7 PR giving an 
ORR of 52% [267]. A phase II study combined Erlotinib 
with carboplatin for 50 women with advanced ovarian 
cancer. Results were an ORR 7% (1 PR) for the resistant 
group versus 57% (14 PR) for the sensitive group [268]. 
Again, this indicates a good clinical efficiency when 
combined with chemotherapy but most particularly for 
chemosensitive patients.

Monoclonal antibodies against EGFR have also 
been developed, Cetuximab (IMC-C225; Erbitux) 
and matuzumab (EMD-72000). A phase II trial tested 
matuzumab, as a single agent, in ovarian cancer for 37 
patients who previously received platinum treatment and 
became chemoresistant, demonstrated that the treatment 
was well tolerated but only led to 7 SD indicating that 
the clinical activity was limited [269]. Similar results were 
observed in a phase II trial of cetuximab as monotherapy 
in ovarian cancer patients with recurrent diseases [270]. 
Cetuximab combined with carboplatin and paclitaxel have 
been tested in another phase II trial for 40 women as an 
initial therapy for advanced ovarian cancer. The therapy 
was well tolerated, however, the results obtained were not 
beneficial (no increase of the progression-free survival 
(PFS) of the patients) [271]. Another phase II trial tested 
cetuximab combined with carboplatin in 28 patients with 
platinum sensitive ovarian cancers. Following treatments, 
9 patients had an ORR and 8 SD indicating a certain 
clinical activity of the monoclonal antibody while not 
being optimal for therapy [272]. The effect of cetuximab 
seems to be reproducible in endometrial cancer and a pre-
clinical study demonstrated that the monoclonal antibody 

was able to inhibit cell growth and invasion in endometrial 
Hec-1a cells in vitro while being able to inhibit tumor 
growth, lymph nodes and lung metastasis in vivo [273].

Interestingly, these trials demonstrated that inhibiting 
EGFR in gynecological cancers is well tolerated but the 
efficiency is low when used alone, thus necessitating a 
combination with another chemotherapeutic drug. The 
combination of EGFR inhibitors with another drug was 
effective in chemosensitive patients while being less 
effective in chemoresistant patients. 

Targeting the estrogen signaling pathway

Two types of treatments have been developed to 
target the estrogen signaling pathway, aromatase inhibitors 
and estrogen receptor antagonists. 
Aromatase inhibitors

Anastrozole is a potent non-steroidal aromatase 
inhibitor that had one phase II trial in 23 recurrent 
endometrial cancer patients. The results were minimal 
with only 2 PR and 2 SD [274]. A phase II trial was 
performed using Anastrazole as a single agent in 53 
asymptomatic recurrent/persistent ovarian (43), peritoneal 
(7) and fallopian tube (3) cancer patients. Results were 1 
patient with a PR and 68% of these with a SD (42% > 90 
days; 15% > 180 days; 7% > 270 days; 4% > 360 days) 
[275]. The same research group also performed a phase II 
trial using both Anastrozole and EGFR inhibitor Gefitinib 
in 35 patients with asymptomatic recurrent/persistent 
ovarian (30), peritoneal (4) and fallopian tube (1) cancers. 
23 patients were evaluable and results were 1 CR and 14 
SD, thus having only modest activity [276]. 

Letrozole is another aromatase inhibitor under study. 
In a group of 28 patients with recurrent endometrial cancer, 
but never treated with chemotherapy previously, letrozole 
was studied as a single agent in a phase II trial. Results 
obtained were 1 CR, 2 PR and 11 SD indicating a modest 
antitumoral activity. Interestingly, different markers 
including the hormone receptors were screened but were 
not correlated with response to letrozole [277]. Another 
phase II study tested letrozole in combination with the 
clinical mTor inhibitor everolimus in 35 women with 
advanced recurrent endometrial cancer. The results were 
very interesting with 11 CR, 2 PR and 1 SD [255]. Their 
previous study using everolimus alone had a CBR of 21% 
and only SD [254]. The addition of letrozole increased 
the CBR to 40%, as well as the addition of CR and PR, 
indicating a benefit when adding this aromatase inhibitor 
[255]. Letrozole was also tested in 50 ovarian cancer 
patients in a phase II trial. No CR or PR was attained with 
tumors and only 10 patients had a SD. Noteworthy, they 
observed a correlation between the response to letrozole 
and high estrogen receptor level [278]. Another phase II 
study tested letrozole in 21 women with recurrent ovarian 
cancer. Following treatment, the results were 1 CR, 2 PR 
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and 4 SD, again indicating a modest antitumoral activity. 
No association was found between hormone receptors and 
response to letrozole [279]. Another study preselected 
33 patients with ovarian cancer, all with the presence of 
estrogen receptors, and tested letrozole in a phase II trial. 
Results obtained were 3 PR and 14 SD, indicating that 
a pre-selection of patients can increase the efficiency of 
letrozole a little to arrest the progression of the cancer 
[280]. Finally, a phase II trial tested letrozole, but this 
time with 31 patients with ovarian cancer both resistant to 
platinum and taxane therapies. Notably, all patients were 
positive for estrogen receptors, however, none had a CR, 
one had a PR and 7 had a SD. These results indicate that 
chemoresistance has an impact on aromatase inhibitors, 
especially letrozole here, and their efficiency to stabilize 
tumor progression [281]. 

Exemestane is a novel aromatase inhibitor and one 
trial tested this compound in refractory ovarian cancer 
patients who previously received platinum and taxane 
therapies. No CR or PR was obtained with the 24 patients, 
however, 8 had a SD > 14 weeks [282]. Noteworthy, 
exemestane had an important effect on the tumor 
progression as previously observed with other aromatase 
inhibitors.
Estrogen receptor antagonists

Fulvestrant (Faslodex), is a novel estrogen receptor 
(ER) antagonist providing increased proteasomal 
degradation of its target. A phase II trial tested this 
compound in advanced endometrial cancer with 31 
patients (estrogen receptor positive) and 22 patients 
(estrogen receptor negative). No patients demonstrated 
a CR or PR in the absence of estrogen receptor while 1 
CR and 4 PR was observed in patients expressing the 
estrogen receptor. The disease was stable in 4 patients 
in the ER-negative group versus 9 in the ER-positive 
one. Fulvestrant antitumoral activity was absent without 
the presence of ER and minimal when the target (ER) 
was present; however the antagonist was efficient for 
stabilizing tumor growth [283]. Concerning ovarian 
cancer, a phase II was performed using fulvestrant in 26 
women with advanced disease. The results obtained were 
similar to the ones obtained with endometrial cancer, 1 
CR, 1 PR and 9 SD indicating a weak antitumoral activity 
with great stabilization of tumor growth [284]. The same 
research group measured the estrogen receptor protein 
level with tissue microarray (TMA) and correlated the 
expression measured, positively, with the clinical benefit 
previously observed [285]. Overall, Fulvestrant is also 
efficient for stabilizing tumor growth but modest for 
decreasing tumor size when administered alone.

Arzoxifene is another estrogen receptor antagonist 
tested for both the mammary and uterine tissues. An 
interesting aspect of arzoxifene is the lack of uterotrophic 
effect, a considerable feature for its use in endometrial 
cancers as compared to tamoxifen. Indeed, phase II trials 

have been done in patients with advanced or recurrent 
endometrial cancers and the results were promising. 
Two of these trials were done with 100 patients from two 
multi-institutional studies and results obtained were a 
low toxicity with an ORR of 25% and 31 % respectively 
[286]. Another trial specifically selected 29 patients 
with advanced endometrial cancer expressing ER and/
or progesterone receptor and not previously treated with 
chemotherapy. Results obtained were a low toxicity, 1 
CR and 8 PR (ORR = 31%) with a median duration of 
response greater than 13 months [287].

Toremifene is an antiestrogen that had a study using 
ovarian cancer cell lines in vitro and patients with ovarian 
and uterine cancers in vivo. Results in vitro demonstrated 
that toremifene was able to increase significantly the 
efficiency of doxorubicin on ovarian cancer cell lines; 
some were initially resistant to doxorubicin. On the 8 
patients tested, 3 had PR, 3 had SD but 2 also had a tumor 
progression [288]. This study is thus promising for the 
further clinical trials tested with gynecological cancers.

The minimal effect observed in these diverse 
trials can be partly due to the non-selectivity of patients 
considering the frequent loss of estrogen receptors in 
recurrent gynecological cancers. However, the antitumoral 
effect of these agents seemed minimal but they were 
able to efficiently stabilize the disease. A combination 
of a compound from this family targeting the estrogen 
signaling pathway with a chemotherapeutic drug could 
increase the efficiency of the treatment. A combination 
with two targeted pathways could also be an interesting 
avenue. This was demonstrated in the promising study 
combining Letrozole with an mTOR inhibitor, which 
provided astonishing results [289]. Our laboratory 
previously studied a new chemotherapeutic compound 
called VP-128, which contained both a steroid portion 
(E2) and a toxic portion (platinum). Preclinical studies 
shown that this combination targeting the estrogen 
receptor was promising and efficient in ovarian cancer. 
Both in vitro and in vivo studies demonstrated a significant 
antitumoral effect against selected tumors expressing the 
estrogen receptor alpha. The effect was only modest in 
tumors without the estrogen receptor, similarly to the 
clinical results observed in trials [290]. Considering these 
observations, we suggest that screening patients before 
using therapeutic compounds targeting the estrogen 
signaling pathway seems to be of paramount importance 
to insure the combination therapy potency against 
endometrial and ovarian cancers.

Targeting P53

Another important tumor suppressor involved in 
chemoresistance mechanisms to consider is P53. Many 
therapeutic avenues have been studied concerning 
P53. Another aspect to consider is the high amount of 
gynecological cancers overexpressing P53, making 
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this protein an interesting target for therapy [154-156]. 
However, because of its multiple mechanisms and 
mutations, high levels of effectiveness are hard to achieve. 
In gynecological cancers, few trials have been made to test 
the efficiency of P53 targeting, a protein highly altered in 
these cancers (Figure 2C).

Gene therapy has been tested with the P53 gene via 
diverse techniques to re-express the functional P53 protein 
and regain its functions to eliminate tumor cells. P53-
SLP is a synthetic peptide-vaccine containing a peptide 
derived from the middle portion of the P53 protein. The 
goal of this vaccine is to stimulate the immune system, 
a known function of P53, to mount a cytotoxic response 
against tumor cells overexpressing P53. This vaccine 
(P53-SLP) was tested in a phase II trial with 20 patients 
with ovarian cancer. Results obtained were 2 SD and 18 
patients had a progression of the tumor. Beside the weak 
clinical benefit, they confirmed that the vaccine was well 
tolerated and stimulated T-cell responses in patients which 
was the primary objective of this vaccine [291]. P53-
SLP was also tested in a phase II trial with 10 patients 
with recurrent ovarian cancer, pre-treated with low-dose 
cyclophosphamide to improve the immunogenicity of 
the vaccine. They observed a higher number of IFN-γ-
producing T cells when compared to their previous study 
testing P53-SLP alone. However, the clinical results were 
again minimal with 2 SD and 8 progressive disease [292]. 
They also tested P53-SLP on 20 patients with advanced 
ovarian cancer, which also had a secondary chemotherapy 
following vaccine treatment. The administration of P53-
SLP before chemotherapy allowed 2 SD only. Following 
analyses indicated that the administration of P53-SLP did 
not enhance the efficiency of chemotherapy treatments, 
thus was not able to overcome the chemoresistance of 
advanced ovarian cancer patients [293]. SCH-58500 is 
another therapy consisting of a genetically engineered 
adenovirus, unable to replicate and containing the wild-
type gene P53. Phase I/II trial have been performed using 
SCH-58500 combined with platinum-based therapy with 
24 patients diagnosed with recurrent ovarian cancer. 
Results obtained were satisfying considering the success 
to efficiently re-express P53 in tumors and a decrease 
higher than 50% CA125 (8/16 of the evaluable patients), 
an ovarian tumor marker, observed when combining both 
SCH-58500 with platinum compounds [294]. On the long 
term, they also observed that patients who only received 
a single dose of SCH-58500 had a median survival of 5 
months versus 13 months for those who received multiple 
doses of SCH-58500 [295]. Overall, the trial of SCH-
58500 in combination with platinum compounds tested 
on recurrent ovarian cancers was promising and more 
successful than the use of peptides-based approach. 

Another promising compound, ONYX-015, is 
an oncolytic adenovirus that replicates selectively in 
cancer cells with malfunctioning P53, followed by 
lysis to eliminate tumors. Indeed, the replication and 

cytopathogenicity of this adenovirus is blocked by WT-
P53 and thus only replicate in mutant P53 tumors [296]. 
If P53 is responsible for the chemoresistance of cancer 
cells, these would be eliminated leaving sensitive cells 
only to be treated with standard chemotherapy. Phase I 
trial tested ONYX-015 as monotherapy on patients with 
recurrent ovarian cancer but observed no clinical effect 
when used alone [297]. No more trials of ONYX-015 have 
been performed in gynecological cancer but the compound 
is still promising and has been tested in combination 
with chemotherapy in other tissues (head, neck and 
gastrointestinal with metastases) giving excellent results 
with complete responses and being responsive against 
chemoresistant patients [298, 299]. 

MK-1775 is a small molecule inhibitor targeting 
WEE1, a kinase responsible for inactivating CDC2/
Cyclin B complex, involved in the G2 checkpoint for 
DNA damage. Most cell type presenting mutant-P53 lack 
the G1 checkpoint for DNA damage. Thus, inactivating 
the second checkpoint (G2) with a WEE1 inhibitor can 
sensitize to chemotherapeutic treatments in gynecological 
cancers [300]. Some trials have been performed using 
this new inhibitor in combination with chemotherapy in 
ovarian cancer. Phase I trial combining MK-1775 with 
carboplatin and paclitaxel with 14 patients sensitive to 
platinum therapy obtained 11 PR and 3 SD; 7 of these 
were evaluable by CA125 with 3 CR and 4 PR [301]. A 
similar trial has been done in a phase II trial with MK-
1775 combined with carboplatin and paclitaxel and was 
tested on 121 women with platinum sensitive ovarian 
cancer (59 received carboplatin/paclitaxel + MK-
1775 while 62 only received carboplatin/paclitaxel). 
Progression-free survival was greater with the addition 
of MK-1775 when compared with carboplatin/paclitaxel 
only group. The overall response rate was of 81% for 
the group who received the combination of carboplatin/
paclitaxel including MK-1775 versus an ORR of 74% 
for patients who received only carboplatin/paclitaxel, 
indicating an increase of efficiency for treatment via the 
inhibition of WEE1 [302]. Another phase II study tested 
MK-1775 in combination with carboplatin on 22 patients 
with recurrent and platinum resistant ovarian cancer. 
Following treatments, 6 patients had a PR and 9 had a 
SD. The progression-free survival median was 11 months. 
Considering that patients were platinum-resistant, results 
were still interesting [303]. A similar phase II study is 
currently undergoing and testing MK-1775 in combination 
with gemcitabine also in recurrent and platinum-resistant 
ovarian cancer patients [304]. MK-1775 is relatively new 
and seems promising for the treatment of P53-mutated 
ovarian cancers. Trials in endometrial cancers could also 
be of interest considering the high alteration rate of P53 
in this tissue.

APR-246 is a small molecule with the ability to 
restore mutant P53 to its wild-type conformation, allowing 
the activation apoptotic mechanisms to eliminate cancer 
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cells. Preclinical studies have demonstrated a high 
synergetic effect of the molecule in combination with 
platinum compounds in ovarian cancer models both in 
vitro and in vivo. These studies also demonstrated that 
the addition of APR-246 in combination with standard 
chemotherapy was able to sensitize ovarian cancer 
cells and overcome chemoresistance to cisplatin and 
doxorubicin [305, 306]. A Phase I/II trial is currently 
undergoing in 160 ovarian cancer patients treated with 
APR-246 combined with carboplatin and doxorubicin and 
preliminary results still show positive and similar effects to 
those observed in pre-clinical trials [307]. In general, P53 
targeted therapy is still actively studied and impressive 
with the diversity of bioengineered compounds targeting 
this protein. The number of clinical trials studying 
therapies targeting P53 is limited in gynecological cancers 
but look promising.

Targeting Par-4

Par-4 is a promising candidate for future clinical 
trials because of its unique ability to induce apoptosis only 
and selectively in cancer cells. Using tumor suppressors 
is an alternative for cancer treatment via the use of 
recombinant proteins or gene therapy to express the gene 
as previously done with P53. Concerning Par-4, very little 
experimental data is available concerning therapeutic 
applications. However, a few in vivo experiments are 
convincing for future clinical studies and development of 
treatments. A study has demonstrated that the delivery of 
Par-4 plasmid via nanoliposomes to tumors in nude mice 
increased the efficiency of Fluorouracil, a thymidylate 
synthase inhibitor, in cancer [308]. Considering that Par-4 
can activate apoptotic mechanisms via paracrine signaling, 
recombinant Par-4 has been studied. The effects observed 
using a recombinant variant of either Par-4 or its SAC 
(Selective for Apoptosis in Cancer cells) domain was 
successful in inducing apoptosis in cancer cells in vitro 
[309]. Another team produced recombinant SAC domain 
of Par-4 derived from plants, in the optic of large-scale 
production, which also kept its pro-apoptotic capabilities 
[310]. Considering the SAC domain is sufficient for 
apoptosis and selective for cancer cells, future compounds 
or treatments could be designed based on its structure for 
targeted therapy.

Another option to consider concerning Par-4 
targeted therapy is to combine with hormonal therapy. In 
prostate cancer, a study showed that Par-4 was efficient 
for inducing apoptosis only in hormone-independent 
cancer cells, indicating a role for hormone and Par-4 
negative regulation [170, 311]. A study, involving 126 
patients treated with neoadjuvant chemotherapy, assessed 
the expression of different genes to observe correlations 
between these and the outcome of the treatment. Results 
obtained were very interesting. Par-4 mRNA was 
upregulated following chemotherapy and Par-4 had 

a significant impact on prognostic, dependent of the 
ER status. Indeed, Par-4 level was predictive of a good 
outcome in ER- patients and the opposite was observed 
in ER+ patients indicating an important role for hormones 
and Par-4 [312]. As introduced, few studies demonstrated 
that estrogen can downregulate Par-4 [177, 178]. To 
further explore this mechanism of regulation, we used 
Gene Expression Omnibus (GEO) database and found a 
study (GSE23893) in uterine cancer tissues showing that 
ERα binds near Par-4 promoter in its proximal region 
indicating a potential link with estrogen regulation (Figure 
4B). Considering the negative regulation observed with 
estrogen, we did a chromatin immunoprecipitation assay 
and found out that ERα binds near Par-4 promoter in its 
proximal region indicating a potential link with estrogen 
regulation (Figure 4B). Considering that the ovaries and 
endometrium are continuously under the influence of 
hormones and that estrogen exerts such a strong influence 
on Par-4 transcription, we are allowed to hypothesize 
that estrogen might play a role in the regulation of Par-4 
expression. It is also possible that estrogen regulates Par-4 
activity and localization, either through genomic or non-
genomic mechanisms, further controlling Par-4 dynamics; 
estrogen could thus act as a potent carcinogenic agent as 
well as an inducer of chemoresistance depending on the 
situation. Combining hormonal therapy with Par-4 is thus 
a considerable option to acquire an optimal efficiency 
to induce apoptosis and reduce estrogen-driven growth 
stimulation. These preliminary findings concerning the 
estrogen regulation of Par-4 combined with its unique 
ability to selectively induce apoptosis in cancer cells only 
are very interesting and should be considered for future 
studies.

FUTURE DIRECTIONS OF TARGETED 
THERAPIES

In light of the previous and current clinical trials 
reported in this review, our initial and primary observation 
is the modest amount of scrutiny endometrial cancer has 
been the subject of. Indeed, very few clinical studies have 
focused on endometrial cancer, probably because of its 
high survival rate in the case of early diagnosis. However, 
as introduced, endometrial cancer is very aggressive at 
advanced stage and the success rate of current therapies 
is very low. It is our opinion that, based on that fact, more 
investigations is required to develop novel therapies to 
improve the prognostic of women afflicted with recurrent 
endometrial cancer.

The idea of targeted-therapy is to eliminate 
gynecological cancer cells more selectively and turning-
off their chemoresistance mechanisms. However, up to 
now, no cancer trials have been able to have the desired 
‘’perfect’’ response rate via targeted therapy. Neither 
mono targeted-therapy nor combination with current 
chemotherapy regimen is sufficient to enhance greatly 
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the survival of patients. As already observed under trials, 
combination of diverse targeted-therapies is an interesting 
avenue to overcome the resistance/absence of response 
seen with mono targeted-therapy. Indeed, many of the 
pathways and mechanisms discussed can have crosstalk 
with other pathways, feedback loop regulations in their 
large network or simply alternative regulation not inhibited 
by the compounds. For example, MAPK inhibition 
combined with PI3K inhibition increase significantly 
the efficiency of these compounds against gynecological 
cancers. Considering this fact, the most promising trials 
were those combining two targets such as Everolimus 
(targeting mTORC1) combined with Letrozole (targeting 
aromatase) or Buparlisib/BYL719 (compounds targeting 
PI3K) combined with Trametinib/binimetinib (compounds 
targeting MEK) [224, 225, 255].

Another avenue to consider for increasing the 
efficiency of targeted therapies would be to find specific 
biomarkers correlating with the response to treatment. 
Indeed, many of these new compounds have not yet, 
found efficient biomarkers to estimate the success of the 
treatment, which can also explain the modest clinical 
activity observed in many of these trials. Using biomarkers 
would lead to personalized medicine with a large pre-
screening of the patients and the diverse mutations located 
in their tumors, which can be costly for phases II and III 
trials. This pre-screening, however, would allow to better 
identify the right combination of targeting compounds and 
obtain an optimal success rate of treatment. 

The heterogeneity between and within tumors 
also plays a large role in the response rate of targeted 
treatments and chemoresistance mechanisms. Genomic 
instability is an important factor related to the 
heterogeneity of the tumor and, as stated in this review, 
repair mechanisms are involved in this instability as 
well as the PI3K network, which is vastly mutated in 
gynecological cancers [313]. This heterogeneity is 
reflected on the recurrence of gynecological cancers at 
advanced stages where only sensitive cells are dying to 
leave a resistant population, which will eventually come 
back. Heterogeneity of the tumors is also related to cancer 
stem cells (CSC). CSC are a small population of the tumor 
which have the capacities to initiate tumor, self-renew 
and differentiate to make the bulk of the tumor. They 
also have the ability to metastasize, an event occurring 
in advanced stages of cancer. One characteristic of these 
CSC is that they also play a role in the resurgence of 
the tumor following chemotherapy, indicating that they 
also resist chemotherapeutic treatments which is likely 
associated with a poor prognosis [314, 315]. The presence 
of chemoresistant and tumorigenic CSC has already 
been observed in ovarian cancer, however, these are still 
difficult to identify and target [316-319]. Noteworthy, 
one of these mechanisms of resistance is also related to 
AKT, a protein implicated in the PI3K network which is 
highly mutated in ovarian and endometrial cancers [320]. 

The biology of CSC is unique and their mechanisms of 
resistance are diverse. Many trials targeting CSC are 
currently under study. Considering their important role 
in tumor, this particular type of cell should be considered 
when targeting tumors to prevent recurrence and improve 
success rate. 

Overall, considering that heterogeneity is a major 
hurdle for chemotherapy, targeting multiple pathways/
proteins would be useful to overcome a maximum of 
cancer cells, including stem cells, during treatment. 
A better understanding of patients’ parameters will be 
profitable for the use of targeted-therapies.

Other elements to consider for efficient targeted-
therapy against chemoresistant cancer cells are the fact 
that not only the modifications occurring inside the 
cells contribute to the chemoresistance. This manuscript 
mainly focus on this aspect, however, tumor cell micro-
environment and the pharmacokinetic of compounds also 
play important roles on the acquisition of chemoresistance 
and should be considered for future therapies [13]. 
Concerning microenvironment, hypoxia is known for 
being related to radioresistance and chemoresistance 
of cancer [321, 322]. Hypoxic cancer cells, frequently 
located in the center of the solid tumor, have fewer blood 
vessels and consequently are less exposed to cancer drugs. 
Hypoxia is also involved in a slower proliferation rate, 
which affect current chemotherapy targeting cells with 
rapid division [322]. This microenvironment factor is thus 
a negative key player for the success of cancer therapies. 
Noteworthy, cancer stem cells also take advantage of the 
tumor microenvironment [314]. The immune system also 
interacts with the microenvironment of tumors as well 
as the extracellular matrix and signaling molecules from 
the environment. These microenvironment factors are 
considered in clinic and therapies targeting angiogenesis, 
hypoxia, immune system or tyrosine kinase receptors are 
currently under study [323]. A combination of treatment 
including these could be positive for the success rate of 
cancer treatment with other targeted-therapies.

Cancer is a complex disease and still requires 
research and investigations to better understand it. 
Current results indicate that mono-targeted therapies 
are not enough to overcome tumor progression and its 
resistance to various treatments. However, therapies and 
molecules are improving and the advance in technology 
allows a more precise diagnosis of the patients. A 
better understanding of tumor genetics will allow the 
administration of an efficient personalized medicine in 
gynecological cancers.
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MMR: Mismatch repair 
ERE: Estrogen response element
EMT: Epithelial-mesenchymal transition 
Pgp: p-Glycoprotein
PARP: Poly-ADP ribose polymerase
DHFR: Dihydrofolate reductase 
POLβ: DNA polymerase β 
POLγ: DNA polymerase γ
PINK1: PTEN-induced putative kinase 1
TMA: Tissue microarray
E2: Estradiol
CSC: Cancer stem cell
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