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Abstract Neuroblastoma (NB), which is the most common pediatric extracranial solid tumor,
varies widely in its clinical presentation and outcome. NB has a unique ability to spontaneously
differentiate and regress, suggesting a potential direction for therapeutic intervention. How-
ever, the underlying mechanisms of regression remain largely unknown, and more reliable
prognostic biomarkers are needed for predicting trajectories for NB. We performed scRNA-
seq analysis on 17 NB clinical samples and three peritumoral adrenal tissues. Primary NB dis-
played varied cell constitution, even among tumors of the same pathological subtype. Copy
number variation patterns suggested that neuroendocrine cells represent the malignant cell
type. Based on the differential expression of sets of related marker genes, a subgroup of
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Tumor
microenvironment
neuroendocrine cells was identified and projected to differentiate into a subcluster of benign
fibroblasts with highly expressed CCL2 and ZFP36, supporting a progressive pathway of sponta-
neous NB regression. We also identified prognostic markers (STMN2, TUBA1A, PAGE5, and
ETV1) by evaluating intra-tumoral heterogeneity. Lastly, we determined that ITGB1 in M2-
like macrophages was associated with favorable prognosis and may serve as a potential diag-
nostic marker and therapeutic target. In conclusion, our findings reveal novel mechanisms un-
derlying regression and potential prognostic markers and therapeutic targets of NB.
Copyright ª 2022, Chongqing Medical University. Production and hosting by Elsevier B.V. This is
an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/
by-nc-nd/4.0/).
Introduction

Neuroblastoma (NB) varies widely in clinical presentation
and outcome and has been widely categorized according to
histological features as high malignancy neuroblastoma
(NBL), intermediate malignancy ganglioneuroblastoma
(GNB), or benign ganglioneuroma (GN).1 NBL is the most
common pediatric extracranial solid tumor, accounting for
8%e10% of pediatric malignancies.2 Despite multimodal
therapy, NB may progress to malignancy; or may undergo
spontaneous regression, a unique phenomenon that is not
well understood.3 Indeed, tumors from patients with NB at
the 4S stage have been observed to spontaneously differ-
entiate into benign GN or normal cells after treatment with
low doses of chemotherapy.4 Potential mechanisms for
spontaneous regression in NB include alterations in epige-
netic regulation, loss of telomerase activity, neurotrophin
deprivation, and immunity regulation.3 These mechanisms
provide a theoretical basis for NB differentiation therapy,
whereby malignant tumor cells are induced to differentiate
into normal or benign cells.5 However, additional mecha-
nisms are likely to govern spontaneous regression, and
exploring these mechanisms may provide new strategies for
differentiation therapy.

Many recent studies have focused on characterizing the
impact of intertumoral heterogeneity in NB, and molecular
signatures for poor survival have been used to guide its
diagnosis and treatment.6,7 Genetic molecular analysis of NB
is now a relevant component of risk stratification, and bio-
markers such as MYCN gene amplification and mutations in
PHOX2B are used as prognostic indicators of NB.8 However,
these biomarkers are not universally observed in NB: PHOX2B
is predominantly mutated in familial NB and only accounts
for 5% of hereditary cases,9 and the amplification of MYCN
occurs in only 22% of sporadic NB.10 Therefore, there is an
urgent and unmet clinical need to identify additional prog-
nostic markers with high specificity and sensitivity to guide
clinical stratification diagnosis and prognosis.

The tumor microenvironment for NB is a highly complex
ecosystem composed of tumor cells, fibroblasts, endothelial
cells, Schwann cells, pericytes, mesenchymal stromal cells,
and immune infiltrating cells. The contribution of non-
immune cells has also been recently recognized in NB, and
cancer-associated fibroblasts have been demonstrated to
share characteristics and pro-tumorigenic activity with
mesenchymal stromal cells.11 Furthermore, although pedi-
atric solid tumors are considered to possess low
immunogenicity,12,13 numerous epidemiological studies have
also demonstrated the importance of tumor-infiltrating
lymphocytes in NB,14,15 including potential impacts on
metastasis and prognosis.16 Thus, the potential prognostic
value of tumor immune infiltrating cells, such as CD8þ T
cells17 and dendritic cells,18 has attracted significant atten-
tion. Nonetheless, our understanding about the specific
molecular mechanism of these immune infiltrating cells in
NB is limited.

In recent years, single-cell RNA sequencing (scRNA-seq)
analysis has shown great promise in dissecting the tran-
scriptional features and functional roles of different cell
populations to elucidate pathways of cancer development
and progression.19,20 Here, we performed scRNA-seq on
different stages of NB and peri-tumoral adrenal gland (AG)
to investigate the developmental trajectory for sponta-
neous regression of NB and explore the potential value of
the immune infiltrating cells. Our findings reveal novel
mechanisms underlying spontaneous regression of NB, as
well as potential prognostic markers and novel therapeutic
targets for NB. Further understanding of the transcriptional
characteristics associated with clinical heterogeneity in NB
should assist in the identification of meaningful biomarkers
for the risk stratification and treatment of NB.

Materials and methods

Sample collection and processing

Tissues were collected from the Children’s Hospital of
Chongqing Medical University. The use of clinical samples
was reviewed and approved by the Institutional Review
Board of Chongqing Medical University, Chongqing, China.
Written informed consent forms were signed by parents or
legal guardians, and assent, when appropriate, was ob-
tained from the patients. The study population consisted of
20 samples. Among them, 11 samples were NBL (high ma-
lignancy; groups 1e4), including three stage IV without
MYCN amplification (group 1), two stage IV with MYCN-
amplification (group 2), three stage IVS (group 3), and three
stage I/II (group 4); three samples were GN (benign; group
5); and three samples were GNB (intermediate malignancy;
group 6). Three AG samples comprising group 7 served as
the control group.

All patients were treatment-naı̈ve and diagnosed
through biopsy. The clinical characteristics of the selected
patients are shown in Table S1. All samples were collected
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by surgical resection followed by a brief rinse with saline
solution to remove contaminating blood cells. The non-
necrotic parts of tumor samples (0.3e0.5 m3 per sample)
were dissected out and stored in 1 ml GEXSCOPE� Tissue
Preservation Solution (Singleron, China).

Tissue dissociation and preparation

Fresh tumor samples were transported expeditiously to the
Singleron lab. The tumor tissues were washed three times
with Hanks Balanced Salt Solution (HBSS), cut into 1e2 mm
pieces, and digested in 2 ml GEXSCOPE� Tissue Dissociation
Solution (Singleron) at 37 �C for 15 min with constant but
gentle agitation. The digested samples were filtered using
40-micron sterile strainers and centrifuged at 800�g for
5 min. The pellets were then resuspended in 1 ml
phosphate-buffered saline (PBS; HyClone, United States),
and 2 ml GEXSCOPE� red blood cell lysis buffer (Singleron)
was added at 25 �C for 10 min to remove the red blood
cells. The tumor cell-containing solution was centrifuged at
500�g for 5 min, and the cells were resuspended in PBS.
The samples were stained with trypan blue (Sigma, United
States) to verify cell viability.

Single-cell RNA sequencing

Single-cell suspensions with 1 � 105 cells/mL in PBS were
prepared. Then, the suspensions were loaded onto micro-
fluidic devices, and scRNA-seq libraries were constructed
according to the Singleron GEXSCOPE� protocol in the
GEXSCOPE� Single-Cell RNA Library Kit (Singleron Bio-
technologies).21 Individual libraries were diluted to 4 nM
and pooled for sequencing. Pools were sequenced on an
Illumina HiSeq X with 150 bp paired-end reads.

Primary analysis of raw read data

Raw reads were processed with fastQC and fastp to remove
low-quality reads. Unique molecular identifiers (UMI) and
cell barcodes were extracted after filtering out reads
without poly-A tails. Poly-A tails and adapter sequences
were then trimmed by cutadapt, and the reads that met
quality control standards were matched to the reference
genome GRCh38 (ensembl version 92 annotation) using
STAR. Gene counts and UMI counts were grouped by fea-
tureCounts software to generate expression matrix files for
downstream analyses.

Quality control, dimension-reduction, and
clustering

Cells with gene counts between 200 and 5000 and UMI
counts below 30,000 were filtered, and cells with more than
30% mitochondrial content were removed. After filtering,
89,882 cells were reserved for subsequent analyses, with on
average 1097.5 genes and 2480.9 UMIs per cell. Then Seurat
v2.3 was used for dimension-reduction and clustering.22

NormalizeData and ScaleData were used to normalize and
scale all gene expression values. The top 2000 variable
genes were selected for principal component analysis (PCA)
by FindVariableFeatures. FindClusters was used to separate
the cells into nine clusters using the top 20 principal com-
ponents and a resolution parameter at 1.0. The resolution
was then set to 1.2 to isolate subcluster cell types. A uni-
form manifold approximation and projection (UMAP) algo-
rithm was performed to visualize the cells in two-
dimensional space.

Differentially expressed genes (DEGs) analysis

DEGs were determined as genes expressed in more than 10%
of the cells in a cluster with an average log (Fold Change) of
greater than 0.2, and were selected by Seurat FindMarkers
based on the Wilcox likelihood-ratio test with default
parameters.

Cell type annotation

The cell type identification of each cluster was manually
annotated according to the expression of canonical markers
found among the DEGs combined with knowledge from
literature. Violin plots that exhibit the expression of cell-
type markers were generated by Seurat Vlnplot.

Pathway enrichment analysis

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) analyses were performed using the
“clusterProfiler” R package version23 to explore the po-
tential functions of DEGs between two clusters. Pathways
with a P value of less than 0.05 were considered signifi-
cantly enriched. GO gene sets included molecular function
(MF), biological process (BP), and cellular component (CC)
categories.24

Trajectory analysis

Pseudotime trajectory analysis was performed by using
Monocle2 to determine map conversion trajectories of cell
subtypes among endothelial cells, fibroblasts, NEs, and
steroidogenic cells.25 To construct the conversion trajec-
tories, highly variable genes were selected from clusters of
endothelial cells, fibroblasts, NEs, and steroidogenic cells
using Seurat version 3.1.2 FindVairableFeatures, and
dimension-reduction was employed using DDRTree. plot_-
cell to visualize the conversion trajectory.

RNA velocity

For RNA velocity assessment, BAM files containing gene sets
of NE cells, ECs, fibroblasts, and the reference genome
were analyzed with velocyto26 and scVelo in python using
default parameters. The results were visualized on UMAP
plots from Seurat clustering analysis for consistency.

scRNA-seq based CNA detection

We used the InferCNV package27 to evaluate the CNAs in NE
cells, Schwann cells, steroidogenic cells, endothelial cells,
and fibroblasts. T cells, B cells and myeloid cells were
considered as baselines to estimate the CNAs of malignant
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cells. Genes expressed in over 20 cells were classified based
on their loci on each chromosome. The relative expression
values were centered to 1, using 1.5 standard deviations
from the residual-normalized expression values as the
ceiling. To remove the effect of gene-specific expression, a
slide window size of 101 genes was used to normalize the
relative expression on each chromosome.

CNV trees

Each p- or q-arm level change can be simply converted to
an equivalent CNV according to its location by considering
genomic cytoband information. Each CNV was annotated as
a gain or loss. After data conversion, subclones containing
the same arm-level CNVs were folded, and trees were
reconstructed to represent the architecture of subclonal
CNV. For data visualization, we employed the uphyloplot2
algorithm.

Cellecell interaction analysis (CellPhoneDB)

Cellecell interaction between NEs and immune cell types
was predicted according to known ligandereceptor pairs by
Cellphone DB28 version. The permutation number was
defined by calculating the null distribution of average
ligandereceptor pair expression in randomized cell identi-
ties and was set to 1000. The expression threshold for indi-
vidual ligands or receptors was a cutoff value based on the
average log gene expression distribution of all genes in each
cell type. Interaction pairs were predicted to be significant if
they had P value<0.05 and average log expression>0.1, and
were visualized using the circlize (0.4.10) R package.

Single-cell regulatory network inference and
clustering (SCENIC)

A transcription factor network was constructed using the
SCENIC R toolkit with the scRNA expression matrix and
transcription factors in AnimalTFDB. To predict the co-
expression network of regulators and targets, we used the
GENIE3 package. RcisTarget was used to search transcrip-
tion factor binding motifs. Genes involved in the predicted
regulatory network were defined as a gene set. We then
used the AUCell package to calculate the AUC value of the
gene set and evaluate the activity of the regulatory
network in cells.

Expression programs analysis

We used the cNMF algorithm to extract transcriptional
programs, taking the top50 genes as the meta-signature and
calculating the score of each program for each cell. Six
meta-programs were calculated, and hierarchical clus-
tering was performed based on the personal correlation
between each program.

Jaccard similarity analysis

Signature genes of two cell types were used to compare the
transcriptional similarity and calculate the Jaccard
similarity coefficient.29 We assessed transcriptional simi-
larities between six meta-programs and seven markers of
cell status by calculating the Jaccard similarity coefficient
using the first 50 marker genes.

Survival analysis

The TARGET database neuroblastoma project (nZ 154) was
utilized to evaluate the prognostic value of each signature.
Bulk expression data were downloaded by the R package
“TCGAbiolinks”. KaplaneMeier survival curves, Hazard ra-
tios (HRs) and P values were created with the R survival
package to present differences in survival time.

qRT-PCR

Total RNA extraction was performed using TRIzol reagent
(Invitrogen). Then, 200 ng of RNA, quantified by Bio-Rad
CFX Connect (Bio-Rad, USA), was reverse transcribed using
an Evo M-MLV RT Mix Kit with gDNA Clean for qPCR (AC-
CURATE BIOLOGY, China). The cDNA was amplified with
target gene-specific primers using a SYBR Green Premix Pro
Taq HS qPCR Kit II (ACCURATE BIOLOGY). The sequences of
the primers (designed and synthesized by Shanghai Sangon
Biotech company) are listed in Table S5. The expression
levels of TUBA1A and STMN2 relative to ACTIN levels were
calculated using the 2�DDCT method.

Immunohistochemistry
Immunohistochemistry was used to analyze the expression
of CCl2, ZFP36, TUBA1A, STMN2, and ITGB1 (Table S6) in
tumor biopsy samples. Paraffin-embedded, serial tissue
sections with a thickness of 4.5 mm were deparaffinized and
subjected to dewaxing, sodium citrate antigen repair, 3%
H2O2 incubation at room temperature to block enzymes,
0.5% BSA closure, and dropwise addition of primary anti-
body overnight at 4 �C. Then, secondary antibody (Table S6)
and immunohistochemistry kit reaction enhancement so-
lution were sequentially added for DBA color development,
followed by hematoxylin re-staining, neutral gum sealing
and observation under a light microscope.

Statistical analysis

SPSS 25.0 was used for statistical analysis of qRT-PCR re-
sults, and statistical significance was determined with a
ManneWhitney test. The P values were calculated, and
P < 0.05 was considered statistically significant.

Results

Primary NB displays varied cellular constitution
with a potential role for differentiation of cell
types

To investigate the developmental trajectory for sponta-
neous regression of NB, we performed scRNA-seq analysis
on primary tumors from 17 NB patients and three peritu-
moral adrenal gland tissue (AG), which were divided into
seven groups (Fig. 1A, Table S1). Among them, 11 samples
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were from high malignancy NBL tumors, including three
stage IV without MYCN-amplification (group 1); two stage IV
with MYCN-amplification (group 2); three stage IVS (group
3); and three stage I/II (group 4). Three samples were from
benign GN tumors (group 5); and three samples were from
moderate malignancy GNB tumors (group 6). The three AG
samples comprised group 7.

After quality control, including doublet removal, we ob-
tained 89,882 cells from primary NB and peritumoral AG,
including 10,683 cells from GN samples, 16,982 cells from
GNB samples, 47,814 cells from NBL samples, and
14,403 cells from peritumoral AG. The gene numbers
(Fig. S1a) and total UMIs (Fig. S1b) of each sample are shown
in box plots. Next, we used uniform manifold approximation
and projection (UMAP) to visualize cell clusters, which
revealed nine main cell types, including neuroendocrine
cells (NEs), steroidogenic cells, Schwann cells, T cells, B
cells, myeloid cells, fibroblasts, ECs, and pericytes
(Fig. 1B, C). A violin plot shows the expression of canonical
markers in the 9 clusters (Fig. 1D). Consistent with the
literature, the NEs were distinguished by high expression of
SNAP25, SYT1, DCX, CHGB, CHGA, NPY, and SCG2,30e32 while
the steroidogenic cells were characterized by high expres-
sion of FDX1, CYP11B1, CYP11A1, and MGARP.29,33 Moreover,
the T cells specifically expressed CD2, TRBC2, CD3D, and
CD3E34,35; the B cells had high expression of MS4A1, CD79B,
and IGHM36,37; and the myeloid cells had high expression of
LYZ, C1QC, CD1C, CD68, and MRC1.35,37 We also identified
fibroblasts by high expression of DCN, LUM, COL1A1, and
COL1A238,39; ECs by high expression of PECAM1, VMF, and
CLDN5,40 and pericytes by expression of RGS5, ACTA2, and
TAGLN.36,40 The Schwann cells were characterized by the
expression of PLP1, CNP, S100B, and MPZ.29

We further compared the proportion of different cell
types in each patient and found significant differences in
the cellular distribution between groups, especially for
NEs, ECs, steroidogenic cells and fibroblasts (Fig. 1E, F and
Table S2). The data demonstrate that the proportion of
steroidogenic cells in stage IVs was significantly higher than
that in other stages, suggesting that steroidogenic cells may
play a role in the development of NB. Moreover, in different
pathological types, with the conversion of NBL to GNB and
to GN, the proportion of NEs was decreased, but the pro-
portions of ECs and fibroblasts were increased. Therefore,
compared with malignant NB, the intermediate malignancy
and benign NB had more fibroblasts and ECs, but fewer NEs.
Because fibroblasts have the potential to differentiate into
NEs,41 we speculated that the differentiation of NEs into
ECs and fibroblasts could potentially provide a basis for
understanding regression trajectories that occur upon
spontaneous regression.

NEs represent malignant tumor cells of NB tumors

To further classify malignant and non-malignant cells in
primary NB and peritumoral AG, we used the inferred CNV
algorithm to determine the clonal structure of the cells.
Our results reveal that there were more CNVs in NEs than in
other cell types. As shown in Figure 2A, the NEs of all NBL
tumors had chromosome 17q gain, while the MYCN-
amplified group had chromosome 1p deletion. These chro-
mosomal aberrations have previously been reported in NB
tumors.42,43 Thus, these results suggest that NEs may
represent malignant cells in primary NB tumors, which is
supported by the results of other studies (Fig. S2).29

Further examination of the results for steroidogenic
cells revealed chromosome 2 aberrations (Fig. S1c), while
Schwann cells had chromosome 19 deletions (Fig. S1d). As
the chromosomal aberrations of steroidogenic cells were
similar in different NB tumor types, these results could not
distinguish whether chromosome 2 aberration is associated
with malignancy in steroidogenic cells. Additionally,
Schwann cells did not show tumor-specific chromosome
aberrations. Thus, we believe chromosome 19 variations
might represent a characteristic of Schwann cells.

Because ECs (Fig. S1e) and fibroblasts (Fig. S1f) exhibi-
ted few CNVs, we considered these two cell types as non-
malignant cells. Notably, all results show deletions in
chromosome 6 because CNV analysis was performed using
myeloid cells as a control, and myeloid cells display obvious
gain in chromosome 6 without CNVs in other chromo-
somes.29 Thus, taken together, our results indicated that
NEs represent malignant tumor cells of NB, and other types
of cells represent non-malignant tumor cells.

Malignant tumor cells can differentiate into
fibroblasts

To determine whether ECs, fibroblasts, steroidogenic cells,
and NEs contribute to malignant transformation, we sought
to establish the relationship among these four cell types.
First, we utilized pseudotime trajectory analysis based on
the Monocle 2 algorithm to estimate the NE maturation
course. The results suggest that the ECs displayed the po-
tential to differentiate into fibroblasts and NEs, and fibro-
blasts displayed the potential to differentiate into NEs
(Fig. 2BeD). By contrast, the trajectory analysis showed a
low tendency of steroidogenic cells to differentiate to fi-
broblasts and NEs, suggesting that steroidogenic cells may
develop independently and have little correlation with
differentiation and development of NEs. Further analysis by
heatmap hierarchical clustering identified DEGs that were
increased or decreased along the pseudotime curve
(Fig. 2E, F). Additionally, a clonality tree for fibroblasts,
ECs, and NEs based on inferred CNV results suggests that
multiple canonical and non-canonical CNVs in fibroblasts
were more similar to those of NEs, rather than those of ECs
(Fig. 2G). These results support the idea that the trans-
formation between fibroblasts and NEs may be more likely
than the transformation between NEs and ECs.

To further study the trajectory of NEs, we segregated
fibroblasts into four cellular subclusters, Fib-C1, Fib-C2,
Fib-C3, and Fib-C4, which we visualized by UMAP (Fig. 2H).
We analyzed the developmental trajectories of ECs and NEs
in the four subclusters by pseudotime trajectory analysis.
Our results reveal that Fib-C1, Fib-C2, and Fib-C3 sub-
clusters of fibroblasts and ECs showed a sequential
commitment to NEs (Fig. 3A). We next applied RNA velocity
with velocyto to further predict the trajectory of NEs, ECs,
and the four subclusters of fibroblasts. The Fib-C2 subtype
was identified as the terminal state of these cells
(Fig. 3B, C). To further understand the potential functions
of the Fib-C2 subcluster, we performed GO and KEGG
enrichment analyses. The results show that DEGs in the Fib-



Figure 1 Cellular constitution of primary NB and AG tissues. (A) Schematic diagram of the study roadmap for 17 neuroblastoma
samples and three peri-tumoral adrenal gland tissues. (B) The UMAP plot of the nine main cell clusters in primary NB and AG tissues.
(C) The UMAP plot of each cell type in 20 samples. (D) Violin plots of the expression of marker genes in nine cell types. (E) Relative
proportion of each cell type in four groups. (F) Relative proportion of each cell type in 20 samples. NB, neuroblastoma; AG, adrenal
gland tissue; GN, ganglioneuroma; GNB, ganglioneuroblastoma; NE cells, neuroendocrine cells; ECs, endothelial cells.
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C2 subcluster were mainly enriched in the IL-17 and TNF
signaling pathways (Fig. S3a, b).

Next, we divided NEs into six cellular subclusters (NE-
C1, NE-C2, NE-C3, NE-C4, NE-C5, and NE-C6) that we
evaluated by CellPhoneDB analysis (Fig. 3D). The results
suggest that NE-C1 has close communication with fibro-
blasts, suggesting that NE-C1 subtypes may differentiate
into the Fib-C2 subcluster (Fig. 3E). Functional enrichment



Figure 2 Trajectory of malignant tumor cells. (A) Copy-number variation (CNV) analysis was performed for NEs. (BeD) The
Monocle 2 trajectory plot shows the dynamics of ECs, fibroblasts, NEs and steroidogenic cells. (E) Heatmap hierarchical clustering
shows genes and pathways regulated during the NE pseudotime trajectory. (F) DEGs were tracked along the pseudotime curve. (G)
The CNV trees for fibroblasts, ECs, NEs. (H) UMAP plots are shown for fibroblasts in all samples, and for cells that were classified
into four subclusters.
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for marker genes suggested that the NE-C1 subgroup is
associated with ribosome-related pathways, such as
“cytosolic ribosomes” and “structural constituent of ri-
bosomes” (Fig. S3c, d). Finally, we conducted immuno-
histochemical analysis to verify the expression of Fib-C2-
related markers in tumors and found that CCL2 and
ZFP36 were highly expressed in malignant tumor cells
(Fig. 3F), thus supporting the existence of a regression
relationship in which NEs can differentiate toward the Fib-
C2 subtype. Collectively, the above results strongly sug-
gest that the NE-C1 subtype of malignant tumor cells has
the capacity to differentiate into the Fib-C2 subcluster of
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fibroblasts, providing a pathway for the spontaneous
regression of NB.

Intra-tumoral heterogeneity of malignant NB
tumors

Based on the aggregated CNV results, we generated a
clonality tree for the NBL groups using the UPhyloplot2
plotting algorithm (Fig. 4A). The results indicate multiple
canonical and non-canonical subclones in each NBL group.
The canonical CNV subclones mainly contained chromo-
some gains on 17q, 2p, and 1q, while some non-canonical
subclones predominantly had chromosome gains at 7q,
20p, and 4p. Our results also demonstrate that the CNV
score of chromosome 1 in the MYCN-amplified group was
significantly different compared with those of other groups
(Fig. S3e). Furthermore, the CNV score of chromosome 17
was significantly higher in the stage IV group than in other
groups (Fig. S3f). Thus, these canonical and non-canonical
CNV subclones could contribute to tumor development
and progression.

Because NEs are mainly composed of the NE-C1 and NE-
C2 subclusters, we further compared the DEGs of NE-C1 and
NE-C2 subtypes to screen for biomarkers of high-risk NBL.
PAGE5 was significantly overexpressed in the non-
amplification MYCN group at stage IV but was extremely
under-expressed in the other groups (Fig. 4B). Additionally,
survival analysis confirmed that PAGE5 is a potential prog-
nostic biomarker (Fig. 4B). We also determined that ETV1
was highly expressed in the MYCN-amplification group at
stage IV and was lowly expressed in the other groups. Un-
fortunately, there are currently no data suggesting that
ETV1 serves as a potential prognostic biomarker. Therefore,
our results suggest that PAGE5 is both a potential biomarker
for the non-amplification MYCN group at stage IV and a
potential prognostic biomarker for NBL, while ETV1 is a
potential biomarker for the MYCN-amplification group at
stage IV.

Malignant NBL tumors share common prognostic
biomarkers: TUBA1A and STMN2 expression

We next conducted non-negative matrix factorization
(NMF) analysis to explore the transcriptional spectrum of
malignant NE cells. Six meta-programs identified 300 meta-
genes that were preferentially expressed in subpopulations
of NEs. Hierarchical clustering analysis verified that the six
meta-programs had high concordance (Fig. 4C). Further-
more, several functions were represented among the six
meta-programs, including “regulation of neuron develop-
ment” (meta-program1; e.g., STMN2 and TUBA1A), “plu-
ripotency of stem cells” (meta-program2; e.g., ZFHX3 and
RIF1), “axonogenesis” (meta-program3; e.g., NEFL and
MAP1B), “cell cycle” (meta-program4; e.g., CCNA2 and
CCNB1), “signal transduction” (meta-program5; e.g.,
JUN ), and “ribosome composition” (meta-program6; e.g.,
RPS27 and RPL23). Signature gene scoring analysis of NEs for
the six meta-programs demonstrated that meta-program 6
received the highest score (Fig. 4D), suggesting that sig-
natures in meta-program 6 may be preferentially expressed
in tumor cells. We further evaluated the transcriptional
similarity between the six meta-programs and the signa-
tures of the seven cell types and confirmed that the ma-
lignant meta-programs had the most similarity with
fibroblasts (Fig. 4E), supporting the possibility that malig-
nant tumor cells may have a transformational relationship
with fibroblasts.

To further analyze the relationship between the malig-
nant signatures of the six meta-programs and clinical
prognosis, we employed the TARGET database neuroblas-
toma project (n Z 154). Survival analyses revealed that a
high score in meta-program 4 predicted poor survival in the
TARGET neuroblastoma database (Fig. 5 panels a & b, S4),
indicating that malignant signatures may predict the
aggressiveness of malignant cells in NB. We further identi-
fied prognostic signatures in each meta-program by
screening 11 biomarkers associated with tumor prognosis
(Fig. 5C, S5), including STMN2, TUBA1A, NTRK3, RTN4,
CCNB1, CCNA2, CCNB2, UBE2C, NUF2, CKAP2, and JUN. We
then used violin plots to analyze the distribution of the 11
prognostic signatures in each group (Fig. S6) and identified
STMN2 and TUBA1A as potential diagnostic markers
(Fig. 5D). Expression of TUBA1A and STMN2 proteins was
verified at the protein level by immunohistochemistry of 56
tumor tissues (Fig. 5E). Interestingly, our results suggest
that these genes were highly expressed in the NBL group
with poor prognosis, which is opposite of the results from
the TARGET database. Analysis of RNA expression by qRT-
PCR results confirmed the immunohistology results
(Fig. 5F), demonstrating that RNA expression of TUBA1A
and STMN2 in high malignancy NBL was higher than that in
peri-tumoral AG.

For a more detailed understanding of the transcriptional
pathways that may mediate prognosis in NB, we next car-
ried out SCENIC analysis of potential transcription factors in
NEs. The most highly represented transcription factors
included SOX4, ETV1, and UQCRB (Fig. 5G). Furthermore,
SCENIC analysis predicted that SOX4 regulates the expres-
sion of TUBA1A and STMN2. These results indicate that the
malignant signatures established by this analysis show
common patterns of intra-tumoral transcriptional hetero-
geneity in NB tumors.
Complex intercellular networks mediate the
communication between NEs and immune cells

By comparing the proportion of different immune cells in
each group, we found that there were significant differ-
ences in cell types among tumor groups, especially for
myeloid cells and T cells, and that the myeloid cells mainly
constituted the immune microenvironment of NB tumors in
terms of number. In the NBL group, there were significant
differences in the proportion of T cells and myeloid cells in
the stage I/II, stage IV without MYCN amplification and
stage IV with MYCN amplification groups. The ratio of T
cells and myeloid cells decreased gradually from the stage
I/II to stage IV without MYCN amplification and then to the
stage IV with MYCN amplification groups, suggesting that T
cells and myeloid cells may play roles in inhibiting tumor
growth.

To evaluate the contribution of immune cells in the NB
tumor prognosis, we subdivided T cells, B cells, and myeloid



Figure 3 Malignant tumor cells can differentiate into fibroblasts. (A) The dynamics of ECs, NEs, and the four subclusters of fi-
broblasts according to pseudotime trajectory analysis. (B, C) RNA velocity analysis of the trajectory of NEs, ECs, and fibroblasts. (D)
UMAP plots are shown for NEs in all samples, and for cells that were classified into six subclusters. (E) Cell network for NEs and
fibroblasts form CellPhoneDB analysis. (F) The expression of C2-related molecules at the protein level in tumor cells of GNB as
evaluated by immunohistochemistry. The arrow points the positive cells and 40� pictures were enlarged from the 20� picture.
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cells (Fig. 6A). T cells were classified into five subclusters:
naı̈ve T cells, helper T (Th) cells, CD8þ effector T cells,
proliferating CD8þ effector T cells, and Tregs. The B cells
were categorized into four subclusters: naı̈ve B cells,
plasma cells, proliferative B cells, and proliferative plasma
cells; and the myeloid cells were classified into seven
subclusters: proliferative macrophages, M1-like macro-
phages, M2-like macrophages, non-classical monocytes,



Figure 4 Intra-tumoral heterogeneity of primary NB tumors. (A) CNV trees of single cells from NBL groups. (B) Violin plots and
KaplaneMeier survival curves of PAGE5 and ETV1. (C) Heatmap showing the correlation of all 300 signatures derived from NMF
analysis of primary NB tumors; six highly correlated meta-programs are highlighted. (D) Jaccard similarities of six meta-programs
with the signature expression of seven cell types. (E) Violin plots present the scores of six meta-program signatures from CNV
analysis in malignant cells of 11 NBL samples.

Regression trajectory and biomarkers of neuroblastoma 1633
classical monocytes, cDCs, and pDCs. Further subdivision of
immune cells revealed that myeloid cells were mainly
composed of M2-like macrophages (Table S3), indicating
that M2-like macrophages mainly constituted the tumor
immune microenvironment in terms of number, suggesting
that M2-like macrophages may play an important role in
inhibiting tumor growth.

Next, we used CellPhoneDB analysis to identify
ligandereceptor pairs and molecular interactions with NEs
(Fig. 6B, C). The results suggest that compared with other



Figure 5 Characteristics of survival prognosis for malignant tumors. (A) Hazard Ratio Plot for six meta-programs. (B)

KaplaneMeier survival curves of the meta-program 4. (C) Hazard Ratio Plot for the eleven signatures. (D) Violin plots and
KaplaneMeier survival curves of TUBA1A and STMN2. (E) The expression of TUBA1A and STMN2 at the protein level in stage II and
MYCN-amplification samples as evaluated by immunohistochemistry. All pictures are at 20� magnification. (F) The relative
expression level of TUBA1A and STMN2 by qRT-CR. ** represent as P < 0.01. *** represent as P < 0.001. (G) Heatmap showing
transcription factors in NEs from non-negative matrix factorization (NMF) analysis.
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immune cells, NEs had the closest communications with
M2-like macrophages, which was through a large number
of receptoreligand pairs, including CD22ePTPRC and
NGFeNGFR (Fig. 6D). In addition, NEs communicated with
T cells, B cells, and DCs. NEs and Th cells communicated
with each other mainly through CD40LGeCD40, while NEs
and effector T cells communicated via GZMAePARD3, and
NEs and naı̈ve B cells communicated via SELL-PODXL. NEs
also communicated with DCs via CD48eCD244A. Thus, NEs
engage in a repertoire of interactions with immune cells,
and key signatures for the interaction mechanism between
NEs and immune cells represent potential therapeutic
targets.
ITGB1 is a potential therapeutic target for NB

Lastly, to verify the relevance of the immune subtypes in
NB outcome, we analyzed possible correlations of the dis-
tribution and signaling characteristics of immune cell sub-
types with NBL prognosis. Our results showed that the
distribution of CD8þ T cells and Th cells was correlated with
the malignancy of NB tumors, as more of these cell types
were found in the early stages (Table S4), which is consis-
tent with the results of other studies.15 The pattern of
distribution of DCs also was consistent with those observed
in previous studies,16 including a positive correlation with T
cell infiltration in NBL at both the transcriptional and pro-
tein levels and association with favorable prognosis (Table
S3). However, the distribution of B cells and monocytes did
not correlate with the prognosis of NB.

We further analyzed the signatures associated with
survival prognosis in subtypes of DCs and T cells and found
that DCs could predict the survival of NBL patients with
the expression of ABHD6 and BOD1L1, and that in Tregs,
the expression of UTP23 provided favorable prognostic
value in NBL (Fig. 6E, S7). RPA3 and CYC1 in Th cells also
were able to predict the clinical outcome of NBL, while
the expression of IGHG4 in proliferating CD8þ effector T
cells correlated with poor prognosis in NBL. We further
analyzed the distribution of these prognostic signatures in
each group and found that only BOD1L1 and CYC1 were
distributed among all NBL groups, especially in the high-
risk group of NBL, suggesting that these two prognostic
signatures may serve as potential diagnostic biomarkers
for high-risk NB (Fig. S8).

Next, we evaluated macrophage markers that are
associated with NEs. Notably, ITGB1, NCAM1 and ERBB3
were associated with NEs and correlated with favorable
prognosis (Fig. 6E, S7). Moreover, ITGB1 were distributed
in most groups (Fig. S8), suggesting that the signature may
serve as potential therapeutic targets. Through immuno-
histochemical analysis, we found that ITGB1 was highly
expressed in patients with II stage, compared with pa-
tients with MYCN-amplification (Fig. 6F). As further veri-
fication, we constructed a transcription factor network to
explore the co-expression of transcription factors and
putative target signatures in NEs and immune cells using
SCENIC analysis and found that the most represented
transcription factors were SPI1, JUNB, FOSB, ATF3, JUN,
MEF2C, and CEBPD, among which RAD21 can regulate
ITGB1 expression (Fig. 6G). Collectively, our results
provide potential diagnostic and/or prognostic signatures,
as well as novel therapeutic targets of NB.
Discussion

NB is a life-threatening pediatric disease with heteroge-
neous clinical presentation. In a subset of patients who do
not receive therapy, the primary retroperitoneal tumor is
identified by surgical histopathology as intermediate ma-
lignant GNB while the mediastinal metastases and cervical
lymph node metastases are identified as benign GN. This
clinical phenomenon indicates that the NB tumor can un-
dergo spontaneous transformation or regression. Thus, we
speculated that there is a trajectory of spontaneous
regression from NB to GNB or to GN that could inform the
development of novel therapeutic approaches. To eluci-
date the potential mechanisms that underlie spontaneous
regression, we performed scRNA-Seq on 17 NB samples
with distinct histological classification and three AG sam-
ples. We hypothesized that the distribution of steroido-
genic cells, ECs, fibroblasts, and NEs may differ among NB
groups. Based on pseudotime trajectory and clonality tree
analyses, we revealed a pathway by which malignant
tumor cells may have the potential to differentiate into
fibroblasts. The similarity in specific transcriptional fea-
tures supports the idea that malignant tumor cells may
have a transformational relationship with fibroblasts.
Using RNA velocity and CellPhone DB analysis, we
demonstrated that the C1 subgroup of malignant tumor
cells may differentiate toward the C2 subtype of fibro-
blasts, with highly expressed CCL2 and ZFP36. Immuno-
histochemical results confirmed that these Fib-C2-related
markers are also highly expressed in malignant tumor
cells. Therefore, our results strongly indicate that the
spontaneous regression of NB may be associated with the
differentiation of the C1 subgroup of malignant tumor
cells to the C2 subtype of fibroblasts. To the best of our
knowledge, our findings are the first to provide a trajec-
tory for NB regression, though further investigation is
warranted.

By uncovering the transcriptional heterogeneity of ma-
lignant tumor cells, we also identified six meta-programs
with 300 meta-genes that were preferentially expressed in
a subpopulation of NEs, with two independent prognostic
factors (STMN2 and TUBA1A) indicated by survival analyses
using the TARGET database. Further immunohistochemical
results showed that TUBA1A and STMN2 were highly
expressed in the NBL group with poor prognosis. Moreover,
results of qRT-PCR supported the immunohistochemical
results. The expression of these two signatures has been
associated with poor prognosis in other tumors.44,45

Furthermore, SCENIC analysis predicted that SOX4 regu-
lates the expression of TUBA1A and STMN2, suggesting that
these two signatures may provide promising diagnostic and/
or prognostic biomarkers, as well as novel therapeutic
targets of NB patients. Though these results provide new
insight into the molecular mechanisms that underlie dis-
ease progression, an expanded sample size is needed to
confirm the prognostic value of TUBA1A and STMN2 in NB.

Lastly, we established a complex intercellular commu-
nication network to elucidate the cellular tumor



Figure 6 Complex intercellular communication networks in NEs and immune cells. (A) UMAP plot for T cells, B cells, and myeloid
cells in all samples. (B) Cell network for major immune cells from CellPhoneDB analysis. (C) Heat map showing correlations be-
tween major immune cells. (D) Dot plot showing ligandereceptor pair interactions between NEs and major immune cells; ordinate
is ligandereceptor pairs, abscissa is NEs and major immune cells. (E) Hazard Ratio Plot for nine signatures. (F) The expression of
ITGB1 at the protein level in stage II and MYCN-amplification samples as evaluated by immunohistochemistry. The arrow indicates
positive cells; 40X pictures were enlarged from 20X pictures. (G) SCENIC analysis was used to construct transcriptional factor
networks for M2-like macrophages, DCs, and Th cells.
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microenvironment in NB tumors. Notably, among the im-
mune cells, M2-like macrophages had the closest
communication with NEs through a large number of
receptoreligand pairs. Interestingly, we found more M2-
like macrophages in stage I/II than in stage IVs, which is in
contradiction with other studies suggesting that M2-like
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macrophages are associated with poor prognosis in NB.46

We speculate that different subtypes of M2-like macro-
phages are represented in NB, though further studies are
needed to clarify specific phenotypes of M2-like macro-
phages. We further investigated the prognostic value of
signatures in M2-like macrophages. Our results demon-
strate that ITGB1 in M2-like macrophages were associated
with NEs and correlated with favorable prognosis. This is in
contrast with other studies in which the expression of
ITGB1 has been associated with poor prognosis in other
tumors,47 suggesting that the role of this gene may vary for
different tumor types. Our immunohistochemical analysis
confirmed that high expression of ITGB1 protein was
associated with favorable prognosis in the NBL groups.
Furthermore, SCENIC analysis predicted that RAD21 regu-
lates the expression of ITGB1, suggesting that ITGB1 might
serve as a novel diagnostic and therapeutic target for NB.
Further studies with extended sample sizes are needed to
elucidate the roles of these markers in NB.

In summary, we conducted an extensive analysis of the
transcriptomic landscape of NB through scRNA-seq of a
panel of different pathological subtypes. Our findings sug-
gest that the C1 subgroup of malignant tumor cells may
differentiate into a C2 subcluster of fibroblasts, which re-
veals a novel mechanism of spontaneous NB regression.
Furthermore, we demonstrated that the molecular char-
acterization of malignant and immune cells associated with
NB prognosis may provide promising biomarkers for diag-
nosis and an alternative mechanism for therapy of NB.
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