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Alzheimer’s disease (AD) is characterized by progressive dementia, especially in episodic
memory, and amnestic mild cognitive impairment (aMCI) is associated with a high risk of
developing AD. Hippocampal atrophy/shape changes are believed to be the most robust
magnetic resonance imaging (MRI) markers for AD and aMCI. Radiomics, a method of
texture analysis, can quantitatively examine a large set of features and has previously
been successfully applied to evaluate imaging biomarkers for AD. To test whether
radiomic features in the hippocampus can be employed for early classification of AD
and aMCI, 1692 features from the caudal and head parts of the bilateral hippocampus
were extracted from 38 AD patients, 33 aMCI patients and 45 normal controls (NCs).
One way analysis of variance (ANOVA) showed that 111 features exhibited statistically
significant group differences (P < 0.01, Bonferroni corrected). Among these features, 98
were significantly correlated with Mini-Mental State Examination (MMSE) scores in AD
and aMCI subjects (P < 0.01). The support vector machine (SVM) model demonstrated
that radiomic features allowed us to distinguish AD from NC with an accuracy of 86.75%
(specificity = 88.89% and sensitivity = 84.21%) and an area under curve (AUC) of
0.93. In conclusion, these findings provide evidence showing that radiomic features are
beneficial in detecting early cognitive decline, and SVM classification analysis provides
encouraging evidence for using hippocampal radiomic features as a potential biomarker
for clinical applications in AD.

Keywords: alzheimer’s disease, amnestic mild cognitive impairment, hippocampal subregions, radiomic features,
support vector machine
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INTRODUCTION

As the leading cause of neurodegenerative dementia, Alzheimer’s
disease (AD) is characterized by a progressive deterioration in
cognitive function, especially in episodic memory. Due to its
influence on the normal lives of both patients and caregivers,
AD has become a considerable burden on society (Reitz and
Mayeux, 2014; Alzheimer’s Association, 2017). Mild cognitive
impairment (MCI) is generally defined as a transitional stage
between the cognitive changes associated with normal aging and
early dementia. Amnestic MCI (aMCI) means that while the
memory ability of a patient has decreased, the patient does not
fulfill the criteria for dementia, and aMCI is thought to be the
prodromal stage of dementia due to AD and has a high risk of
developing into AD (Petersen and Jack, 2009; Petersen, 2016).

Medial temporal atrophy is believed to be one of the magnetic
resonance imaging (MRI) markers for progression to AD in a
prodromal stage, and atrophy of the hippocampus, the most
vulnerable structure in the medial temporal lobe, is one of its
most robust markers (Ferreira et al., 2011; Yang et al., 2012; Ezzati
et al., 2016). In the past decade, structural MRI has been widely
used to quantify hippocampal atrophy for distinguishing MCI
from AD (Pruessner et al., 2000; Shen et al., 2002; Apostolova
et al., 2012). Evidence has also demonstrated that aMCI patients
converting to AD show greater atrophy in the hippocampus than
is found in those who do not convert to AD (Chételat et al., 2005;
Apostolova et al., 2006; Leung et al., 2013). Beyond the decrease
in volume, changes in the morphology of the hippocampus have
also been found and may appear even earlier than atrophy in AD
(Achterberg et al., 2014; Sørensen et al., 2016).

Radiomics, a morphological method for imaging analysis, can
quantitatively examine a large set of texture features (Parmar
et al., 2015) and is used in the classification of tumors and in
predicting radiation therapy outcomes (Huynh et al., 2016). The
implications of “texture” include many image properties, such as
coarseness, rugosity, and smoothness. Recently, texture analysis
has been successfully applied to produce imaging biomarkers for
AD (de Oliveira et al., 2011; Anandh et al., 2015; Chincarini et al.,
2015). For example, studies have shown that hippocampal texture
abnormalities appear in MCI/AD, indicating that texture may
serve as a prognostic neuroimaging biomarker for early cognitive
impairment (Sørensen et al., 2016, 2017).

Hippocampal head (anterior) atrophy is the most obvious in
AD (Raji et al., 2009) and has been reported as a predictive marker
of conversion to AD (Costafreda et al., 2011). Convergence
evidence has also demonstrated the existence of functional
differences along the anterior-posterior axis of the hippocampus
(Strange et al., 2014; Collin et al., 2015). The anterior-posterior
discrepancies in the hippocampus have also been associated with
neuropsychiatric symptoms in early AD (Lyketsos et al., 2011).
Given that the posterior and anterior parts of the hippocampal
are differentially vulnerable to neuropathology in AD (La Joie
et al., 2014; Delli Pizzi et al., 2016; Zeidman and Maguire, 2016),
evaluating imaging measurements in different subfields would
provide more accurate and sensitive information for the early
detection of AD (La Joie et al., 2013; Blanken et al., 2017; Mak
et al., 2017). Thus, hippocampal morphological differentiation

along the posterior-anterior axis of the hippocampus deserves
more attention because they are relevant for the early diagnosis
of AD.

Inspired by the above studies, we hypothesized that radiomic
features in the hippocampus would be disrupted and that these
changes might be employed in the early classification of AD
and aMCI. To test this hypothesis, radiomic features that were
used in previous studies (Aerts et al., 2014; Parmar et al., 2015)
were calculated from hippocampal subregions based on the
Brainnetome Atlas (Fan et al., 2016) from a structural MRI data
of 38 AD patients, 33 aMCI patients and 45 normal controls
(NCs). One-way ANOVA was then used to identify changes in
the radiomic features among AD, aMCI and NC subjects. Then,
correlation analyses between the identified radiomic features and
Mini-Mental State Examination (MMSE) scores were calculated
to evaluate the relationships between hippocampal textures and
cognitive ability. In addition to these case-control comparisons,
we employed the support vector machine (SVM) model to
evaluate the diagnostic power of radiomic features (Figure 1).

MATERIALS AND METHODS

Ethics Statement, Subject Recruitment,
and Neuropsychological Assessment
This study was approved by the Medical Ethics Committee of
the Chinese PLA General Hospital. All subjects or their legal
guardians (a family member) signed written informed consent
forms. All subjects met identical methodological stringency
criteria, and comprehensive clinical details can be found
elsewhere in our previous studies (Zhang Z. et al., 2012, 2014; Yao
et al., 2013; Zhou et al., 2013; Wang et al., 2015). To maintain the
scientific integrity of the present study, herein we provide a brief
introduction regarding the data inclusion and exclusion criteria,
acquisition and processing.

The recruited AD patients fulfilled the NINCDS-ADRDA
(National Institute of Neurological and Communicative
Disorders and Stroke and the AD and Related Disorders
Association) criteria for the diagnosis of probable AD (McKhann
et al., 1984). The aMCI patients were required to conform to
the criteria described by Petersen (Petersen, 2004). The AD
and aMCI patients also met the core clinical criteria of the
new diagnostic criteria for probable AD and aMCI due to AD
(Albert et al., 2011; McKhann et al., 2011). The NCs included
subjects lacking memory decline but matching with AD and
aMCI patients in gender and age. All of the participants were 55
to 85 years old and were neurological inpatients and outpatients
of the Chinese PLA General Hospital. Clinical, physical and
neuropsychological assessments were performed before MRI
examination. Subjects with neurological or psychiatric diseases
or with a history of cerebrovascular attacks or other degenerative
disorders were excluded.

All subjects underwent a battery of neuropsychological tests
at the department of neurology of the Chinese PLA General
Hospital. These tests included the MMSE, Clinical Dementia
Rating, Auditory Verbal Learning Test (AVLT), Geriatric
Depression Scale and Activities of Daily Living scale.
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FIGURE 1 | Diagram of data processing and statistical analyses. (A) Strategy for hippocampal subregion extraction from high-resolution structural MRI. (B) Intensity
features and textural features were extracted from the images, and wavelet transformation was achieved in each hippocampal subregion. (C) Statistical analysis was
used to find radiomic features that were different among the groups, and correlations with the MMSE were performed to evaluate the relationship between radiomic
features and cognitive performance. A classification analysis was performed to determine whether radiomic features could be used for diagnosis.

Structural MRI Data Acquisition
Discovery Data
Magnetic resonance imaging examinations were performed at the
department of radiology of the Chinese PLA General Hospital
using a 3.0 T Siemens MR system (Skyra, Siemens, Germany)
with a 20-channel head coil. During the examinations, the
subjects were given comfortable foam padding to minimize head
motion and ear plugs to reduce the scanner noise. Before the
structural MRI data were collected, T2-weighted images were
collected and evaluated by two senior radiologists. Sagittal T1-
weighted structural images (192 continuous slices) were acquired
for each subject using a magnetization-prepared rapid gradient
echo sequence with the following scan parameters: repetition
time (TR) = 2,530 ms, echo time (TE) = 3.43 ms, inversion time
(TI) = 1100 ms, field of view (FOV) = 256 mm × 256 mm,
acquisition matrix = 256 × 256, flip angle (FA) = 7◦, and slice
thickness = 1 mm. The obtained three-dimensional images had a
resolution of 1 mm× 1 mm× 1 mm.

Replicated Data
Magnetic resonance imaging examinations were further
performed in the same department of radiology using another
3.0 T Siemens MR system (Skyra, Siemens, Germany) for other
subjects, including AD and aMCI patients and NCs. The protocol
and parameters used in the MRI examinations were all consistent
with those used in the discovery data.

Hippocampal Radiomic Feature
Extraction
All preprocessing steps were performed using statistical
parametric mapping (SPM12)1 and the Brainnetome fMRI
Toolkit2 (Xu et al., 2018). Briefly, each individual T1-weighted
DICOM image of the brain was first converted to NIFTI data.
Next, skull stripping was performed, and the obtained images
were normalized to the Montreal Neurological Institute (MNI)
standard T1 template (standard space 181 × 217 × 181 with a
resolution of 1 mm × 1 mm × 1 mm). Meanwhile, we resliced
the Brainnetome Atlas3 to the standard MNI space with a
resolution of 1 mm × 1 mm × 1 mm, and the caudal and head
regions of the bilateral hippocampus were further extracted as
masks. Lastly, for each subject, we obtained the subregions by
point multiplication of the masks and the normalized T1 images.

Quantitative radiomic features were calculated using in-house
MATLAB script as previously reported (Aerts et al., 2014; Huynh
et al., 2016), and detailed descriptions of each feature are
listed in the supplemental information to maintain the scientific
integrity of the present study. Briefly, the intensity features
were calculated based on the histogram, which represented the
distribution of voxel intensities within the images (14 features),

1http://www.fil.ion.ucl.ac.uk/spm
2http://brant.brainnetome.org
3http://atlas.brainnetome.org
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the textural features on the gray level co-occurrence matrix
(GLCM) and the gray level run-length matrix (GLRLM) (33
features). Wavelet transformation (Symlet wavelet filter, “sym4”
were used here) in eight directions (LLL, LLH, LHL, LHH,
HLL, HLH, HHL, and HHH) was performed for the four
hippocampal subregions to combine the spatial and frequency
characteristics (for more detailed information, please refer to
the Supplementary Material). As a result, 423 radiomic features
were obtained for each hippocampal subregion, resulting in the
inclusion of a total of 1692 (423× 4) features for further analyses
(Figure 1).

Statistical Analysis
Radiomic features were adjusted using the linear regression
method to control the age and gender effects and were then
statistically tested to determine the number of indices with
significant differences among groups and to perform the further
correlation analysis.

One-way ANOVA was employed to evaluate the differences
between the AD, aMCI and NC groups at each subregion.
Hence, 423 × 4-fold comparisons were performed, and we then
used the Bonferroni correction to control type 1 error with
P < 0.01/(N = 423 × 4). A post hoc analysis was performed to
verify the differences between any two groups.

To assess the association between radiomic texture and
cognitive ability, Spearman’s correlation coefficient was
calculated to evaluate the relationships between the identified
features and MMSE (P < 0.01). In addition, a detailed map
was provided of the correlations between these features and the
AVLT scores in immediate recall, delayed recall, recognition of
primary and new words (P < 0.05). To evaluate the replication
of the results related to radiomic features that showed significant
differences and their correlations with MMSE, another dataset
was further analyzed using the same statistical methods.

TABLE 1 | Demographic, clinical and neuropsychological discovery data for AD,
aMCI, and NC subjects.

NC (n = 45) aMCI (n = 33) AD (n = 38) P

Age (years) 68.2 ± 6.9 70.6 ± 8.2 71.7 ± 8.3 0.102

Gender (M/F) 22/23 14/19 16/22 0.680

MMSE score 28.6 ± 1.4 26.6 ± 2.6a 17.6 ± 5.6a,b <0.001

AVLT-Immediate
Recallc,e

5.6 ± 1.2 4.2 ± 1.4a 3.0 ± 1.3a,b <0.001

AVLT-Delayed
Recalld,e

5.6 ± 1.9 2.5 ± 2.3a 0.6 ± 1.1a,b <0.001

AVLT-Recognition
(primary words)e

9.4 ± 1.1 8.4 ± 1.5a 6.2 ± 3.5a,b <0.001

AVLT-Recognition
(new words)e

9.8 ± 0.7 8.7 ± 2.1a 6.8 ± 3.2a,b <0.001

A Chi-square test was used for gender comparisons, and ANOVA with Bonferroni’s
post hoc test was used for age and neuropsychological test comparisons.
aSignificant compared with NC.bSignificant compared with aMCI. cThe mean of
three scores for every immediate recall. dThe scores for delayed recall after five
minutes. eThirteen AD subjects, 2 aMCI subjects and 3 NC subjects could not
or refused to complete this test. MMSE, Mini-Mental State Examination; AVLT,
auditory verbal learning test.

Classification Analysis
To assess the multivariate performance of radiomic features,
a classification model was established based on the SVM.
A nonlinear SVM with a radial basis function (RBF) kernel
was employed in LIBSVM.4 The performance of the classifier
was evaluated by the leave-one-out cross-validation (LOOCV)
method, which has been widely used as a reliable estimating
approach of true generalization performance. In the present
study, the following univariate feature-ranking approach based
on t-test was performed, as described in previous studies
(Kamkar et al., 2015; Beheshti et al., 2016):

T =
µc1 − µc2√
σ 2
c1
ηc1
+

√
σ 2
c2
ηc2

where µck σ2
ck and nck (k = 1,2) are the mean, variance, and

number of samples, respectively, in the two classes (c1 and c2: AD
and NC). Each feature was normalized before the rank analysis
was performed with the following method:

X =
Xi − Xmin

Xmax − Xmin
(i = 1.....N)

These features were ranked by the t-test, with a high value
indicating large discrimination performance in the training
dataset. To avoid over-filtering, only up to 200 features were
selected for analysis.

In this model, there were two LOOCV procedures for grid
search (Beheshti et al., 2016). In the inner and outer loop,
there were both training data and testing data. First, the feature
rankings with t-tests were employed in the inner loop’s training
data; the parameters c (regularization) and g (control the kernel
width) obtained by LOOCV and grid search were also used. Then,
the feature rankings with t-tests were further employed in the
outer loop’s training data. Lastly, the parameters c and g obtained
from the inner loop’s training data were used in the testing data
to access the classification performance.

Input: radiomic features
for i← 1 to N (the number of data)

do: testing data = data (i)
training data = data (N| i)

Ranking features with t-test among training data
for j← 1 to N-1
do: LOOCV with different c and g.
Compute the accuracy for each c and g.

Choose the best c and g.
Compute the accuracy for classification.

Output: the best classification results

The classification performance was evaluated by means of
accuracy (ACC), sensitivity (SEN), and specificity (SPE). The
diagnostic capabilities of the radiomic features were evaluated
using receiver operating characteristic (ROC) curves with the
corresponding area under the ROC curve (AUC). Finally, to

4http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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FIGURE 2 | Heat maps of radiomic features that were significantly different among groups in more than one hippocampal subregion in AD and aMCI subjects.
(A) A total of 39 radiomic features showed significant differences among groups in more than one hippocampal subregion. Thirteen features were identified in the
LC, LH, and RC subregions at the same time. For each feature observed in four subregions, there were four grids (P-values for ANOVA and P-values for the t-tests
between aMCI and NC, AD and NC, and AD and aMCI). The color bar represents the –lg(P) values, a blank grid indicates there was no significant alteration in the
related radiomic feature between AD and aMCI or AD and NC subjects (P < 0.01, Bonferroni corrected). (B) The replication results of another dataset were analyzed
using the same procedure. LC, Left caudal; LH, Left head; RC, Right caudal; RH, Right head; mad, mean absolute deviation; LRHGLE, Long run, high gray level
emphasis; GLN, Gray level non-uniformity; SRLGLE, Short run, low gray level emphasis; LGLRE, Low gray level run emphasis; IDMN, Inverse difference moment
normalized; HGLRE, High gray level run emphasis; SRHGLE, Short run, high gray level emphasis.

assess the clinical relevance of this radiomic-based classification,
we investigated correlations between the classifier output and
cognitive ability scores (MMSE) in individual subjects.

Data Sharing
The patients’ hippocampus nii image files, the texture features
and the codes are available online at https://github.com/
yongliulab.

RESULTS

Demographic Characteristics and
Neuropsychological Assessment of
Groups
In the present study, 116 subjects (38 AD patients, 33 aMCI
patients and 45 NCs) were included in the discovery data. Mean
age and gender ratio had no significant differences (P > 0.05).
The MMSE score was remarkably and significantly different
(P < 0.001), with AD patients having the lowest scores and

subjects in the NC group having the highest scores. For the
scores on the AVLT in immediate recall, delayed recall, and
recognition of primary words and new words, the same sequence
was observed among AD, aMCI and NC subjects (P < 0.001)
(Table 1). The replicated dataset, which included 42 AD patients,
37 aMCI patients and 43 age- and gender-matched NCs, was
used for a replication analysis of the identified feature changes
(Supplementary Table S1).

Radiomic Features in AD, aMCI and NC
Subjects
As a whole, 111 features showed significant differences (P< 0.01,
Bonferroni corrected with N = 423× 4) among the three groups.
Of these, 39 parameters were altered in more than one subregion
(Figure 2A). The post hoc analysis further demonstrated that
differences were more significant when comparing the AD and
NC groups than that when comparing the AD and aMCI groups
or the aMCI and NC groups (Figure 2A). Considering the
category of these features, 8 of the 39 parameters belonged to
the intensity features, 13 were textural features of the GLCM,
6 were from the GLRLM (Table 2). As shown in Figure 2A,
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TABLE 2 | Summary of radiomic features with significant differences in
hippocampal subregions.

Type of features Detailed features

Intensity features (8/14) uniformity, mad, kurtosis,
entropy, root mean square,
standard deviation, energy,
skewness

Textural features of GLCM (13/22) Sum Entropy, Cluster Tendency,
Correlation, Cluster
Prominence, Energy, Entropy,
Sum Average, Contrast, IDMN,
Maximum Probability,
Autocorrelation, Cluster Shade,
Homogeneity

Textural features of GLRLM (6/11) GLN, LRHGLE, SRLGLE,
LGLRE, HGLRE, SRHGLE

GLCM, Gray-Level Co-Occurrence Matrix; GLRLM, Gray-Level Run-Length Matrix;
mad, mean absolute deviation; IDMN, Inverse difference moment normalized; GLN,
Gray level non-uniformity; LRHGLE, long run, high gray level emphasis; SRLGLE,
short run, low gray level emphasis; LGLRE, low gray level run emphasis; HGLRE,
high gray level run emphasis; SRHGLE, short run, high gray level emphasis.

most of the 39 parameters were found in the left caudal, left
head and right caudal regions of the hippocampus, whereas
a small number of parameters were found in the right head
region of the hippocampus. The features that indicated the
most significant alterations among groups included kurtosis
(−lg(P) = 12.97), Energy-LLL (−lg(P) = 12.60) and Entropy-
LLL (−lg(P) = 12.54) in the right caudal part and Sum Entropy
(−lg(P) = 12.57) in the left head part (Figure 2A). The same 39
parameters were evaluated in the replication dataset, in which
they showed similar but weaker alterations (Figure 2B). Note
that the most significant changes were identified in the caudal
part of right hippocampus in the AD group in both datasets
(Figure 2).

Correlations Between Radiomic Features
and MMSE Scores
A total of 98 among the 111 identified features were significantly
correlated with MMSE scores in AD and aMCI subjects
(P < 0.01). Among these, 34 parameters in the bilateral
subregions of the hippocampus were significantly correlated in
two or three subregions (Figure 3A and Table 3). The other
64 features in one subregion are shown in Supplementary
Figure S2. To construct a sketch map of these correlations,
four typical features were selected for illustration in scatter
diagrams (Figure 3B). Importantly, the same 34 parameters
were significantly correlated with MMSE in more than one
subregion in the replication dataset (P < 0.05, uncorrected)
(Supplementary Figure S3B). For the bilateral caudal and left
head subregions, approximately 50 parameters were significantly
correlated with AVLT scores in more than one subregion, while
4 textural features were significantly correlated with AVLT scores
in the right head region (Supplementary Figure S4).

Classification Performance
We introduced the SVM model to determine whether these
textures were good features for classification analysis in the

discovery data (N = 116, 38 AD patients, 33 aMCI patients and
45 NCs). To avoid over-filtering, up to 200 top features based
on t-test rankings were selected for classification analysis. After
training steps, we obtained the maximum classification accuracy
with 163 features. Table 4 presents the classifier performance
results obtained using LOOCV for SVM classifiers in terms of
ACC, SEN, SPE, and AUC. The accuracy of the feature vectors
with 163 features for SVM classifiers was 86.75% (SPE = 88.89%,
SEN = 84.21%, and AUC = 0.93) for distinguishing AD from NC.
This rate was reduced by approximately 10% for all performance
indicators (ACC, SEN, SPE, and AUC) when using the same
features to distinguish aMCI from NC or AD from aMCI
(Figure 4). In addition, we found that the distance from the
hyperplane was highly correlated with MMSE scores in the AD
plus NC (r = 0.70, P< 0.001) and AD (r = 0.38, P = 0.020) groups
designated by the classification analysis (Figure 4B).

DISCUSSION

In the present study, we are the first to identify significantly
different radiomic features in hippocampal subregions among
AD and aMCI patients and NCs. These features demonstrated
were significantly associated with cognitive ability in AD and/or
aMCI subjects. More importantly, an SVM analysis demonstrated
that these hippocampal textures are potential markers of AD.

In recent years, MRI-based biomarkers of AD that target gray
matter atrophy or shape were found to be the most commonly
used measures (Risacher et al., 2009; Ezzati et al., 2016; Caldwell
et al., 2017). Reduced hippocampal volume has been well studied
in AD and MCI individuals (for a review, see Shi et al., 2009). In
the revised National Institute on Aging-Alzheimer’s Association
diagnostic criteria, hippocampal atrophy was one of the core
markers for AD (Albert et al., 2011; Catani et al., 2013). Except for
the reduced volume, abnormal metabolism levels, disrupted brain
activity and microstructural properties within the hippocampus
have been well reported (for a review, see Huijbers et al., 2015).
The current results show that radiomic features are different in
more than one subregion of the hippocampus, especially in the
caudal parts. Among these identified to show altered texture
features, three indices (kurtosis, Energy-LLL and Entropy-LLL)
from the right caudal region exhibited the most significant
alterations. In probability theory and statistics, kurtosis is a
measure of flatness in probability distributions in brain images.5

Entropy is a statistical measure of randomness that can be used
to characterize the texture of an image. Significant differences
in the above features indicate that cognitive impairments in AD
and aMCI might result in complicated and changed distributions
of voxel values within the hippocampus. This inference was
supported by the significant correlation found between texture
features and MMSE scores in the AD/aMCI groups and has
also been confirmed by previous related studies (de Oliveira
et al., 2011; Sørensen et al., 2016). Several investigators have
reported that the shapes of brain structures can provide an
additional dimension (structural morphology) when quantifying

5https://en.wikipedia.org/wiki/Kurtosis
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FIGURE 3 | Heat map of radiomic features correlating with MMSE in more than one hippocampal subregion. (A) A total of 16 features were significantly correlated
with the MMSE in two or three subregions (P < 0.01, Bonferroni corrected). The color bar represents the –lg(P) values, a blank grid indicates there was no significant
correlation between the related radiomic features and MMSE scores between AD and aMCI. (B) Four typical features were selected for illustration in scatter
diagrams. The corresponding mean values are provided (gray: NC, blue: aMCI; red: AD). LC, Left caudal; LH, Left head; RC, Right caudal; mad, mean absolute
deviation; LRHGLE, Long run, high gray level emphasis; GLN, Gray level non-uniformity; SRLGLE, Short run, low gray level emphasis; LGLRE, Low gray level run
emphasis; IDMN, Inverse difference moment normalized; HGLRE, High gray level run emphasis.

TABLE 3 | Summary of radiomic features correlated with MMSE scores in
hippocampal subregions.

Type of features Detailed features

Intensity features (8/14) uniformity, mad, kurtosis,
entropy, energy, root mean
square, standard deviation,
skewness

Textural features of GLCM (13/22) Sum Entropy, Cluster Tendency,
Correlation, Cluster
Prominence, Entropy, Energy,
IDMN, Sum Average, Contrast,
Maximum Probability, Cluster
Shade, Homogeneity2,
Homogeneity1

Textural features of GLRLM (5/11) LRHGLE, GLN, SRLGLE,
LGLRE, HGLRE

GLCM, Gray-Level Co-Occurrence Matrix; GLRLM, Gray-Level Run-Length Matrix;
mad, mean absolute deviation; IDMN, inverse difference moment normalized;
LRHGLE, Long run, high gray level emphasis; GLN, Gray level non-uniformity;
SRLGLE, short run, low gray level emphasis; LGLRE, low gray level run emphasis;
HGLRE, high gray level run emphasis.

alterations in cognitive ability in AD/MCI patients (Qiu et al.,
2008; Tang et al., 2015, 2016). However, hippocampal shape
abnormalities (Apostolova et al., 2006; Christensen et al., 2015)
and texture features (Li et al., 2010; Zhang J. et al., 2012) have been
reported to be associated with individual memory performance.
Hence, the present study provides additional clues regarding
the morphological alterations that occur in the hippocampus
in AD.

TABLE 4 | Classification performance by the classification features (feature
number = 163) between two groups.

AD-NC aMCI-NC AD-aMCI

ACC 86.75% 70.51% 59.15%

SPE 88.89% 80.00% 63.16%

SEN 84.21% 57.58% 54.55%

The detailed receiver operating characteristic curve (ROC) plot can be found in
Figure 4. ACC, accuracy; SPE, specificity; SEN, sensitivity.

As shown in the present study, several texture measures
(such as the mean absolute deviation (mad), kurtosis, uniformity,
entropy and Sum Entropy-LLL) showed a significant correlation
with the MMSE score in AD/aMCI. Among these measures,
mad reflects dispersion, kurtosis represents flatness, and both
uniformity and entropy measure randomness of the intensity
value distribution. For example, a positive kurtosis indicates a
more peaked histogram than a Gaussian (normal) distribution
of the selected image in AD than that in NC. This phenomenon
might be caused by the atrophy of gray matter, which results
in a less highly peaked histogram for the voxel intensity
values similar to that due to atrophy. It should also be
noted that the MMSE is limited in terms of its sensitivity
to high and low levels of cognitive functioning (Tombaugh
and McIntyre, 1992). Moreover, the correlation results between
the textures and the AVLT scores immediate recall, delayed
recall and recognition of primary words and new words
provide further evidence suggesting that texture is an important
and beneficial supplementary index, in addition to volume
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FIGURE 4 | (A) ROC curve for distinguishing between AD and NC subjects (blue), aMCI and NC subjects (green) and AD and aMCI subjects (red). (B) The
correlation between the distance from the hyperplane and MMSE scores in AD plus NCs (black line) as well as in AD (red line). AUC, area under curve.

measurements, for understanding impaired cognitive ability in
patients. Although the pathological features of AD, such as
neurofibrillary tangles (NFTs) and amyloid-β (Aβ) plaques,
cannot be detected on MRI, these microstructural changes
might lead to altered textural patterns (Castellano et al., 2004)
and might be manifested by texture analysis (Csernansky
et al., 2005; Manning et al., 2015; Hwang et al., 2016).
Indeed, a negative correlation between image textures and
FDG-PET metabolism was identified in a recent excellent
study (Shi et al., 2009). Regions with the highest atrophy
rates were demonstrated to be located in the anterolateral
hippocampus, which is also the region with the highest
tau deposition (Franko and Joly, 2013). The anterior (head)
hippocampus is thus thought to be the brain region in which
the majority of volume differences are found in aMCI and AD
patients.

Despite the identification of significantly different features
and their correlation with MMSE scores, the application of
these hippocampal features as a biomarker still needs to be
confirmed. Using simple and common models of nonlinear
(RBF) SVM, we obtained an accuracy of 86.75% (SPE: 88.89%;
SEN: 84.21%) for distinguishing AD from NC by LOOCV.
This finding is consistent with many previous imaging studies
(Mak et al., 2011; Zhang Z. et al., 2012; Guo et al., 2014)
suggesting that the hippocampal textures might be potential
imaging markers for AD. The performance in terms of ACC,
SEN, SPE, and AUC was competitive with several state-of-the-
art results reported in previous studies (Jie et al., 2015; Ritter
et al., 2015; Beheshti et al., 2016; Schouten et al., 2016). In
addition, by analyzing the frequencies of the features selected
in each LOOCV run, we found that the most powerful feature
was the “intensity” of the hippocampus. More importantly, the
individualized distance to the hyperplane was a neuroanatomical
signature of AD and was significantly correlated with MMSE
scores, indicating that the more severe AD becomes, the more
likely it is to be identified using radiomic features based
on the classifier’s output. This result means that the atrophy
and shape of the hippocampus play a very important role in
distinguishing AD patients from healthy controls, as suggested

by previous studies (Hampel et al., 2008; Beheshti et al., 2016;
Sørensen et al., 2016).

LIMITATIONS

There were several limitations in this study. First, the
hippocampal subregions segmentation was based on the atlas,
which resulted in the same shape features in different subregions
and, thus, were excluded from the analysis. Because only the
hippocampus was included, some other important regions, such
as the parahippocampus, amygdala and ventricles, should be
investigated in future work. The hippocampus is also divided
into subfields, including the Cornu Ammonis (CA1–4), the
dentate gyrus and the subiculum, each of which has distinctive
histological characteristics and specialized functions (Bird and
Burgess, 2008; Delli Pizzi et al., 2016; Zeidman and Maguire,
2016; Blanken et al., 2017). However, radiomic feature extractions
are unsuitable for such small regions as the above-described
parcellation. Second, the results of the present study demonstrate
that radiomic features have potential use in clinical diagnosis;
meanwhile, we should also admit that the LOOCV might also
have potentially overestimating performance (Varoquaux, 2017;
Varoquaux et al., 2017). To validate if the result was robust,
we performed a leave-four-subjects-out cross-validation and
simulation 1000 times, and the results showed that we could
obtain an accuracy of 83.55% (SPE: 84.66%; SEN: 82.66%)
for distinguishing AD from NC. Using larger multi-center
datasets is a solution to future challenges in reproducibility
and statistical power by taking testing data from independent
centers. Furthermore, a prospective longitudinal study with a
large multi-center sample size is needed to detect the earlier stages
of AD (Dubois et al., 2016). Lastly, although we believe this
approach will increase our understanding of the multiple levels
of hippocampal alterations observed over the course of AD, the
radiomic features is much less widespread and less well developed
than are other imaging approaches, therefore, combining texture
with other markers (for example brain volume, cortical thickness,
functional connectivity, and CSF, etc.) to achieve a powerful
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biomarker of sufficient quality to be considered for clinical
applications is needed for future studies.

CONCLUSION

In conclusion, in the present study, we found that hippocampal
radiomic features exhibit significant disease-severity-related
alterations in AD. We specifically investigated hippocampal
textures as an MRI-based biomarker of AD. The results showed
that hippocampal textures could be used as potential MRI
markers for the early detection of AD from NC, with a relatively
high correction ratio (ACC = 86.75%, specificity = 88.89%, and
sensitivity = 84.21%) with the LOOCV method. The results of the
present study highlight the importance of hippocampal texture
abnormalities in AD and support the possibility that textures may
serve as a neuroimaging biomarker for the early detection of AD
and aMCI.
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