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Abstract
Random coincidences degrade the image in Positron Emission Tomography, PET. To com-

pensate for their degradation effects, the rate of random coincidences should be estimated.

Under certain circumstances, current estimation methods fail to provide accurate results.

We propose a novel method, “Singles–Prompts” (SP), that includes the information con-

veyed by prompt coincidences and models the pile–up. The SP method has the same struc-

ture than the well-known “Singles Rate” (SR) approach. Hence, SP can straightforwardly

replace SR. In this work, the SP method has been extensively assessed and compared to

two conventional methods, SR and the delayed window (DW) method, in a preclinical PET

scenario using Monte–Carlo simulations. SP offers accurate estimates for the randoms

rates, while SR and DW tend to overestimate the rates (*10%, and 5%, respectively). With

pile-up, the SP method is more robust than SR (but less than DW). At the image level, the

contrast is overestimated in SR-corrected images, +16%, while SP produces the correct

value. Spill–over is slightly reduced using SP instead of SR. The DW images values are

similar to those of SP except for low-statistic scenarios, where DW behaves as if randoms

were not compensated for. In particular, the contrast is reduced, −16%. In general, the bet-

ter estimations of SP translate into better image quality.

Introduction
Positron emission tomography (PET) is based on the detection, in coincidence, of two photons
created upon the annihilation of a positron. Due to the finite time resolution of PET devices, a
coincidence event is recorded when the two annihilation photons are detected within a time
coincidence window (TCW). Within this scheme it is unavoidable that two uncorrelated pho-
tons might be detected sufficiently close in time to be mistakenly identified as a coincidence.
This constitutes an accidental coincidence, also called random coincidence (or just random).
Randoms are one of the main sources of image degradation in PET, since they introduce noise
and hamper quantification. The negative effects of randoms can be partially compensated for,
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either by pre–correcting the data prior to reconstruction [1] or within the reconstruction pro-
cess [2]. Both approaches require a reliable estimate of the number of randoms in each line–
of–response (LoR). For quantitative PET, accurate randoms estimates are imperative.

Two estimation approaches are usually employed: the “Delayed Window” (DW) method [1,
3] and the “Singles Rate” (SR) method [1, 3, 4]. The DWmethod duplicates the stream of
events and the detection times are delayed for a time much larger than the time resolution of
the scanner. Coincidences between the original and the delayed copy are extracted using the
same sorter. The DWmethod relies on the fact that the correlations between the original and
delayed copy are broken; therefore, any coincidence between the two is necessarily a random.
The prompts rate obtained for each LoR defined by the detectors ij, RDW

ij , constitutes the DW

estimate. The SR method uses the singles count rates of two detectors to infer the randoms rate
in the corresponding LoR. It is based on the well–known formula:

RSR
ij ¼ 2tSiSj; ð1Þ

being RSR
ij the estimated randoms rate for the LoR defined by the detectors ij and τ the value of

the TCW. This method relies on the assumption that the singles rates are large compared with
the trues rates.

Several studies compare the performance of these two methods [5–9]. While more accurate,
the DWmethod presents two main drawbacks: if it is directly implemented on hardware, addi-
tional circuitry is required for the delayed channel, which contributes to increase the system
dead–time. Increased dead–time can be avoided if it is implemented post–acquisition in soft-
ware [9]. Even in this case, DW estimates are affected by higher levels of statistical noise than
SR estimations because the latter are based on counting singles while the former are based on
counting coincidences [7]. Because of this, the SR method is sometimes preferred. The results
reported in previous works [8–10] indicate that the SR method systematically overestimates
the correct randoms rate. In [10] we proposed an (iterative) extension of the SR method that
provides estimates compatible with the correct value. Yet, this extension is not able to provide
accurate estimates for scenarios in which the count rate is so high that the probability of finding
more than one event inside the TCW cannot be neglected. As the activity increases, so does the
rate of events detected, and the higher the rate of events, the lower the probability of finding
only one event inside the TCW opened by another event. We will refer to this effect as
pile–up [10].

The aim of this paper is to extend the conventional SR approach by exploiting the informa-
tion contained in the singles and prompts rates. The novel method, termed the “Singles–
Prompts” (SP) method, only uses measurable data and provides the correct value for the ran-
doms rate in one step (i.e. avoiding iterations) even for high count rate scenarios. A preliminary
version of SP was introduced in [11, 12].

The SP method is applicable to any kind of scanner in which the detected photon interac-
tion is assigned to a volume, regardless of the read-out. For block read–out schemes, the vol-
ume is a crystal element; it can also be a “detector voxel” [13]. In particular, the method applies
to crystals individually read out. For concreteness, we adopt the latter approach and assume
singles list–mode data. The high flexibility that this format provides has triggered a growing
interest in the last years [14–18]. We have implemented a generic small animal PET scanner
that provides a concrete scenario to study the performance of the methods. The scanner has
been designed to provide excellent geometrical coverage, following current instrumentation
trends [19–21].

To assess the performance of the methods at the data level, the true number of randoms
present in the data should be known. Since this information is not available in real data, we
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have resorted to Monte-Carlo simulations. Quantitative assessment of the performance of the
methods has been also done at image level. To this end, standard figures–of–merit (FoM) were
calculated for random-compensated images of various phantoms. The dependence of the
FoMs on the statistical quality of the data has been also investigated. Finally, images of the
MOBY phantom [22] have been reconstructed for visual comparison.

Methods

Nomenclature and definitions
Detector element (or simply detector): each of the volumes which can be assigned to a detected
interaction. For scanners based on pixelated or segmented crystals, like the one used in this
paper, each of the small crystal units constitutes a detector. However, a detector might not cor-
respond to a physical element; monolithic crystals could be virtually divided into imaginary
subcrystals, and each virtual subcrystal would thus constitute a detector.

Single: Each of the individual detection events assigned to a detector. In this paper we use a
model for the signal very similar to the one used in [23]. Each positron annihilation creates two
almost back–to–back photons of 511 keV. A possibility is that only one interaction of one of
the photons is detected; i.e. one annihilation gives rise to one single. This kind of signal is
referred to as uncorrelated. It may also happen that both photons give rise to one single each.
This case is termed correlated signal, and each of the two singles, correlated singles. The singles
detected by each member, i, of a pair of detector elements, ij, can be understood as the sum of
singles coming from an uncorrelated source and singles from a correlated source, Fig 1.

To a good degree of approximation, positron annihilations and subsequent photon emis-
sions occur according to a Poisson process. Each pair of photons can be classified into one of
the following outcomes: (1) no photon is detected; (2) only one photon is detected, and (3)
both photons are detected. The samples obtained upon classification of Poisson-distributed
samples also obey a Poisson distribution.

Therefore, the generation of individual uncorrelated singles as well as the generation of pairs
of correlated singles can be properly described by Poisson distributions with expected values λi
and ρij, respectively. (See Fig 1.)

Because of energy conservation, any annihilation photon (511 keV) can produce at most
one energy deposition higher that 255.5 keV (i.e., 511/2 keV). Therefore, two limiting scenarios
are possible depending on the value used for the low energy threshold (LET). For
ELET > 255:5 keV, only one single per photon is possible, while for ELET � 255:5 keV the
511-keV photon can give rise to more than one single through Compton scattering. When rais-
ing ELET, the transition between these scenarios is not abrupt. Due to energy resolution it is pos-
sible that for ELET > 255:5 keV some photons give rise to more than two singles. However, the
probability of this kind of events will decrease as ELET is increased. For conventional photo–
peak centered energy windows [450, 750] keV, this probability is negligible.

PET is based on the detection and identification of pairs of annihilation photons. These
pairs can be identified at the hardware level using coincidence units or, in some scanners, they
can be extracted post-acquisition using dedicated data processing algorithms. We will use the
term sorter to refer to any process designed to identify the pairs of annihilation photons present
in the data.

Prompt coincidence, or prompt: event made of two singles paired by the sorter. Prompts are
further classified into true coincidences, or trues, and random coincidences, or randoms. A ran-
dom is a prompt in which the two singles correspond to photons that were not created in the
same positron annihilation (two uncorrelated singles). We define a true coincidence as the
opposite, i.e. a prompt in which the two singles are due to photons created in the same positron
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annihilation (correlated singles). Note that this is not the usual definition of a “true coinci-
dence” since our definition also includes “scatter coincidences”. Our nomenclature is justified
because, as shown later, to estimate the randoms rate, our model does not require to know
whether the photon underwent scattering before its detection. For ELET > 255:5 keV, a true is
made of two correlated singles, while for lower LET values this is not always the case.

In the forthcoming, Si is defined as the singles rate measured by the detector i. Rij, Tij and Pij
are the random, true and prompt rates between i and j, respectively.

Coincidence sorting methods
The sorter task is to identify the pairs of annihilation photons (correlated singles) on which
PET is based. Most sorters rely on the fact that the detection of the annihilation photons should

Fig 1. (a): Test scanner. The filled circles represent positron annihilations and the lines represent the
trajectory of the resulting annihilation photons. For some annihilations, one photon of the pair is detected
while the other is lost; for some other annihilations both photons are detected. (b): schematic representation
of the detection model. The photons measured by the ith detector can be modelled as those originating from a
source of individual photons (it represents the situation where only one photon is detected), plus photons
from a source of photon pairs (both photons are detected).

doi:10.1371/journal.pone.0162096.g001
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occur almost simultaneously. For this purpose TCWs are often used. Yet, alternative
approaches not directly based on TCWs are also possible [24]. In any case, many TCW–based
sorters can be described by the “single window”model (SW) [9, 14], particularly when the sort-
ing is implemented in hardware using logic gates [3]. For the SW sorter, only one TCW is open
at a time, as opposite to the “multiple window”model (MW) that can have many windows
simultaneously open [25, 26]. Although differences between these sorters are known to exist,
the results from [27] show that for the conventional (double) coincidences, which are the only
ones of interest for the present study, the outcome of both sorters is very similar. In this work,
we have implemented a SW sorter. The results and conclusions should also be also valid for a
MW sorter. Following the conventional prescription, the TCW value, τ, used in this work is
twice the time resolution (FWHM) of the scanner. The SW sorter is straightforward to imple-
ment: when a single is processed and there is no open window, a new TCW is open. Then, the
sorter searches for a second single within the TCW. When only one single is found inside, both
singles are grouped together and constitute a prompt. If more than one single lay inside the
TCW (multiple coincidence), all singles are discarded. This process is illustrated in Fig 2.

Random estimation methods
In the Introduction we have summarized the two most extended methods. In this section, we
describe the new model as well as an ideal sorter method that is introduced for comparison
purposes.

Singles Prompt method. In a regular PET acquisition, most of the singles are uncorre-
lated, while the desired signal consists of pairs of correlated singles. Since uncorrelated singles
outnumber correlated singles, most of the randoms will be made of two uncorrelated singles.
In fact, the assumption of considering randoms made of two uncorrelated singles was shown to
be a good approximation in [10]. Within the framework of this model, the rate of randoms
made of uncorrelated singles in the LoR defined by the i and j detectors reads [10]:

Rij ¼ 2tlilje
�2Lt; ð2Þ

where Λ� ∑i λi + 1/2∑i,j ρij. However, the value of λk is not available in any acquisition.
To overcome this problem, we propose a novel estimation method, SP, also based on Eq (2).

SP provides the estimate in one step, takes into account the pile–up effects and utilizes only
directly measurable data. The SP estimate, RSP

ij , is:

RSP
ij ¼ 2te�ðlþSÞt

ð1� 2ltÞ2 ðSi � eðlþSÞt PiÞðSj � eðlþSÞt PjÞ; ð3Þ

Fig 2. SW sorter: Schematic representation. Time is represented horizontally. Uncorrelated singles are
depicted as vertical lines and pairs of correlated singles are depicted with equal symbols on their tops. The
TCW is represented as a bended arrow below the data flow. Sorted prompts are tagged as P and further
classified into randoms, R, and trues, T. The multiple coincidence is tagged as M.

doi:10.1371/journal.pone.0162096.g002
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where S = ∑i Si is the rate of singles measured by the scanner as a whole, Pi = ∑j Pij is the
prompts rate in detector i and P = ∑i Pi is twice the prompts rate detected by the scanner; λ cor-
responds to the solution of the equation:

2tl2 � lþ S� P eðlþSÞt ¼ 0: ð4Þ

The derivation of Eq (3) can be found in Appendix.
Regarding the apparent complexity of Eq (3), it is worth to stress two facts:

• SP requires the same measurements as SR, i.e., Si, since Pij is always measured.

• The mathematical complexity of SR and SP estimators is the same since Eq (3) can be
expressed as:

RSP
ij ¼ 2�t�Si

�Sj; ð5Þ

where the effective time coincidence window, �t, and the effective singles count rates �Si are
given by

�t ¼ t
e�tðlþSÞ

ð1� 2tlÞ2 ;
�Sk ¼ Sk � Pk e

tðlþSÞ: ð6Þ

Incidentally, the model introduced in [10] also provides the corresponding formulas for
DW and SR estimations and predicts RSR � RDW� RSP = R0, see [28].

Ideal method. When using Monte–Carlo simulations, it is possible to identify the true
number of randoms present in each LoR; thus, the correct randoms rate, R0

ij, can be extracted
from simulations. Although such an ideal estimation method is not possible in real acquisi-
tions, it allows us to isolate the degradation effects due to the randoms and to determine the
maximum gain achievable at the image level.

Monte–Carlo simulations
The simulation package GATE [25, 29] was used.

Test scanner. A small animal PET scanner based on the values reported in [30] was simu-
lated. It consists of 20 axial rings of 148 crystals each, Fig 1. Each of the 2 × 2 × 10mm3 LSO
crystals is read–out individually. The inner diameter is 94.2 mm and the axial length is 40 mm.
An energy resolution of 15% at 511 keV (FWHM) and a time resolution of 5 ns (FWHM) are
implemented. In the post-simulation sorting process, we have used a TCW of τ = 10 ns and
applied a 500 ns delay for the DWmethod. To avoid multiple coincidences, the energy window
used was [450, 750] keV. The output was singles list–mode data, providing for each single:
energy, time–stamp and crystal ID.

The simulated scanner provides an excellent geometrical coverage: no gaps between the
crystals and a ring diameter comparable to that of [14, 31]. Note that a good coverage tends to
increase the number of correlated singles, which implies that it is less justified to ignore the cor-
related singles when estimating the randoms rate (an approximation on which SR heavily
relies).

The main purpose of the paper is to investigate the capability of the proposed method, SP,
to estimate randoms detected in each LoR. To this purpose, we have implemented two types of
simulations regarding the inclusion of degradation phenomena: (1) positron range, acollinear-
ity, dead-time and attenuation media within the object were not simulated, and (2) these effects
were included. As we focus on the particular influence of the randoms on the image quality,
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most of the simulations were of type (1). However, to estimate the impact of the various degra-
dation effects and their intertwining, for some scenarios the aforementioned degradation
effects were simulated (type 2). As an attenuation material, a water-filled phantom was consid-
ered; to include positron range and acollinearity, fluorine–18 was used as positron emitter.
Regarding the dead–time, we have used a paralysable model characterized by a dead–time
value of 300 ns that is applied at the level of single events.

Phantoms. To investigate the dependence of the estimates on the source geometry, three
phantoms have been studied.

• Point. A dimensionless source with all the activity concentrated into a point.

• Mouse-like. To simulate a source distribution with the approximated extent of a mouse, we
have implemented a homogeneously active cylinder of diameter D = 35 mm and height
H = 70 mm.

• Rat-like. Similarly, we have implemented a homogeneously active cylinder of D = 70 mm and
H = 140 mm.

These phantoms are centered in the field of view (FoV). The point source has been used to
investigate the limiting scenario in which correlated singles constitute the dominant contribu-
tion. To investigate the opposite scenario, i.e. no correlated singles are present in the data, a
fourth phantom has been implemented:

• Disc. A homogeneously active short cylinder (D = 70 mm andH = 10 mm) was placed at 70
mm of the scanner centre and with its symmetry axis coincident with the scanner axis. Due
to its placement outside the scanner, this phantom cannot produce correlated singles. Hence,
all the methods should provide the correct estimation except for possible deviations due to
pile–up. Therefore, this phantom allows us to focus on the latter effect.

To perform a quantitative study of the quality of the reconstructed images, a fifth phantom
has been implemented:

• Image Quality (IQ) phantom. IQ is a homogeneously active cylinder (D = 48 mm and
H = 140 mm) with two inner cavities, each being a rod of diameter 16 mm and height 50
mm. One rod was filled with a high activity concentration while the other was empty. The
phantom was centred in the FoV.

To investigate the role of the source activity, a wide range spanning from 0.001 mCi to 3
mCi ([37 kBq, 111 MBq]) has been considered for the disc, point, mouse and rat phantoms.
For the IQ phantom, the total activity was 1.5 mCi (55.5 MBq). One cavity was filled with an
activity concentration four times higher than the background while the other was left empty.
Following standard optimization procedures, the total activity was set to the NECR peak. The
acquisition time was set according to the statistical requirements for each study. Without loss
of generality, the activity was constant during the acquisition time. For a qualitative assessment,
the MOBY phantom has been simulated, positioned inside the scanner with the mouse thorax
within the FoV.

Data Analysis
The performance of the three methods has been investigated at the data and the image level, as
described below.

Assessment of the estimators direct output. Each pair of detectors provides a realization
of the formula Rmth

ij , where mth stands for “method” and can take the values {DW, SR, SP, 0
(ideal)}.
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For each simulation, we have computed the total random rate, defined as

Rmth ¼
X

i

X
j>i

Rmth
ij : ð7Þ

The reason for using Rmth instead of Rmth
ij is two folded. First, Rmth is an extensive magnitude

associated with the scanner as a whole. Second, since Rmth is composed of a large sum of reali-
zations, Rmth is less affected by statistical fluctuations between simulations than each individual
Rmth
ij . Yet, some variability between simulations is unavoidable. Therefore, we have performed

as many simulations as necessary to determine E[Rmth/R0] with an statistical error (taken as
one standard deviation) below 1%.

If we perform several acquisitions under exactly the same conditions, the values of the esti-
mated randoms rate will spread around the mean, E[Rmth]. Eventually, this statistical disper-
sion becomes an additional source of noise. Therefore, any acceptable method should provide
not only an accurate estimation in average but also a low dispersion, i.e. a low variance. The
variance of the SR method is known to be smaller than that of the DWmethod [32]. It is so
small that, in general, its contribution to the noise is neglected. When calculating the NECR,
the variance associated to each method is taken into account. For this purpose, we have com-
puted the Fano factor for each method. The Fano factor is defined as the ratio between the vari-
ance and the average, F = σ2/μ [4]. Neglecting the variance of the SR method amounts to
assume FSR = 0, while for the DWmethod, the coefficient usually used in the NECR implies
FDW = 1, [7, 32–35]. This value reflects the fact that the DWmethod is based on obtaining
coincidences, which is (approximately) a Poisson process.

For concreteness, we have computed the Fano factor for the IQ phantom, and we have
investigated its dependence on the activity. Finally, the NECR curve for the IQ phantom has
been obtained. The NECR is a metric that takes into account the statistical noise introduced by
scatter and random coincidences [33]. It is considered to be a surrogate indicator of the final
image quality since it provides an estimation of the quality of the measured data. To compute
NECR we have used

NECR ¼ ðP � RmthÞ2
P � Rmth þ ð1þ FmthÞRmth

pht

; ð8Þ

where P − Rmth is the rate of true coincidences as estimated by each method, Fmth is the Fano
factor and Rmth

pht is the estimated randoms rate as obtained when only the LoRs that pass

through the phantom are considered [32, 36]. Other authors may adopt different definitions
for Rmth

pht [7, 33–35, 37]. Since we used the NECR to compare the performance of the methods,

the actual definition used is not relevant as far as the same is used for all the methods. The
peaks of the NECR curves have been also used to provide an estimation of the optimal working
activity. It must be stressed that a NECR curve is tied to a particular scanner. In addition, the
NECR peak must not be regarded as the exact value of the optimal working activity but as a
reasonable estimation [36].

When compensating for randoms, it is also relevant to know their relative contribution to
the measured coincidences. The correct randoms fraction, RF, was obtained from the ideal
sorter.

Image quality assessment. It might happen that an estimation method provides an accu-
rate value of the total number of randoms but also a very poor estimation of the number of ran-
doms present in each LoR. Such estimates would constitute an extra source of image
degradation. Therefore, it is also important to assess the performance of the methods by
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comparing the quality of the random–compensated images. To this end, we have reconstructed
images using the three estimation methods. For reference, images using the ideal method have
been also obtained. The algorithm used for the reconstruction was the gold-standard ML–EM
[38], which is based on the iterative equation:

f ðkþ1Þ
v ¼ f ðkÞvP

lAlv

X
l

yl
qðkÞl

Alv; ð9Þ

where yl is the number of prompts in LoR l, Alv is an element of the system matrix, and f ðkÞv is
the reconstructed intensity inside voxel v for the kth iteration. Finally, ql is the expected value of
the number of counts in l, which can be decomposed into the usual contribution plus the con-
tribution due to randoms. For iteration k:

qðkÞl ¼
X
w

Alwf
ðkÞ
w þ rmth

l ; ð10Þ

where rmth
l is the expected number of random counts in l estimated by the method mth. Images

of the IQ phantom were reconstructed and the following regions of interest (RoIs) were
defined: a hot RoI and a cold RoI were centred inside the cavity with the highest activity con-
centration, and the empty cavity, respectively. A warm RoI was defined in the homogeneous
region of the phantom. In the following, the hot, cold and warm RoIs will be indicated by the
subscripts h, c and w respectively. Standard FoMs were calculated:

• Contrast (C) between RoI a and its background b is defined as:

Cða=bÞ ¼
mr;a

mr;b

� 1; ð11Þ

where μr,α represents the mean value of the reconstructed intensity in RoI α. Ideally, C(h/w) =
3.

• Contrast Recovery Coefficient (CRC): It is defined as

CRCða=bÞ ¼
mr;a
mr;b

� 1
mt;a
mt;b

� 1
; ð12Þ

where μt,α represents the true mean intensity value in RoI α. Ideally, CRC(h/w) = 1.

• Spill–over ratio (SOR): It is defined for the cold RoI as

SOR ¼ mr;c

mr;w

: ð13Þ

Ideally, SOR = 0.

• Image Roughness (IR): The IR in a RoI measures the pixel–to–pixel variability and can be cal-
culated for a single realization. Image Roughness is the image noise perceived when viewing
an individual image [39]

IRa ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

V � 1

X
v2aðf

r
v;a � mr;aÞ2

r

mr;a

;
ð14Þ

where f rv;a is the reconstructed intensity in voxel v of RoI α and V is the total number of vox-

els in RoI α.
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• Regional Bias (RB) in a RoI a is defined as:

RBa ¼
mr;a

mt;a

� 1 ð15Þ

Ideally, for any RoI α, RBα = 0.

The total activity of the phantom, 1.5 mCi (55.5 MBq), has been selected following the usual
strategy of working at the NECR peak. Incidentally, NECR peaks for DW and SP are achieved
at the same activity, see Results.

All the FoMs have been calculated up to 100 iterations.
Preliminary results revealed that, for a given activity, the statistical level affected differently

the estimation methods. To study this effect, we prepared two data sets with different statistics:
a short set obtained by acquiring data during 1 s, and a long set obtained by acquiring data dur-
ing 10 s. Both at the same activity, 1.5 mCi (55.5 MBq). Since the long set corresponds to a
higher statistics scenario than the short set, the two sets will be referred in the following as the
low and high statistics sets. The names reflect only the fact that one has lower statistics than the
other. The average number of emitted events inside any voxel of the warm region is�2 � 103
(low set), and 2 � 104 (high). A third set of 100 s was also simulated but the results were similar
to those of 10 s (and thus not shown here).

As shown later, the low statistics scenarios are more challenging. Therefore, for the MOBY
phantom, the total activity and simulation time have been selected to generate a low-statistics
set of data: 1.5 mCi (55.5 MBq) and 1 s, respectively. The Correlation Coefficient (CC) between
the reconstructed image and the original activity distribution has been calculated:

CC ¼
~f r �~f t
j~f rjj~f tj

¼
P

vf
r
v f

t
vffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

vf
r
v f

r
v

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
vf

t
v f

t
v

p ; ð16Þ

where f tv and f
r
v stand for the true and reconstructed intensities in voxel v. The values of the CC

were used to obtain an objective estimation of the number of iterations at which images may be
compared.

Results

Assessment of the estimators direct output
The variation of E[Rmth/R0] with the activity is shown in Figs 3 and 4a. The dependency on the
average singles count rate per detector, ACR, is also shown in the upper x axis. Upon visual
examination, two regimes can be distinguished which we refer to as low and high activity
regimes. The limit between the two is around 1 mCi (37 MBq). Above this activity, the SR esti-
mation quickly degrades, and the SP method starts to underestimate the correct value. Note
that the DW performance does not change when passing from one regime to the other.

Let us focus on the low activity regime. It is worth to stress that for the disc phantom the
three methods provide an accurate estimation of the random rate, Fig 3a. For the other phan-
toms, the two conventional methods, SR and DW, systematically overestimate the correct
value. The deviations with respect to the correct value prove to be constant. The particular
value of the overestimation depends on the phantom and is more pronounced for the point
source. In contrast, it must be emphasized that the SP estimation is compatible with the correct
value for all phantoms except the point source. The largest disagreement for SP occurs at 1
mCi (37 MBq), but the underestimation amounts only to -4.7% (DW overestimates 19% and
SR 82%).
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For the high activity regime, SR and SP estimations significantly degrade. The overestima-
tion caused by SR increases notably for all phantoms. For SP, the degradation comes as an
underestimation that becomes more severe as the activity increases. However, SP still provides
the best estimation available in this regime, except at the highest investigated activity for the
Rat and Mouse cases. In contrast with SR and SP, the overestimation associated to DW remains
unchanged.

The values obtained for the Fano factors, Fig 4b, agree with the values found in the litera-
ture. For the SR method, the results confirm that neglecting its variance is an excellent approxi-
mation up to high activities. However, the results also reveal that the approximation ceases to
be correct for high activities. On the contrary, for the DWmethod, the conventional

Fig 3. Estimated random rates and random fractions. Error bars correspond to one standard deviation. Estimates provided by the ideal method are
represented as a horizontal dotted line; SP: solid line; SR: dashed line, and DW: dotted–solid line. The average singles count rate (ACR) per detector is
shown in the upper x axis. The RF is represented by a grey solid line.

doi:10.1371/journal.pone.0162096.g003
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approximation holds for all activities. Although for the SP method the variance increases as the
activity is increased, it is worth to emphasize that, for activities below approximately 1 mCi (37
MBq), its Fano factor is negligible and equal to that of the SR method. Therefore, except for
high activities, the SP method presents a negligible variance while providing accurate
estimates.

Regarding the NECR, Fig 4c, for activities below 0.1 mCi (3.7 MBq), the three estimation
methods provide the same NECR. In contrast, for higher activities the SP method always pro-
vides higher NECR values than SR and DW. The activity at which the NECR peak is reached is
lower for SR than for DW and SP. Incidentally, for the latter two the peak is reached at about
1.5 mCi (55.5 MBq), being the highest NECR value the one achieved by the SP method. The
anomalous increment at the last point of the NECR for the SP method is due to the fact that SP
becomes a biased estimator for activities above 2 mCi (74 MBq). For these activities, the sys-
tematic SP underestimation tends to artificially enhance the NECR. To confirm this, we have
estimated the bias from the results shown in Fig 4a and recomputed the NECR by taking into
account the bias. Then, the peak in the last point disappears and the NECR behaves as
expected, i.e. beyond the NECR peak the NECR decreases as the activity increases.

In summary, for all the FoMs analysed in this section, the SP method performs best. For a
wide range of activities and source distributions, SP provides an accurate estimation while
keeping a low variance.

Image Quality assessment
The graphs corresponding to the CRC, C vs IR and SOR are shown in Fig 5. The first and sec-
ond rows correspond to the low (1 s) and high (10 s) statistics scenarios, respectively. The
graphs show that convergence is achieved around 40 iterations. The graphs obtained for the
simulation set of 100 s (not shown) display the same trends than those obtained for the 10 s
except for the fact the the maximum image noise value, IR, is 0.25 instead of 0.75.

Let us focus on the low statistics scenario. For all the FoMs, the values obtained when using
the DWmethod are very similar than those obtained without randoms compensation. In con-
trast, the SP method performs similarly to the ideal one. Particularly, the SP method achieves
the correct value for the contrast, 3, while the SR method converges to approximately 3.6 and

Fig 4. Estimations provided by the methods, the Fano factors and NECR for the IQ phantom. The vertical line corresponds to the NECR value used.
SP: solid line; SR: dashed line, and DW: dotted–solid line. The RF is represented by a grey solid line.

doi:10.1371/journal.pone.0162096.g004
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the DW to about 2.5. The SOR converges more slowly. The SP method outperforms the DW
method, and the SOR values provided by the SR approach are closer to the ideal value of zero.

For the high statistics scenario, the main outcome is that the DWmethod provides similar
results than the SP and ideal methods. The SR method keeps overestimating the contrast,
+17%. As expected, no compensation for randoms translated into low-contrast images, −20%.
On the contrary, the DW, SP and ideal methods provide values close to the correct value, 3;
CDW

h=w ¼ 2:92 and CSP
h=w ¼ C0

h=w ¼ 2:98. The growth pattern of the image noise qualitatively

changes with respect to the low statistics scenario, and the higher statistics translates into an

Fig 5. First row: low set; second row: high set. Third row: low set including the degradation effects. Ideal value: horizontal line; ideal method: dotted line;
SP: solid line; SR: dashed line; DW: dotted–solid line, and no compensation applied (represented by the symbol�= ): dot–dot–dash.

doi:10.1371/journal.pone.0162096.g005
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image noise reduction of about 70% at convergence. For the SOR, the DW, SP and ideal meth-
ods yield similar outputs while the SR method provides the best performance.

The graphs on the bottom row of Fig 5 correspond to the CRC, C vs IR and SOR when all
the degradation effects (attenuation, scatter, acollinearity, positron range and dead–time) are
taken into account. For this case, the randoms fraction was 63% and the scatter fraction was
5%. Qualitatively, the same trends emerge as when no other degradation effects are included.

The corresponding images are very similar (Fig 6) and the trends followed by the FoMs can
be visually assessed. A new issue is also observed: the DWmethod generates images with a sig-
nificant external background so that the outer boundary of the phantom becomes blurred. In
contrast, the SP method generates a low external background, and SR causes the best visual
impression (not counting the ideal method).

Visually the images appear noisy, an aspect that is partially covered by the IR FoM. To com-
plete the quantification of image quality, we have also computed the regional bias, RB, by using
as a reference the bias–free ideal method. The results are shown in Table 1

Fig 6. Transaxial central slice of the IQ phantom at 40 iterations. First row: low set; second row: high set; third row: images with all the degradation
effects. The images in the same row share the same colour scale, which has been normalized to the pixel with the maximum intensity.

doi:10.1371/journal.pone.0162096.g006
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Regarding the CC for the MOBY phantom, Fig 7, the DWmethod performs as if no method
were used. The SP and SR methods perform very similarly and achieve a higher CC than the
DWmethod. The best value for the CC is obtained in the seventh iteration. Visual inspection
revealed that the previously observed trends were reproduced. Images are not shown since
there are no relevant information. In particular, the SR method produced a sharper external
boundary, followed by SP, and then DW. Again, the contrast was artificially enhanced by SR.

Discussion

Assessment of the estimators direct output
The SR method systematically overestimates the correct value of the randoms rate, Figs 3 and
4a. This outcome can be understood by reckoning that SR is based on the singles rates, Si,
which includes the contributions not only from the uncorrelated singles but also from the cor-
related singles. Therefore, Si � λi, which implies that RSR

ij � 2tlilj. The equality holds when no

correlated singles are present in the data, Si = λi. In fact, this situation happens for the disc
phantom; therefore, the SR estimation should be accurate (when pile–up can be neglected, see
below). Actually, this is in agreement with the results shown in Fig 3a.

Table 1. Regional bias computed for the hot and warm regions.

Warm Hot

low high low high

�= +20% +21% +6.3% +4.3%

SR -18% -18% -3.2% -5.0%

DW +9.7% -6.8% -2.0% -8.6%

SP -1.6% -0.54% +0.66% -1.1%

doi:10.1371/journal.pone.0162096.t001

Fig 7. Left: central transaxial and coronal slices of the simulated MOBY phantom. Right: graph of the CC achieved
by the methods.

doi:10.1371/journal.pone.0162096.g007
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A similar reasoning applies to the DWmethod. By obtaining coincidences between the orig-
inal (undelayed) data stream and the delayed stream, the correlations between the events are
broken. However, nothing prevents the DWmethod to include the additional contribution
from the correlated singles. This extra contribution translates into overestimations than can be
seen in Figs 3 and 4a. An accurate DW estimation would thus require to remove the correlated
singles from the streams. For the disc, the DW estimation is accurate because no correlated sin-
gles are present, while for the rest of the phantoms the DW estimation degrades due to the cor-
related singles present in the data. The higher the contribution of correlated singles, the larger
the overestimation.

The results presented in Figs 3 and 4a show that the performance of the SR method is partic-
ularly sensitive to the activity and presents an anomalous overestimation for the high activity
regime. The nature of this phenomenon can be understood by inspecting the graph corre-
sponding to the disc, Fig 3a. This phantom provides no correlated singles, i.e. Si = λi. Therefore,
all three methods should provide the correct value. Although this is the case in the low activity
regime, the SR estimator fails to provide the correct value for the high activity regime. To
understand this failure, consider that in this situation, Eq (2) can be written as R0

ij � RSR
ij e�2Lt.

The latter formula can be used to quantify the SR overestimation: E[RSR/R0]� e2Λ(A)τ, where
we have emphasized that Λ depends on the underlying activity. Hence, the disagreement at
high activities for the disc arises from the fact that SR neglects pile–up. We have computed
(not shown) that the value obtained for Λ from the simulation accounts for the deviation of SR
estimation in the high activity regimes. As a consequence, we speculate that the reason behind
the existence of two regimes is deeply related to pile–up. Actually, the two regimes would corre-
spond to two scenarios: one in which the pile–up can be ignored and another one in which it
has to be taken into account.

In contrast to SR, the SP method does take into account the pile–up. Hence, it is able to pro-
vide a correct estimation of the randoms rate in any regime. Essentially, the SP method esti-
mates the formula in Eq (2) from measured data. This estimation includes the value of the
pile–up compensating factor, e − 2Λτ. For the disc, where no correlated singles are present, SP is
able to properly estimate the factor. However, for the rest of the phantoms, the compensation
for pile–up is not accurate enough, which explains the small underestimation (-6%) for the
highest activity (3 mCi).

Remarkably, the DWmethod is insensitive to the working regime and its estimation does
not further degrade when the activity is increased. One possible reason is that, during the sort-
ing process, the pile–up equally affects the regular and the delayed streams. Yet, the DW begins
to be competitive with SP only at very high activities (≳ 3 mCi). Therefore, a situation in
which the DWmethod outperforms the SP method implies an scenario in which pile–up
effects are very important. In that scenario, the corresponding count–rates losses would be so
high that a reduction of the activity would be advisable.

Regarding the variance of the estimations, the fact that the SR and DW exhibit different val-
ues of the Fano factors, FSR = 0 and FDW = 1, is because each method is based on a completely
different approach. But, while the former is based on singles (high statistics, low variance), the
latter is based on coincidences (lower statistics, higher variance). A particularly advantageous
feature of the SP method is that, although it is based on singles as well as on coincidences, the
resulting variance is similar to that of the SR method. This outcome was somehow expected
because the SP method is actually based on counting effective singles Eq (6):
�Sk � Sk � Pk e

tðlþSÞ. For not very high activities, the exponential factor becomes the unity and
since the singles are more abundant than the prompts, then �Sk � Sk.
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To analyse the NECR results, it is relevant to mention that when the NECR is used in any
study, it is implicitly assumed that the randoms estimation method used is unbiased, i.e. the
trues can be estimated as P − Rmth. However, our results reveal that the conventional randoms
estimation methods are biased. As a consequence, P − Rmth constitutes a biased estimator. Inci-
dentally, the NECR penalizes methods that overestimate the randoms because the trues are
underestimated. On the contrary, the NECR is artificially improved for methods that underes-
timate randoms, as the trues are thus overestimated. Hence, in our work the use of the NECR
for comparison purposes is justified except for the SP method at very high activities,≳ 2 mCi,
where the related underestimation becomes non–negligible.

In terms of the NECR, the SP method is always better than the conventional methods,
Fig 4c. To understand this, consider that, although the SR method presents a very low variance
(comparable to that of the SP method), Fig 4b, the NECR values are worse for the former
because of the strong overestimation, Fig 4a. The NECR values for the DWmethod are also
worse than those of the SP method because the DWmethod not only overestimates the correct
value, Fig 4a, but also its variance is higher than that of the SP method, Fig 4b.

Image quality enhancement
The size and placement of the voxels within each RoI were defined to avoid border and spatial–
resolution related effects, so that the voxels were completely contained within homogeneous
regions.

In general, the FoMs reveal that improved estimates translate into improved image quality.
In the end, the systematic overestimations of the SR method produce images of lower quality.
This method artificially enhances the contrast. The SP method provides accurate FoMs, whose
values are very similar to those obtained by using the ideal method. The overestimations of the
DWmethod do not affect significantly the images. In general, the image quality is similar to
that obtained with the SP and ideal methods. However, for low statistics, DW images do not
follow the same trend as the SR images. Interestingly, the DW overestimation translates into a
reduced contrast. Moreover, unlike the SR method, the DWmethod appears to be very sensi-
tive to the statistical quality of the data. While for the low statistics scenario using the DW esti-
mate into the image reconstruction is equivalent to not compensating for randoms, for the
high statistics scenario, using the DW estimate produces results very similar to using the SP or
the ideal estimates. To clarify this aspect, we have calculated the histograms of the estimated
number of randoms in each LoR, rmth

l , Fig 8. SP produces values of rl which are distributed
around 0.12. The SP method is able to provide real values for rl. Consequently, it can offer
accurate estimations for non–integer values. However, by definition, the DWmethod can only
provide integer values. For the present situation, the best integer value that can be obtained is
0, which is actually what DWmainly provides. This explains why the DWmethod equals not
using any compensation method. These results suggest that, for low statistics, the inability of
the DWmethod to adapt to non-integer small values of rl results in a degradation of image
quality comparable to that obtained when no randoms compensation is applied. For these sce-
narios, the DWmethod would require to additionally apply variance reduction techniques [40,
41]. Scenarios with noisy images due to low statistics are not uncommon, e.g. dynamic studies
with narrow time frames (i.e., small number of events per frame) [42].

Regarding the external background outside the phantom, accurate estimates for this region
are not so relevant as for the inner part of the phantom. In this sense, although the SR method
produces a lower background, SP-based images are better from a quantitative point of view
(and show acceptable external background levels). In terms of regional bias, the results shown
in Table 1 further confirm that for all the studied scenarios the SP is the best method followed
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by the DW, SR and�= . Consistently, the CC as well as the images obtained for the MOBY agree
with the previous results.

Conclusions
SP, a novel method for randoms rate estimation, has been thoroughly assessed. Based on the
well–known SR method, the SP estimator improves SR in two aspects. First, SP takes into
account that the randoms are predominantly made up of uncorrelated singles. While the SR
estimator uses all the singles measured by each detector, SP estimates the number of uncorre-
lated singles present in the data and uses them to accurately estimate the randoms rate. Second,
the SP method includes the pile–up effects, i.e. it takes into account the probability of finding
more than one single inside the TCW (the SR method ignores this).

The SP estimation formula can be written in the same mathematical form as the SR one,
RSP
ij ¼ 2�t�Si

�Sj, where �t and �Si are the effective TCW and singles rate, respectively. Moreover, SP

does not require any additional measurement.
Monte–Carlo simulations allowed us to compare the randoms rate estimates provided by

different methods to the actual randoms rate present in the data. We have compared the pro-
posed SP method to the two most commonly used techniques: the SR and the DWmethods.
The performance of these three techniques has been assessed at two levels: (1) comparison of
the randoms rate predicted by each method, and (2) comparison of the reconstructed images
compensated for randoms. At the direct output level, the results show that, in general, SP out-
performs other methods. While the SR and DW systematically overestimate the true randoms
rate, the SP method is able to accurately provide the correct value. At the level of reconstructed
images, the accuracy of the SP method translates into improved image quality. The FoMs reveal
the better performance of the SP method. The FoM values related to the SP method are similar
to those that would have been obtained by using ideal randoms estimates. Particularly, for low
statistics scenarios, the SP method is the only method able to produce the proper contrast. For
high statistics scenarios, the SP and DWmethods yield similar FoM values. Visual inspection
of the IQ and MOBY images (not shown) reveal an external background that makes difficult to
delineate the phantom boundary. Although the SR method generates a lower background than

Fig 8. Histograms of the estimated values of rmth
l .

doi:10.1371/journal.pone.0162096.g008
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SP (and SP less than the DW), the contrast of the SP-based is correct while the SR method
results in overestimated contrast. Up to this point, the results reported have been based on sim-
ulations that ignored several degradation effects in order to focus on randoms. Nevertheless,
simulations including these effects were also performed for the IQ phantom. The results show
that the aforementioned trends are qualitatively preserved.

In summary, the SP method is a better estimator than the conventional SR method, which
translates into better image quality. The SP estimation is of the same level of complexity than
the SR one and does not require any extra measurement. For any system incorporating the SR
method as a random compensation technique, the replacement of SR by SP would be simple.
In general, the DW and the SP methods offer similar results except for low statistics scenarios
where the DW needs to be complemented with variance reduction techniques. For these sce-
narios, the SP method straightforwardly provides reliable and accurate estimations.

Appendix

Derivation of the SP estimation formula
Here we offer a simplified derivation of Eq (3). The prompts rate in the LoR defined by the
detectors i and j can be estimated as the rate of correlated singles plus the rate of uncorrelated
singles. By using Eq (2), it follows:

Pij ¼ ðrij þ 2tliljÞe�2Lt: ð17Þ

The demonstration that the pile–up factor, e−2Λτ, also affects the correlated singles rate, ρij, can
be straightforwardly derived by following similar steps to those described in [10]. The singles
rate in the detector i can also be estimated as the sum of the two contributions:

Si ¼ ri þ li; ð18Þ

where ρi = ∑j ρij. Note that neither τ nor e
−2Λτ appear in Eq (18). (To count singles there is no

need to extract any coincidence.) Upon summing over all indices in the previous equations we
obtain:

P ¼ ðrþ 2tl2Þ e�2Lt ð19Þ

S ¼ rþ l ð20Þ

L ¼ lþ r=2 ð21Þ
where we have added the third equation for completeness. By combining these expressions, λ
can be found as the solution to

2tl2 � lþ S� P eðlþSÞt ¼ 0; ð22Þ

and Λ = (S+λ)/2. The estimation of the prompts rate in detector i can be found upon applica-
tion of the previous results to Eq (17):

Pi ¼ ðri þ 2tlliÞ e�ðSþlÞt: ð23Þ

Eqs (23) and (18) provide an estimation for λi

li ¼
Si � Pi e

ðSþlÞt

1� 2lt
: ð24Þ
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Finally, the original equation Eq (2) can be expressed as

RSP
ij ¼ 2te�ðlþSÞt

ð1� 2ltÞ2 ðSi � eðlþSÞt PiÞðSj � eðlþSÞt PjÞ: ð25Þ

See also [28] for further results of the model.

Supporting Information
S1 Data. Data used the graphs (xmgrace).
(ZIP)

Author Contributions

Conceptualization: JFO MR.

Data curation: JFO MR.

Formal analysis: JFO MR.

Funding acquisition: JFO MR.

Investigation: JFO MR.

Methodology: JFO MR.

Project administration: JFO MR.

Resources: JFO MR.

Software: JFO MR.

Supervision: JFO MR.

Validation: JFO MR.

Visualization: JFO MR.

Writing – original draft: JFO MR.

Writing – review & editing: JFO MR.

References
1. Hoffman EJ, Huang S, Phelps ME, Kuhl DE. Quantitation in positron-emission computed tomography:

4. Effect of accidental coincidences. J Comput Assist Tomography. 1981; 5. doi: 10.1097/00004728-
198106000-00015

2. Politte DG, Snyder DL. Corrections for Accidental Coincidences and Attenuation in Maximum-Likeli-
hood Image Reconstruction for Positron-Emission Tomography. IEEE Trans Med Imag. 1991; 10:82–
90. doi: 10.1109/42.75614

3. Evans RD. The Atomic Nucleus. New York: McGraw Hill Book Co; 1955.

4. Knoll GF. Radiation detection and Measurement. New York: Wiley; 1955.

5. Rokitta O, Casey M, Wienhard K, Pictrzyk U. Random correction for positron emission tomography
using singles count rates. In: Nucl Sci Symp Conf Rec. vol. 3; 2000. p. 17/37–17/40 vol.3.

6. Stearns CW, McDaniel DL, Kohlmyer SG, Arul PR, Geiser BP, Shanmugam V. Random coincidence
estimation from single event rates on the Discovery ST PET/CT scanner. In: Nucl Sci Symp Conf Rec.
vol. 5; 2003. p. 3067–3069.

7. Brasse D, Kinahan PE, Lartizien C, Comtat C, Casey M, Michel C. Correction Methods for Random
Coincidences in Fully 3DWhole-Body PET: Impact on Data and Image Quality. J Nucl Med. 2005; 46
(5):859–867. PMID: 15872361

Image Reconstruction and Data Corrections

PLOS ONE | DOI:10.1371/journal.pone.0162096 September 7, 2016 20 / 22

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0162096.s001
http://dx.doi.org/10.1097/00004728-198106000-00015
http://dx.doi.org/10.1097/00004728-198106000-00015
http://dx.doi.org/10.1109/42.75614
http://www.ncbi.nlm.nih.gov/pubmed/15872361


8. Rafecas M, Torres I, Spanoudaki V, McElroy DP, Ziegler SI. Estimating accidental coincidences for pix-
elated PET detectors and singles list-mode acquisition. Nucl Inst Meth A. 2007; 571(1–2):285–288. doi:
10.1016/j.nima.2006.10.084

9. Torres-Espallardo I, Rafecas M, Spanoudaki V, McElroy DP, Ziegler SI. Effect of inter-crystal scatter on
estimation methods for random coincidences and subsequent correction. Phys Med Bio. 2008; 53
(9):2391. doi: 10.1088/0031-9155/53/9/012

10. Oliver JF, Rafecas M. Improving the singles rate method for modeling accidental coincidences in high-
resolution PET. Phys Med Bio. 2010; 55(22):6951. doi: 10.1088/0031-9155/55/22/022

11. Oliver JF, Rafecas M. Singles-Prompt: a novel method to estimate random coincidences by using
prompts and singles information. In: Proc. SPIE. vol. 7961; 2011. p. 796149–796155.

12. Oliver JF, Rafecas M. Singles-Prompts-Randoms: Estimation of Spurious Data Rates in PET. In: IEEE
Nucl Sci Symp Med Imag Conf Rec; 2012. p. 2995–2997.

13. Pratx G, Levin CS. Bayesian reconstruction of photon interaction sequences for high-resolution PET
detectors. Phys Med Bio. 2009; 54(17):5073. doi: 10.1088/0031-9155/54/17/001

14. McElroy DP, Hoose M, Pimpl W, Spanoudaki V, Schüler T, Ziegler SI. A true singles list-mode data
acquisition system for a small animal PET scanner with independent crystal readout. Phys Med Bio.
2005; 50(14):3323. doi: 10.1088/0031-9155/50/14/009

15. Tetrault MA, Oliver JF, Bergeron M, Lecomte R, Fontaine R. Real Time Coincidence Detection Engine
for High Count Rate Timestamp Based PET. IEEE Trans Nucl Sci. 2010; 57(1):117–124. doi: 10.1109/
TNS.2009.2038055

16. Njejimana L, Tetrault MA, Arpin L, Burghgraeve A, Maille P, Lavoie JC, et al. Design of a Real-Time
FPGA-Based Data Acquisition Architecture for the LabPET II: An APD-Based Scanner Dedicated to
Small Animal PET Imaging. IEEE Trans Nucl Sci. 2013 Oct; 60(5):3633–3638. doi: 10.1109/TNS.2013.
2250307

17. Rey M, Vieira JM, Mosset JB, Moulin Sallanon M, Millet P, Loude JF, et al. Measured and simulated
specifications of Lausanne ClearPET scanner demonstrator. In: Nucl Sci Symp Conf Rec. vol. 4; 2005.
p. 2070–2073.

18. Goldschmidt B, Lerche CW, Solf T, Salomon A, Kiessling F, Schulz V. Towards Software-Based Real-
Time Singles and Coincidence Processing of Digital PET Detector Raw Data. IEEE Trans Nucl Sci.
2013; 60(3):1550–1559. doi: 10.1109/TNS.2013.2252193

19. Beltrame P, Bolle E, Braem A, Casella C, Chesi E, Clinthorne N, et al. The AX-PET demonstrator—
Design, construction and characterization. Nucl Inst Meth A. 2011; 654(1):546–559. doi: 10.1016/j.
nima.2011.06.059

20. Poon JK, DahlbomML, MosesWW, Balakrishnan K, WangW, Cherry SR, et al. Optimal whole-body
PET scanner configurations for different volumes of LSO scintillator: a simulation study. Phys Med Bio.
2012; 57(13):4077. doi: 10.1088/0031-9155/57/13/4077

21. Moskal P, Niedźwiecki S, Bednarski T, Czerwiński E, Kapłon Ł, Kubicz E, et al. Test of a single module
of the J-PET scanner based on plastic scintillators. Nucl Inst Meth A. 2014; 764:317–321. doi: 10.1016/
j.nima.2014.07.052

22. Segars WP, Tsui BMW, Frey EC, Johnson GA, Berr SS. Development of a 4-D digital mouse phantom
for molecular imaging research. Mol Imag Bio. 2004; 6(3):149–159. doi: 10.1016/j.mibio.2004.03.002

23. Yu DF, Fessler A. Mean and variance of coincidence counting with deadtime. Nucl Inst Meth A. 2002;
488:362–374. doi: 10.1016/S0168-9002(02)00460-6

24. Oliver JF, Fuster-Garcia E, Cabello J, Tortajada S, Rafecas M. Application of Artificial Neural Network
for Reducing Random Coincidences in PET. IEEE Trans Nucl Sci. 2013; 60(5):3399–3409. doi: 10.
1109/TNS.2013.2274702

25. OpenGATE C. GATE User’s guide. Version 3.0.0; 2006.

26. Tetrault MA, Lepage MD, Viscogliosi N, Belanger F, Cadorette J, Pepin CM, et al. Real time coinci-
dence detection system for digital high resolution APD-based animal PET scanner. In: Nucl Sci Symp
Conf Rec. vol. 5; 2005. p. 2849–2853.

27. Oliver JF, Torres-Espallardo I, Fontaine R, Ziegler SI, Rafecas M. Comparison of coincidence identifi-
cation techniques for high resolution PET. In: Nucl Sci Symp Conf Rec; 2008. p. 4732–4735.

28. Oliver JF, Rafecas M. Estimation of Accidental Coincidences in PET. Acta Phys Pol. 2015; 127:5.

29. Agostinelli S, et al. Geant4—a simulation toolkit. Nucl Inst Meth A. 2003; 506(3):250–303. doi: 10.1016/
S0168-9002(03)01368-8

30. Goertzen AL, Bao Q, Bergeron M, Blankemeyer E, Blinder S, Ca nadas M, et al. NEMA NU 4–2008
Comparison of Preclinical PET Imaging Systems. J Nucl Med. 2012;. doi: 10.2967/jnumed.111.099382
PMID: 22699999

Image Reconstruction and Data Corrections

PLOS ONE | DOI:10.1371/journal.pone.0162096 September 7, 2016 21 / 22

http://dx.doi.org/10.1016/j.nima.2006.10.084
http://dx.doi.org/10.1088/0031-9155/53/9/012
http://dx.doi.org/10.1088/0031-9155/55/22/022
http://dx.doi.org/10.1088/0031-9155/54/17/001
http://dx.doi.org/10.1088/0031-9155/50/14/009
http://dx.doi.org/10.1109/TNS.2009.2038055
http://dx.doi.org/10.1109/TNS.2009.2038055
http://dx.doi.org/10.1109/TNS.2013.2250307
http://dx.doi.org/10.1109/TNS.2013.2250307
http://dx.doi.org/10.1109/TNS.2013.2252193
http://dx.doi.org/10.1016/j.nima.2011.06.059
http://dx.doi.org/10.1016/j.nima.2011.06.059
http://dx.doi.org/10.1088/0031-9155/57/13/4077
http://dx.doi.org/10.1016/j.nima.2014.07.052
http://dx.doi.org/10.1016/j.nima.2014.07.052
http://dx.doi.org/10.1016/j.mibio.2004.03.002
http://dx.doi.org/10.1016/S0168-9002(02)00460-6
http://dx.doi.org/10.1109/TNS.2013.2274702
http://dx.doi.org/10.1109/TNS.2013.2274702
http://dx.doi.org/10.1016/S0168-9002(03)01368-8
http://dx.doi.org/10.1016/S0168-9002(03)01368-8
http://dx.doi.org/10.2967/jnumed.111.099382
http://www.ncbi.nlm.nih.gov/pubmed/22699999


31. Wang Y, Seidel J, Tsui BMW, Vaquero JJ, Pomper MG. Performance evaluation of the GE Healthcare
eXplore VISTA dual-ring small-animal PET scanner. J Nucl Med. 2006; 47:1891–1900. PMID:
17079824

32. Strother SC, Casey ME, Hoffman EJ. Measuring PET scanner sensitivity: relating countrates to image
signal–to–noise ratios using noise equivalent counts. IEEE Trans Nucl Sci. 1990; 37:783–788. doi: 10.
1109/23.106715

33. Badawi RD, Marsden PK, Cronin BF, Sutcliffe JL, Maisey MN. Optimization of noise-equivalent count
rates in 3D PET. Phys Med Bio. 1996; 41(9):1755. doi: 10.1088/0031-9155/41/9/014

34. Watson CC, Casey ME, Bendriem B, Carney JP, Townsend DW, Eberl S, et al. Optimizing Injected
Dose in Clinical PET by Accurately Modeling the Counting-Rate Response Functions Specific to Indi-
vidual Patient Scans. J Nucl Med. 2005; 46(11):1825–1834. PMID: 16269596

35. Walker MD, Matthews JC, Asselin MC, Saleem A, Dickinson C, Charnley N, et al. Optimization of the
Injected Activity in Dynamic 3D PET: A Generalized Approach Using Patient-Specific NECs as Demon-
strated by a Series of 15O-H2O Scans. J Nucl Med. 2009; 50(9):1409–1417. doi: 10.2967/jnumed.109.
062679 PMID: 19690021

36. Chang T, Chang G, JohnWClark J, Diab RH, Rohren E, Mawlawi OR. Reliability of predicting image
signal-to-noise ratio using noise equivalent count rate in PET imaging. Med Phys. 2012; 39(10):5891–
5900. doi: 10.1118/1.4750053 PMID: 23039628

37. Yang Y, Cherry SR. Observations regarding scatter fraction and NECmeasurements for small animal
PET. IEEE Trans Nucl Sci. 2006 feb; 53(1):127–132. doi: 10.1109/TNS.2006.870177

38. Vardi Y, Shepp L, Kaufman L. A Statistical Model for Positron Emission Tomography. J Amer Stat Ass.
1985; 80(389):8–20. doi: 10.1080/01621459.1985.10477119

39. Tong S, Alessio AM, Kinahan PE. Noise and signal properties in PSF-based fully 3D PET image recon-
struction: an experimental evaluation. Phys Med Bio. 2010; 55(5):1453. doi: 10.1088/0031-9155/55/5/
013

40. Badawi RD, Miller MP, Bailey DL, Marsden PK. Randoms variance reduction in 3D PET. Phys Med Bio.
1999; 44(4):941. doi: 10.1088/0031-9155/44/4/010

41. Defrise M, Townsend DW, Bailey D, Geissbuhler AMC, Jones T. A normalization technique for 3D PET
data. Phys Med Bio. 1991; 36(7):939. doi: 10.1088/0031-9155/36/7/003

42. Rahmim A, Tang J, Zaidi H. Four-dimensional (4D) image reconstruction strategies in dynamic PET:
Beyond conventional independent frame reconstruction. Med Phys. 2009; 36(8):3654–3670. doi: 10.
1118/1.3160108 PMID: 19746799

Image Reconstruction and Data Corrections

PLOS ONE | DOI:10.1371/journal.pone.0162096 September 7, 2016 22 / 22

http://www.ncbi.nlm.nih.gov/pubmed/17079824
http://dx.doi.org/10.1109/23.106715
http://dx.doi.org/10.1109/23.106715
http://dx.doi.org/10.1088/0031-9155/41/9/014
http://www.ncbi.nlm.nih.gov/pubmed/16269596
http://dx.doi.org/10.2967/jnumed.109.062679
http://dx.doi.org/10.2967/jnumed.109.062679
http://www.ncbi.nlm.nih.gov/pubmed/19690021
http://dx.doi.org/10.1118/1.4750053
http://www.ncbi.nlm.nih.gov/pubmed/23039628
http://dx.doi.org/10.1109/TNS.2006.870177
http://dx.doi.org/10.1080/01621459.1985.10477119
http://dx.doi.org/10.1088/0031-9155/55/5/013
http://dx.doi.org/10.1088/0031-9155/55/5/013
http://dx.doi.org/10.1088/0031-9155/44/4/010
http://dx.doi.org/10.1088/0031-9155/36/7/003
http://dx.doi.org/10.1118/1.3160108
http://dx.doi.org/10.1118/1.3160108
http://www.ncbi.nlm.nih.gov/pubmed/19746799

