Crystal structures of tris[1-oxopyridine-2olato(1-)]silicon(IV) chloride chloroform- d_1 disolvate, tris[1-oxopvridine-2-olato(1-)]silicon(IV) chloride acetonitrile unguantified solvate, and fac-tris[1-oxopyridine-2-thiolato(1-)]silicon(IV) chloride chloroform-d₁ disolvate

Bradley M. Kraft,^a* William W. Brennessel,^b Amy E. Ryan^a and Candace K. **Benjamin**^a

^aDepartment of Chemistry, St. John Fisher College, Rochester, NY 14618, USA, and ^bDepartment of Chemistry, University of Rochester, Rochester, NY 14627, USA. *Correspondence e-mail: bkraft@sjfc.edu

The cations in the title salts, [Si(OPO)₃]Cl·2CDCl₃, (I), [Si(OPO)₃]Cl·xCH₃CN, (II), and fac-[Si(OPTO)₃]Cl·2CDCl₃, (III) (OPO = 1-oxo-2-pyridinone, $C_5H_4NO_2$, and OPTO = 1-oxo-2-pyridinethione, C_5H_4NOS), have distorted octahedral coordination spheres. The first two structures contain the same cation and anion, but different solvents of crystallization led to different solvates and packing arrangements. In structures (I) and (III), the silicon complex cations and chloride anions are well separated, while in (II), there are two $C-H\cdots CI$ distances that fall just within the sum of the van der Waals radii of the C and Cl atoms. The pyridine portions of the OPO ligands in (I) and (II) are modeled as disordered with the planar flips of themselves [(I): 0.574 (15):0.426 (15). 0.696 (15):0.304 (15), and 0.621 (15):0.379 (15); (II): 0.555 (13):0.445 (13), 0.604 (14):0.396 (14) and 0.611 (13):0.389 (13)], demonstrating that both fac and mer isomers are co-crystallized. In (II), highly disordered solvent, located in two independent channels along [100], was unable to be modeled. Reflection contributions from this solvent were fixed and added to the calculated structure factors using the SQUEEZE [Spek (2015). Acta Cryst. C71, 9-18] function of program *PLATON*, which determined there to be 54 electrons in 225 $Å^3$ accounted for per unit cell (25 electrons in 109 $Å^3$ in one channel, and 29 electrons in 115 $Å^3$ in the other). In (I) and (II), all species lie on general positions. In (III), all species are located along crystallographic threefold axes.

1. Chemical context

Dissolution of silica by 1-hydroxy-2-pyridinone (HOPO) at pH = 6 in aqueous solution has been shown to afford the cationic complex $[Si(OPO)_3]^+$, OPO = 1-oxo-2-pyridinone, which has been isolated as its chloride, tetrachloridoferrate(III), and hexachloridostannate(IV) salts (Weiss & Harvey, 1964). Three other analogs, having trifluoromethanesulfonate, ethyl sulfate, and the isopropyl sulfate anion, were later synthesized by reaction of $Si(OCH_3)_4$ with HOPO with an appropriate acid and solvent and characterized by NMR spectroscopy (Tacke, Willeke & Penka, 2001). Our encounter with this stable cation occurred through an Si-C bond cleavage reaction involving (CH₂)₃Si(OPO)₂ to yield (I) and through siloxane bond cleavage in Me₃SiOSi(OPO)₂Cl to form (II). We have additionally encountered the formation of the novel related sulfur analog, $[Si(OPTO)_3]^+$, OPTO = 1-oxo-2-pyridinethione, also by an Si-C bond cleavage reaction

OPEN access

Received 16 November 2015 Accepted 19 November 2015

CrossMark

Edited by P. C. Healy, Griffith University, Australia

Keywords: crystal structure; silicon; pyridinone; pyridine N-oxide; pyrithione

CCDC references: 1438045; 1438046; 1438047

Supporting information: this article has supporting information at journals.iucr.org/e involving $(\eta^1$ -allyl)₂Si(OPTO)Cl to afford (III). The driving force for the formation of the complexes is likely due to a combination of stabilizing lattice energy due to salt formation, ligand-binding strength enhanced by the chelate effect, and the added stabilization due to π -electron delocalization that occurs within the OPO and OPTO ligands upon chelation.

2. Structural commentary

The silicon atom in the structures of (I) and (II) is hexacoordinate, chelated by three bidentate OPO ligands (Figs. 1 and 2). The isosteric ligands are disordered over the two possible coplanar orientations, such that each nitrogen atom and its neighboring carbon atom are modeled as disordered with each other, which indicates both *fac* and *mer* isomers in each. The Si-O bond lengths in (I) and (II) span a narrow

Table T						
Selected	bond	lengths	(Å)	for	(I).	

. .

Si1-O3	1.7695 (10)	Si1-O1	1.7767 (10)
Si1-O2	1.7727 (10)	Si1-O4	1.7773 (10)
Si1-O6	1.7736 (10)	Si1-O5	1.7774 (10)

Table 2					
Selected	bond	lengths	(Å)	for	(II).

Si1-O1	1.7727 (10)	Si1-O5	1.7803 (10)
Si1-O6	1.7729 (9)	Si1-O4	1.7808 (10)
Si1-O3	1.7782 (9)	Si1-O2	1.7830 (10)

range from 1.7695 (10)–1.7774 (10) Å and 1.7727 (10)– 1.7830 (10) Å, respectively (Tables 1 and 2). The O–Si–O ligand bite angles in (I) and (II) range from 86.99 (5)– 87.24 (4)° and 87.28 (4)–87.38 (4)°, respectively. The *trans*-O–Si–O angles in (I) and (II) have a maximum deviation

Figure 1

The structures of the molecular components in (I), with displacement ellipsoids drawn at the 50% probability level. The minor components of the ligand disorders are not shown.

The molecular structure of the cation and the Cl⁻ anion in (II), with displacement ellipsoids drawn at the 50% probability level. The minor components of the ligand disorders and the unmodeled solvent (see text) are not shown.

Selected geometric parameters (Å, °) for (III).	
beitetted geometrie parameters (i.i,) for (iii).	

Si1-O1	1.7784 (14)	Si1-S1	2.2654 (7)
O1-Si1-S1	88.33 (4)	O1-Si1-S1 ⁱ	174.00 (5)

Symmetry code: (i) y, z, x.

from ideal (*i.e.*, 180°) of 7.06 (5) and 5.98 (5)°, respectively. The planes formed by the O₂Si chelate rings and the corresponding planar OPO ligand deviate from coplanarity by 9.98 (4), 4.96 (2), and 1.29 (2)° in (I) and by 4.91 (4), 2.15 (2), and 0.61 (4)° in (II).

The cationic complex (III) is octahedral (Fig. 3) with the central Si atom being chelated by three OPTO ligands in a facial arrangement. The trans-O-Si-S angles deviate by 6.00 (5)° from ideal (only one unique value due to threefold symmetry, Table 3). The O-Si-S bite angles are 88.33 (4)°, $\sim 1^{\circ}$ larger than those of the OPO structures. The Si-O distance is 1.7784 (14) Å, and compares similarly with those of (I) and (II) and is typical of Si-O single-bond lengths. The N-O bond is shorter than in the protonated HOPTO ligand [1.359 (2) versus 1.373 (2) Å; CSD refcode GIJCAD01, Bond & Jones, 1999, Cambridge Structural Database (CSD), Version 5.36, update No. 3, May 2015; Groom & Allen, 2014). Evidence of a π -electron delocalized structure is given by (1): the Si-S distance of 2.2654 (7) Å, which is similar to Si-S single-bond lengths in hexacoordinate neutral thiophenolate complexes (range = 2.231-2.314 Å, CSD refcodes BOHQIZ, BOXQOV, BOXQUB, BOXRAI, WALTOU, WALTUA) and

Figure 3

The structures of the molecular components and the Cl⁻ anion (III) with displacement ellipsoids drawn at the 50% probability level. All species lie along crystallographic threefold axes, and full molecules are generated with the following symmetry codes. Si(OPTO)₃⁺: (*y*, *z*, *x*) and (*z*, *x*, *y*); CDCl₃ (containing atom C6): (*y*, *z*, *x*) and (*z*, *x*, *y*); CDCl₃ (containing atom C7): $(-\frac{1}{2} + z, \frac{1}{2} - x, 1 - y)$ and $(\frac{1}{2} - y, 1 - z, \frac{1}{2} + x)$.

(2): the C–S bond length of 1.7184 (19) Å, which compares intermediately between the C=S double bond of HOPTO [1.693 (2) Å] and the mean C–S single bonds of 155 phenylthiols (C–S_{avg} 1.764 Å). However, all four C–C bond lengths in the pyridine ring are unchanged or slightly longer than those in HOPTO, which is inconsistent with the canonical pattern of bond shortening and lengthening that might be expected with π -electron delocalization. The OSSi chelate rings and the corresponding planar OPTO ligands are folded with a dihedral angle of 12.08 (3)°.

3. Supramolecular features

In (II) there are two C-H···Cl distances that fall just within the sum of the van der Waals radii of the C and Cl atoms, 3.45 Å (Bondi, 1964). Atom C2 is 3.4206 (14) Å from atom Cl1 (symmetry operator: -x, -y + 1, -z + 2) and atom C10 is 3.4018 (18) Å from atom Cl1 (symmetry operator: x, y - 1, z).

4. Database survey

A CSD search (Groom & Allen, 2014) revealed one hit of the homoleptic cation in the form of [Si(OPO)₃][CF₃SO₃]. 0.5HOPO (CSD refcode QOXSIF; Tacke, Willeke & Penka, 2001). The Si-O bond lengths and bite angles in (I) and (II) are similar to those of QOXSIF. The dihedral angles formed between the O₂Si chelate and OPO ligands are also similar to those of QOXSIF (9.39, 3.08, and 2.41°). Structures of monodentate organosilicon OPO complexes include $Ph_3Si(OPO) \cdot Ph_3Si(OH) \cdot 0.5n$ -pentane, Me₃Si(OPO), and $tBu_2Si(\kappa^1-OPO)(\kappa^2-OPO)$ (respective CSD refcodes NITRIT, NITROZ, and NITSOA; Kraft & Brennessel, 2014), and of organosilicon OPO bidentate complexes include Ph₂Si(OPO)₂, Me₂Si(OPO)Cl, Ph₃Si(OPO), Me₂Si(OPO)₂, $Et_2Si(OPO)_2$, $iPr_2Si(OPO)_2$, $tBu_2Si(\kappa^1-OPO)(\kappa^2-OPO)$, and (CH₂)₃Si(OPO)₂ (respective CSD refcodes NISMIN, NISMOT, NITRUF, NITSAM, NITSEQ, NITSOA, NITSIU, and NITSUG; Kraft & Brennessel, 2014), and $[Si(OPO)_2(\mu -$ CH₂CH₂SCH₂C(=O)O)]₂·2CH₃CN and [O(CH₂)₃]Si(OPO)₂ (respective CSD refcodes UBUWET and UBUWIX; Tacke, Burschka et al., 2001). (I) and (II) have 0.06–0.17 Å shorter Si-O bond lengths and $3-5^{\circ}$ larger ligand bite angles than those in chelated R_2 Si(OPO)₂ (R = alkyl, phenyl) complexes, indicating a stronger chelate presumably due, in part, to their cationic character. As a result of C/N site disorders, the N-O, C-O, and C-N bond lengths are unreliable in providing evidence of π -electron delocalization. Only small changes $(\pm \sim 0.02-0.06 \text{ Å})$ or no change (in C3–C4) in the distances of alternating long and short C-C bonds in the pyridine ring are observed compared with the more localized π -bonding structure of the free HOPO ligand (CSD refcode JEMJUG; Ballesteros et al., 1990). The Si–O bond lengths in (I) and (II) are similar to those of other cationic SiO₆ cores (CSD refcodes CUZKOX: Ueyama et al., 1985; EJOBUB: Sarkar et al., 2011, JAZPIK: Pal et al., 2005; PUMBUU: Kira et al., 1998; VILLUX: Thewalt & Link, 1991). There are two other nonsilicon homoleptic $M(OPO)_3$ (M = Fe, Co) structures known

research communications

Table 4Experimental details.

	(I)	(II)	(III)
Crystal data			
Chemical formula	$C_{15}H_{12}N_2O_6Si^+ \cdot Cl^- \cdot 2CDCl_2$	$C_{15}H_{12}N_2O_6Si^+\cdot Cl^-$	$C_{15}H_{12}N_2O_3S_2Si^+ \cdot Cl^- \cdot 2CDCl_2$
M.	634.56	393.82	682.74
Crystal system, space group	Monoclinic, $P2_1/n$	Triclinic. P1	Cubic, P213
Temperature (K)	100	100	100
a, b, c (Å)	13.5133 (7), 13.5039 (7), 13.7752 (7)	6.8347 (7), 11.1232 (12), 13.1513 (14)	13.9483 (12), 13.9483 (12), 13.9483 (12)
α, β, γ (°)	90, 101.866 (1), 90	90.479 (2), 93.269 (2), 102.356 (2)	90, 90, 90
$V(\dot{A}^3)$	2460.0 (2)	974.85 (18)	2713.7 (7)
Z	4	2	4
Radiation type	Μο Κα	Μο Κα	Μο Κα
$\mu \text{ (mm}^{-1})$	0.90	0.29	1.03
Crystal size (mm)	$0.20 \times 0.18 \times 0.16$	$0.30 \times 0.30 \times 0.24$	$0.18 \times 0.18 \times 0.18$
Data collection			
Diffractometer	Bruker SMART APEXII CCD Platform	Bruker SMART APEXII CCD Platform	Bruker SMART APEXII CCD Platform
Absorption correction	Multi-scan (SADABS; Sheldrick, 2014)	Multi-scan (SADABS; Sheldrick, 2014)	Multi-scan (SADABS; Sheldrick, 2014)
T_{\min}, T_{\max}	0.667, 0.748	0.645, 0.748	0.681, 0.748
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	61259, 13615, 9035	27002, 10311, 6677	66318, 5067, 4360
R _{int}	0.051	0.037	0.059
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.880	0.875	0.877
Refinement			
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.044, 0.117, 1.04	0.050, 0.132, 1.03	0.037, 0.088, 1.03
No. of reflections	13615	10311	5067
No. of parameters	310	238	103
H-atom treatment	H-atom parameters constrained	H-atom parameters constrained	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.81, -0.85	0.45, -0.45	0.88, -0.67
Absolute structure	_	-	Flack x determined using 1775 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons <i>et al.</i> , 2013)
Absolute structure parameter	-	-	-0.018(18)

Computer programs: APEX2 (Bruker, 2014), SAINT (Bruker, 2013), SIR2011 (Burla et al., 2012), SHELXL2012 (Sheldrick, 2015), SHELXL2014 (Sheldrick, 2015) and SHELXTL (Sheldrick, 2008).

(CSD refcodes DAGZOA and DAGZIU01; Scarrow *et al.*, 1985).

There are currently no structurally characterized silicon OPTO complexes. Other triply ligated homoleptic $M(OPTO)_3$ structures are: M = Cr (CSD refcode ZUZWEW; Wen *et al.*, 1996), M = Mn (IFOPAU: Liaw *et al.*, 2002; SUJYEB: Manivannan *et al.*, 1993), M = Fe (PEDEKO; Hu *et al.*, 1993), M = Co (VOGHAA: Hu *et al.*, 1991; SUJYAX, SUJYEB: Manivannan *et al.*, 1993; WINFUU, WINGAB: Xu *et al.*, 1995; ROLQUE: Tong *et al.*, 2001; UGUCUU: Fang *et al.*, 2002), M = In, Tl (JIVQAG, JIVQE; Rodríguez *et al.*, 1998), M = Bi (BEHDOI; Niu *et al.*, 2003).

There are currently nine CSD entries for other group 14 complexes containing an OPTO ligand, all with tin: CSD refcodes ENEWEZ, ENEWID, FOFNAP/FOFNAP10, FOTBOF, IMECAE, IMECEI, IMECIM, and YEDVEI.

5. Synthesis and crystallization

 $[Si(OPO)_3]Cl.2CDCl_3$ (I): $(CH_2)_3Si(OPO)_2$ was prepared according to the literature method (Kraft & Brennessel, 2014). $(CH_2)_3Si(OPO)_2$ was heated in an oil bath at 463 K for 3 days in CDCl₃ upon which crystals of (I) deposited. [Si(OPO)₃]Cl·*x*CH₃CN (II): A solution of Me₃Si(OPO) (0.183 g, 1.00 mmol) in 8 ml of CH₃CN was added to a solution of Me₃SiOSiCl₃ (98 μ L, d = 1.14 g/ml, 0.50 mmol) in 4 ml of CH₃CN. Me₃SiOSi(OPO)₂Cl is formed as an intermediate. Allowing the solution to stand undisturbed for one day resulted in precipitation of colorless crystals of (II) (0.090 g) which were isolated by filtration. Evidence for the presence of *fac* and *mer* isomers was given by the presence of closely spaced OPO resonances in the ¹³C NMR spectrum in accord with those reported in the literature (Tacke, Willeke & Penka, 2001). The synthesis, isolation, and characterization of Me₃SiOSi(OPO)₂Cl will be reported elsewhere.

[Si(OPTO)_3]Cl·2CDCl_3 (III): Crystals of (III) deposited from a solution of $(\eta^1$ -allyl)₂Si(OPTO)Cl in CDCl₃ upon standing for one year at room temperature in the dark. The synthesis of $(\eta^1$ -allyl)₂Si(OPTO)Cl will be published elsewhere.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4. The pyridine portions of the OPO ligands in (I) and (II) are modeled as disordered with the coplanar flips of themselves [0.574 (15):0.426 (15), 0.696 (15):0.304 (15), and 0.621 (15):0.379 (15) for rings containing N1, N2, and N3, respectively, in (I), and 0.555 (13):0.445 (13), 0.604 (14):0.396 (14) and 0.611 (13): 0.389 (13) for rings containing N1, N2, and N3 in (II)]. The disorders were modeled by refining the nitrogen/carbon ratios in each of the specific sites while using a common variable for pairs of sites on the same ligand. Atoms at each of these sites were constrained to be isopositional and to have equivalent anisotropic displacement parameters.

In (II) highly disordered solvent, located in two independent channels along [100], was unable to be modeled. Reflection contributions from this solvent were fixed and added to the calculated structure factors using the SQUEEZE (Spek, 2015) function of the PLATON program, which determined there to be 54 electrons in 225 Å³ accounted for per unit cell (25 electrons in 109 $Å^3$ in one channel, and 29 electrons in 115 $Å^3$ in the other). Although the exact amount of solvent was unknown, the only solvent involved in the reaction was acetonitrile and both starting materials were confirmed by ¹H NMR to be unsolvated. Thus the structure is represented as an acetonitrile solvate of unknown amount. Because no solvent was included in the atom list or molecular formula for (II), all calculated quantities that derive from the molecular formula [e.g., F(000), density, molecular weight, etc.] are known to be incorrect.

D and H atoms were placed geometrically and treated as riding atoms: methine, C-D = 1.00 Å, and aromatic, C-H = 0.95 Å, with $U_{iso}(H/D) = 1.2U_{eq}(C)$.

Acknowledgements

The authors thank St. John Fisher College and the University of Rochester X-ray Crystallographic Facility for support.

References

- Ballesteros, P., Claramunt, R. M., Cañada, T., Foces-Foces, C., Cano, F. H., Elguero, J. & Fruchier, A. J. (1990). J. Chem. Soc. Perkin Trans. 2, pp. 1215–1219.
- Bond, A. & Jones, W. (1999). Acta Cryst. C55, 1536-1538.
- Bondi, A. (1964). J. Phys. Chem. 68, 441-451.
- Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2014). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.

- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357–361.
- Fang, Y.-P., Chen, C.-L., Wang, X.-J., Kang, B.-S., Yu, K. & Su, C.-Y. (2002). Acta Cryst. E58, m480–m481.
- Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662– 671.
- Hu, Y.-H., Chen, X.-T., Dai, L., Weng, L.-H. & Kang, B.-S. (1993). *Jiegou Huaxue*, **12**, 38–42.
- Hu, Y., Weng, L., Huang, L., Chen, X., Wu, D. & Kang, B. (1991). Acta Cryst. C47, 2655–2656.
- Kira, M., Zhang, L. C., Kabuto, C. & Sakurai, H. (1998). Organometallics, **17**, 887–892.
- Kraft, B. M. & Brennessel, W. W. (2014). Organometallics, 33, 158– 171.
- Liaw, W.-F., Hsieh, C.-H., Peng, S.-M. & Lee, G.-H. (2002). *Inorg. Chim. Acta*, **332**, 153–159.
- Manivannan, V., Dutta, S., Basu, P. & Chakravorty, A. (1993). *Inorg. Chem.* **32**, 769–771.
- Niu, D.-Z., Mu, L.-L., Yu, S.-Z. & Chen, J.-T. (2003). J. Chem. Crystallogr. 33, 27–31.
- Pal, S. K., Tham, F. S., Reed, R. W., Oakley, R. T. & Haddon, R. C. (2005). *Polyhedron*, 24, 2076–2083.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.
- Rodríguez, A., Romero, J., García-Vázquez, J. A., Sousa, A., Zubieta, J., Rose, D. J. & Maresca, K. (1998). *Inorg. Chim. Acta*, 281, 70–76.
- Sarkar, A., Tham, F. S. & Haddon, R. C. (2011). J. Mater. Chem. 21, 1574–1581.
- Scarrow, R. C., Riley, P. E., Abu-Dari, K., White, D. L. & Raymond, K. N. (1985). *Inorg. Chem.* 24, 954–967.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2014). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Spek, A. L. (2015). Acta Cryst. C71, 9-18.
- Tacke, R., Burschka, C., Willeke, M. & Willeke, R. (2001). Eur. J. Inorg. Chem. pp. 1671–1674.
- Tacke, R., Willeke, M. & Penka, M. (2001). Z. Anorg. Allg. Chem. 627, 1236–1240.
- Thewalt, U. & Link, U. (1991). Z. Naturforsch. Teil B, 46, 293-296.
- Tong, Y. X., Cai, Y. P., Zhang, H. X., Deng, L. R., Yu, X. L., Chen, X. M. & Kang, B. S. (2001). Pol. J. Chem. 75, 1219–1228.
- Ueyama, K., Matsubayashi, G.-E., Shimohara, I., Tanaka, T. & Nakatsu, K. (1985). J. Chem. Res. 2, 48–49.
- Weiss, A. & Harvey, D. R. (1964). Angew. Chem. Int. Ed. Engl. 3, 698–699.
- Wen, T.-B., Shi, J.-C., Liu, Q.-T., Kang, B.-S., Wu, B.-M. & Mak, T. C. W. (1996). Acta Cryst. C52, 1204–1206.
- Xu, Y.-J., Kang, B.-S., Chen, X.-T. & Huang, L.-R. (1995). *Acta Cryst.* C**51**, 370–374.

Acta Cryst. (2015). E71, 1531-1535 [doi:10.1107/S2056989015022203]

Crystal structures of tris[1-oxopyridine-2-olato(1–)]silicon(IV) chloride chloroform- d_1 disolvate, tris[1-oxopyridine-2-olato(1–)]silicon(IV) chloride acetonitrile unquantified solvate, and *fac*-tris[1-oxopyridine-2-thiolato(1–)]silicon(IV) chloride chloroform- d_1 disolvate

Bradley M. Kraft, William W. Brennessel, Amy E. Ryan and Candace K. Benjamin

Computing details

For all compounds, data collection: *APEX2* (Bruker, 2014); cell refinement: *SAINT* (Bruker, 2013); data reduction: *SAINT* (Bruker, 2013); program(s) used to solve structure: *SIR2011* (Burla *et al.*, 2012). Program(s) used to refine structure: *SHELXL2012* (Sheldrick, 2015) for (I); *SHELXL2014* (Sheldrick, 2015) for (II), (III). For all compounds, molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

(I) Tris[1-oxopyridine-2-olato(1-)]silicon(IV) chloride chloroform-d₁ disolvate

Crystal data

$C_{15}H_{12}N_3O_6Si^+{\cdot}Cl^-{\cdot}2CDCl_3$
$M_r = 634.56$
Monoclinic, $P2_1/n$
a = 13.5133 (7) Å
<i>b</i> = 13.5039 (7) Å
c = 13.7752 (7) Å
$\beta = 101.866 \ (1)^{\circ}$
$V = 2460.0 (2) Å^3$
Z = 4

Data collection

Bruker SMART APEXII CCD Platform diffractometer Radiation source: sealed tube Graphite monochromator area detector, ω scans per φ Absorption correction: multi-scan (*SADABS*; Sheldrick, 2014) $T_{\min} = 0.667, T_{\max} = 0.748$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.044$ $wR(F^2) = 0.117$ F(000) = 1272 $D_x = 1.713 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3986 reflections $\theta = 2.4-37.0^{\circ}$ $\mu = 0.90 \text{ mm}^{-1}$ T = 100 KBlock, pale red-yellow $0.20 \times 0.18 \times 0.16 \text{ mm}$

61259 measured reflections 13615 independent reflections 9035 reflections with $I > 2\sigma(I)$ $R_{int} = 0.051$ $\theta_{max} = 38.7^\circ, \ \theta_{min} = 1.9^\circ$ $h = -23 \rightarrow 23$ $k = -23 \rightarrow 23$ $l = -24 \rightarrow 23$

S = 1.0413615 reflections 310 parameters 0 restraints

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from	H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0513P)^2 + 0.4945P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\text{max}} = 0.001$ $\Delta\rho_{\text{max}} = 0.81$ e Å ⁻³ $\rho_{\text{max}} = 0.85$
neighbouring sites	$\Delta \rho_{\rm max} = 0.81 \text{ e A}^{-3}$ $\Delta \rho_{\rm min} = -0.85 \text{ e }^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Si1	0.23776 (3)	0.49175 (3)	0.47775 (3)	0.01307 (7)	
01	0.10428 (7)	0.47729 (7)	0.44717 (7)	0.01561 (17)	
O2	0.24538 (7)	0.36073 (7)	0.48242 (7)	0.01631 (17)	
O3	0.22003 (7)	0.62136 (7)	0.46597 (7)	0.01524 (16)	
O4	0.25223 (7)	0.49211 (7)	0.35240 (7)	0.01496 (16)	
05	0.23135 (7)	0.50555 (7)	0.60463 (7)	0.01575 (17)	
06	0.37121 (7)	0.49674 (7)	0.51655 (7)	0.01554 (17)	
N1	0.07670 (9)	0.38170 (8)	0.45015 (8)	0.0137 (2)	0.574 (15)
N2	0.21142 (9)	0.65110 (8)	0.37143 (8)	0.0146 (2)	0.696 (15)
N3	0.32336 (9)	0.51079 (9)	0.66292 (8)	0.0149 (2)	0.621 (15)
N1′	0.15514 (9)	0.31791 (9)	0.47064 (9)	0.0150 (2)	0.426 (15)
N2′	0.22799 (9)	0.57936 (9)	0.30881 (9)	0.0146 (2)	0.304 (15)
N3′	0.40015 (9)	0.50504 (9)	0.61468 (8)	0.0135 (2)	0.379 (15)
C1	0.15514 (9)	0.31791 (9)	0.47064 (9)	0.0150 (2)	0.574 (15)
C1′	0.07670 (9)	0.38170 (8)	0.45015 (8)	0.0137 (2)	0.426 (15)
C2	0.13816 (12)	0.21819 (10)	0.47797 (10)	0.0194 (2)	
H2	0.1929	0.1728	0.4936	0.023*	
C3	0.03977 (12)	0.18600 (11)	0.46201 (11)	0.0228 (3)	
Н3	0.0263	0.1173	0.4663	0.027*	
C4	-0.04059 (12)	0.25241 (12)	0.43964 (11)	0.0228 (3)	
H4	-0.1083	0.2291	0.4289	0.027*	
C5	-0.02127 (10)	0.35157 (11)	0.43323 (10)	0.0189 (2)	
H5	-0.0750	0.3980	0.4174	0.023*	
C6	0.22799 (9)	0.57936 (9)	0.30881 (9)	0.0146 (2)	0.696 (15)
C6′	0.21142 (9)	0.65110 (8)	0.37143 (8)	0.0146 (2)	0.304 (15)
C7	0.21831 (10)	0.59879 (10)	0.20932 (10)	0.0177 (2)	
H7	0.2293	0.5485	0.1645	0.021*	
C8	0.19215 (11)	0.69353 (11)	0.17687 (11)	0.0208 (3)	
H8	0.1833	0.7087	0.1083	0.025*	
C9	0.17853 (11)	0.76731 (11)	0.24355 (11)	0.0215 (3)	
H9	0.1625	0.8328	0.2205	0.026*	
C10	0.18812 (11)	0.74589 (10)	0.34229 (11)	0.0187 (2)	
H10	0.1788	0.7954	0.3886	0.022*	

C11	0.40015 (9)	0.50504 (9)	0.61468 (8)	0.0135 (2)	0.621 (15)
C11′	0.32336 (9)	0.51079 (9)	0.66292 (8)	0.0149 (2)	0.379 (15)
C12	0.49892 (10)	0.50876 (10)	0.66439 (10)	0.0169 (2)	
H12	0.5528	0.5049	0.6298	0.020*	
C13	0.51771 (11)	0.51829 (11)	0.76596 (10)	0.0211 (3)	
H13	0.5854	0.5204	0.8025	0.025*	
C14	0.43758 (12)	0.52481 (11)	0.81544 (10)	0.0214 (3)	
H14	0.4510	0.5316	0.8856	0.026*	
C15	0.33966 (11)	0.52145 (10)	0.76344 (10)	0.0182 (2)	
H15	0.2847	0.5264	0.7964	0.022*	
C11	0.20123 (3)	0.95652 (2)	0.49660 (2)	0.01944 (6)	
C16	0.47965 (12)	0.85178 (11)	0.41139 (11)	0.0230 (3)	
D16	0.4348	0.8696	0.4581	0.028*	
C12	0.59065 (3)	0.92375 (3)	0.44147 (3)	0.02772 (8)	
C13	0.41495 (3)	0.87758 (4)	0.29021 (3)	0.03465 (10)	
Cl4	0.50920 (4)	0.72498 (3)	0.42591 (4)	0.03726 (10)	
C17	0.35128 (11)	0.83844 (11)	0.70226 (11)	0.0211 (3)	
D17	0.3135	0.8897	0.6569	0.025*	
C15	0.26553 (3)	0.77821 (3)	0.76321 (3)	0.02750 (8)	
Cl6	0.40505 (3)	0.75370 (3)	0.63070 (3)	0.02850 (8)	
C17	0.44653 (3)	0.89800 (3)	0.78891 (3)	0.02811 (8)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Si1	0.01221 (14)	0.01345 (15)	0.01315 (14)	0.00003 (11)	0.00173 (11)	-0.00084 (11)
01	0.0135 (4)	0.0115 (4)	0.0211 (4)	-0.0006 (3)	0.0019 (3)	-0.0015 (3)
O2	0.0136 (4)	0.0141 (4)	0.0207 (4)	0.0013 (3)	0.0024 (3)	0.0007 (3)
O3	0.0192 (4)	0.0140 (4)	0.0124 (4)	-0.0008 (3)	0.0031 (3)	-0.0008 (3)
O4	0.0167 (4)	0.0136 (4)	0.0138 (4)	0.0025 (3)	0.0014 (3)	-0.0003 (3)
05	0.0124 (4)	0.0209 (4)	0.0140 (4)	0.0001 (3)	0.0027 (3)	0.0001 (3)
06	0.0127 (4)	0.0227 (5)	0.0109 (4)	-0.0005 (3)	0.0015 (3)	-0.0016 (3)
N1	0.0142 (5)	0.0124 (4)	0.0142 (5)	-0.0003 (4)	0.0023 (4)	-0.0016 (4)
N2	0.0149 (5)	0.0141 (5)	0.0145 (5)	-0.0018 (4)	0.0020 (4)	-0.0007 (4)
N3	0.0163 (5)	0.0142 (5)	0.0137 (5)	-0.0006 (4)	0.0023 (4)	0.0006 (4)
N1′	0.0150 (5)	0.0138 (5)	0.0158 (5)	0.0003 (4)	0.0025 (4)	-0.0002 (4)
N2′	0.0142 (5)	0.0151 (5)	0.0140 (5)	0.0000 (4)	0.0018 (4)	-0.0004 (4)
N3′	0.0141 (5)	0.0136 (5)	0.0124 (5)	0.0004 (4)	0.0017 (4)	-0.0002 (4)
C1	0.0150 (5)	0.0138 (5)	0.0158 (5)	0.0003 (4)	0.0025 (4)	-0.0002 (4)
C1′	0.0142 (5)	0.0124 (4)	0.0142 (5)	-0.0003 (4)	0.0023 (4)	-0.0016 (4)
C2	0.0271 (7)	0.0134 (5)	0.0180 (6)	0.0015 (5)	0.0054 (5)	0.0013 (4)
C3	0.0331 (8)	0.0163 (6)	0.0188 (6)	-0.0086 (5)	0.0053 (5)	-0.0004 (5)
C4	0.0226 (6)	0.0255 (7)	0.0199 (6)	-0.0105 (5)	0.0037 (5)	-0.0025 (5)
C5	0.0138 (5)	0.0240 (6)	0.0188 (6)	-0.0017 (5)	0.0031 (4)	-0.0029 (5)
C6	0.0142 (5)	0.0151 (5)	0.0140 (5)	0.0000 (4)	0.0018 (4)	-0.0004 (4)
C6′	0.0149 (5)	0.0141 (5)	0.0145 (5)	-0.0018 (4)	0.0020 (4)	-0.0007 (4)
C7	0.0176 (5)	0.0206 (6)	0.0148 (5)	0.0006 (5)	0.0033 (4)	-0.0002 (4)
C8	0.0211 (6)	0.0234 (6)	0.0177 (6)	-0.0003 (5)	0.0037 (5)	0.0048 (5)

C9	0.0236 (6)	0.0161 (6)	0.0249 (7)	0.0003 (5)	0.0050 (5)	0.0055 (5)
C10	0.0199 (6)	0.0137 (5)	0.0229 (6)	-0.0014 (4)	0.0057 (5)	-0.0001 (4)
C11	0.0141 (5)	0.0136 (5)	0.0124 (5)	0.0004 (4)	0.0017 (4)	-0.0002 (4)
C11′	0.0163 (5)	0.0142 (5)	0.0137 (5)	-0.0006 (4)	0.0023 (4)	0.0006 (4)
C12	0.0138 (5)	0.0169 (5)	0.0195 (6)	0.0002 (4)	0.0019 (4)	-0.0009 (4)
C13	0.0207 (6)	0.0205 (6)	0.0186 (6)	0.0009 (5)	-0.0043 (5)	-0.0007 (5)
C14	0.0305 (7)	0.0193 (6)	0.0127 (5)	0.0022 (5)	0.0003 (5)	0.0003 (4)
C15	0.0245 (6)	0.0172 (5)	0.0136 (5)	0.0009 (5)	0.0054 (5)	0.0008 (4)
Cl1	0.02314 (15)	0.01732 (13)	0.01640 (13)	-0.00044 (11)	0.00069 (11)	0.00007 (10)
C16	0.0255 (7)	0.0195 (6)	0.0223 (6)	0.0015 (5)	0.0013 (5)	0.0020 (5)
Cl2	0.02631 (17)	0.02598 (17)	0.02676 (17)	-0.00130 (13)	-0.00412 (14)	0.00140 (13)
C13	0.02946 (19)	0.0446 (2)	0.02482 (18)	-0.00543 (17)	-0.00619 (15)	0.00552 (16)
Cl4	0.0459 (3)	0.01883 (17)	0.0466 (3)	0.00556 (16)	0.0084 (2)	-0.00106 (16)
C17	0.0231 (6)	0.0175 (6)	0.0213 (6)	0.0024 (5)	0.0015 (5)	-0.0001 (5)
C15	0.02676 (17)	0.02573 (17)	0.02922 (18)	-0.00212 (14)	0.00391 (14)	0.00239 (14)
C16	0.0362 (2)	0.02194 (16)	0.02728 (18)	0.00365 (14)	0.00644 (15)	-0.00488 (13)
Cl7	0.02268 (16)	0.02851 (18)	0.03154 (19)	-0.00142 (13)	0.00187 (14)	-0.01005 (14)

Geometric parameters (Å, °)

Si1—O3	1.7695 (10)	С5—Н5	0.9500
Sil—O2	1.7727 (10)	C7—C8	1.377 (2)
Sil—O6	1.7736 (10)	С7—Н7	0.9500
Sil—Ol	1.7767 (10)	C8—C9	1.393 (2)
Sil—O4	1.7773 (10)	C8—H8	0.9500
Sil—O5	1.7774 (10)	C9—C10	1.370 (2)
01—N1	1.3465 (15)	С9—Н9	0.9500
O2—N1′	1.3290 (15)	C10—H10	0.9500
O3—N2	1.3448 (14)	C12—C13	1.376 (2)
O4—N2′	1.3323 (15)	C12—H12	0.9500
O5—N3	1.3361 (15)	C13—C14	1.396 (2)
O6—N3′	1.3325 (15)	C13—H13	0.9500
N1—C5	1.3586 (17)	C14—C15	1.370 (2)
N2-C10	1.3591 (18)	C14—H14	0.9500
N3—C15	1.3643 (17)	C15—H15	0.9500
N1′—C2	1.3732 (18)	C16—Cl3	1.7528 (15)
N2′—C7	1.3750 (18)	C16—Cl4	1.7603 (15)
N3′—C12	1.3700 (17)	C16—Cl2	1.7637 (16)
C2—C3	1.373 (2)	C16—D16	1.0000
C2—H2	0.9500	C17—C17	1.7596 (15)
C3—C4	1.393 (2)	C17—C16	1.7618 (15)
С3—Н3	0.9500	C17—C15	1.7634 (16)
C4—C5	1.371 (2)	C17—D17	1.0000
C4—H4	0.9500		
O3—Si1—O2	175.08 (5)	N1—C5—H5	120.9
O3—Si1—O6	95.75 (5)	C4—C5—H5	120.9
O2—Si1—O6	88.80 (5)	N2′—C7—C8	117.79 (13)

O3—Si1—O1	88.58 (5)	С8—С7—Н7	121.1
O2—Si1—O1	86.99 (5)	C7—C8—C9	120.70 (13)
O6—Si1—O1	174.48 (5)	С7—С8—Н8	119.7
O3—Si1—O4	87.03 (4)	С9—С8—Н8	119.7
O2—Si1—O4	91.19 (5)	C10—C9—C8	120.34 (13)
O6—Si1—O4	89.11 (4)	С10—С9—Н9	119.8
01—Si1—O4	94.54 (5)	С8—С9—Н9	119.8
O3—Si1—O5	87.33 (5)	N2—C10—C9	117.44 (13)
O2—Si1—O5	94.77 (5)	N2—C10—H10	121.3
06—Si1—05	87.24 (4)	С9—С10—Н10	121.3
01 - Si1 - 05	89.56 (5)	N3′—C12—C13	117.96 (13)
04—Si1—05	172.94 (5)	C13—C12—H12	121.0
N1-01-Si1	111.84 (8)	C12—C13—C14	120.20 (13)
N1′—02—Si1	112.63 (8)	C12—C13—H13	119.9
N2-03-Sil	111 55 (8)	C14—C13—H13	119.9
N2'-04-Si1	111.98 (8)	C15-C14-C13	120 37 (13)
N3-05-Sil	111.66 (8)	C15 - C14 - H14	119.8
N3'-06-Sil	112 15 (8)	C13 - C14 - H14	119.8
01-N1-C5	123.22(11)	N3-C15-C14	119.0
03 - N2 - C10	123.22(11) 122.40(11)	N3C15H15	120.9
05 - N3 - C15	122.40(11) 123.49(12)	C14 - C15 - H15	120.9
02 - N1' - C2	125.19(12) 125.51(12)	C13 - C16 - C14	111.02 (9)
02 - N1 - 02 04 - N2' - C7	125.51(12) 125.60(12)	C13 - C16 - C12	110.35 (8)
04 N2' C'	123.00(12) 124.24(11)	C14 - C16 - C12	110.33(8)
C_{3} C_{2} N_{1}'	124.24(11) 118.02(13)	$C_{14} = C_{10} = C_{12}$	108.4
$C_3 - C_2 - H_2$	121.0	C14 - C16 - D16	108.4
$C_2 = C_3 = C_4$	121.0	$C_{14} = C_{16} = D_{16}$	108.4
C2_C3_H3	110 4	C12 - C10 - D10	110.37 (8)
$C_2 = C_3 = H_3$	119.4	$C_{17} = C_{17} = C_{16}$	110.37(8) 110.40(8)
$C_{4} = C_{3} = 113$	119.4	$C_{1}^{} = C_{1}^{} = C_{$	110.40(8) 110.72(8)
$C_{5} = C_{4} = C_{5}$	120.2	$C_{10} - C_{17} - C_{15}$	108.4
$C_3 = C_4 = H_4$	120.2	$C_{1}^{} C_{1}^{} D_{1}^{} D_{1}^{$	108.4
C_{3} C_{4} C_{4	120.2	$C_{10} - C_{17} - D_{17}$	108.4
NI-CJ-C4	118.23 (13)		108.4
03—Si1—01—N1	-17757(8)	05—Si1—06—N3'	1 60 (9)
02-Si1-01-N1	4 57 (8)	Si1-O1-N1-C5	17754(10)
04 = Si1 = 01 = N1	95 53 (8)	Si1 - O3 - N2 - C10	177.83(10)
05-Si1-01-N1	-90.23(8)	Si1 = 05 = N2 = 010 Si1 = 05 = N3 = 015	-179.99(10)
06-Si1-02-N1'	171 18 (9)	Si1 - 02 - N1' - C2	-175.03(11)
01 - Si1 - 02 - N1'	-5.25(9)	Si1 - 04 - N2' - C7	-170.73(11)
04 = Si1 = 02 = N1'	-99.73(9)	Si1 = 06 = N3' = C12	178 86 (10)
05-Si1-02-N1'	84.05 (9)	02 - N1' - C2 - C3	-178.96(12)
06 Sil 03 N2	07.60 (8)	N1' C2 C3 C4	-0.4(2)
01 = 311 = 03 = N2	-85 74 (8)	$C_2 = C_3 = C_4 = C_5$	0.7(2)
$O_1 = S_1 = O_2 = N_2$	8 88 (8)	01 N1 C5 C4	-170.05(12)
05-8i1-03 N2	-175.36(8)	$C_{3} C_{4} C_{5} N_{1}$	-0.7(2)
03 = 511 = 03 = 102	-0.74(8)	$C_3 = C_4 = C_3 = 1 \times 1$	0.7(2)
03 - 511 - 04 - N2	-9.74(0)	$\begin{array}{c} \mathbf{U}_{1} \\ \mathbf{U}_{2} \\ \mathbf{U}_{1} \\ \mathbf{U}_{2} \\ \mathbf{U}_{2} \\ \mathbf{U}_{3} \\ \mathbf{U}$	1/9.0/(12)
02 - 511 - 04 - N2'	103.07 (8)	NZ	1.3 (2)

O6—Si1—O4—N2'	-105.55 (9)	C7—C8—C9—C10	-1.9 (2)
O1—Si1—O4—N2'	78.60 (9)	O3—N2—C10—C9	-178.23 (12)
O3—Si1—O5—N3	-96.91 (9)	C8—C9—C10—N2	0.2 (2)
O2—Si1—O5—N3	87.55 (9)	O6—N3′—C12—C13	179.45 (12)
O6—Si1—O5—N3	-1.02 (9)	N3'-C12-C13-C14	-0.6 (2)
O1—Si1—O5—N3	174.49 (8)	C12-C13-C14-C15	0.2 (2)
O3—Si1—O6—N3'	88.63 (9)	O5—N3—C15—C14	179.28 (12)
O2—Si1—O6—N3'	-93.24 (9)	C13—C14—C15—N3	0.5 (2)
O4—Si1—O6—N3'	175.55 (9)		

Z = 2

F(000) = 404

 $\theta = 2.5 - 36.4^{\circ}$ $\mu = 0.29 \text{ mm}^{-1}$

Block, colorless

 $0.30 \times 0.30 \times 0.24 \text{ mm}$

 $\theta_{\rm max} = 38.5^{\circ}, \ \theta_{\rm min} = 1.6^{\circ}$

10311 independent reflections 6677 reflections with $I > 2\sigma(I)$

T = 100 K

 $R_{\rm int} = 0.037$

 $h = -11 \rightarrow 11$

 $k = -19 \rightarrow 19$

 $l = -22 \rightarrow 22$

 $D_{\rm x} = 1.342 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 4067 reflections

(II) Tris[1-oxopyridine-2-olato(1-)]silicon(IV) chloride acetonitrile unknown solvate

Crystal data

C₁₅H₁₂N₃O₆Si⁺·Cl⁻ $M_r = 393.82$ Triclinic, *P*I a = 6.8347 (7) Å b = 11.1232 (12) Å c = 13.1513 (14) Å a = 90.479 (2)° $\beta = 93.269$ (2)° $\gamma = 102.356$ (2)° V = 974.85 (18) Å³

Data collection

Bruker SMART APEXII CCD Platform diffractometer Radiation source: fine-focus sealed tube ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 2014) $T_{min} = 0.645, T_{max} = 0.748$ 27002 measured reflections

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.050$	Hydrogen site location: inferred from
$wR(F^2) = 0.132$	neighbouring sites
S = 1.03	H-atom parameters constrained
10311 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0537P)^2 + 0.1944P]$
238 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.45$ e Å ⁻³
direct methods	$\Delta \rho_{\rm min} = -0.45 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Highly disordered solvent, located in two independent channels along [100], was unable to be modeled. Reflection contributions from this solvent were fixed and added to the calculated structure factors using the SQUEEZE function of program *PLATON* (Spek, 2009), which determined there to be 54 electrons in 225 Å³ accounted for per unit cell (25 electrons in 109 Å³ in one channel, and 29 electrons in 115 Å³ in the other). Because the exact identity and amount of solvent were unknown, no solvent was included in the atom list or molecular formula. Thus all calculated quantities that derive from the molecular formula (*e.g.*, *F*(000), density, molecular weight, *etc.*) are known to be incorrect.

The pyridine portions of the oxopyridinone ligands are modeled as disordered with the planar flips of themselves (0.55:0.45, 0.60:0.40, and 0.61:0.39, for rings containing N1, N2, and N3, respectively). The disorders were modeled by refining the nitrogen/carbon ratios at the six particular atom sites, and refining the same ratio variable for pairs that were on the same ligand. Atoms at each of the six sites were constrained to be isopositional and to have equivalent anisotropic displacement parameters.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Sil	0.12051 (5)	0.29394 (3)	0.75582 (3)	0.01923 (7)	
C11	-0.28682 (5)	0.69679 (3)	0.72923 (3)	0.02991 (8)	
01	0.24002 (13)	0.45107 (8)	0.77479 (7)	0.02124 (16)	
O2	0.07949 (13)	0.29060 (9)	0.88854 (7)	0.02376 (18)	
O3	0.35872 (12)	0.25406 (8)	0.77135 (7)	0.02194 (17)	
O4	0.01261 (14)	0.13330 (9)	0.74814 (8)	0.02702 (19)	
05	0.15614 (13)	0.30843 (9)	0.62308 (7)	0.02244 (17)	
O6	-0.12215 (13)	0.32303 (9)	0.72917 (7)	0.02439 (18)	
N1	0.25249 (16)	0.48589 (11)	0.87312 (9)	0.0221 (2)	0.555 (13)
N2	0.15376 (18)	0.06613 (11)	0.75335 (10)	0.0268 (3)	0.604 (14)
N3	-0.00733 (16)	0.33084 (10)	0.57121 (8)	0.0206 (2)	0.611 (13)
C1	0.16641 (16)	0.39789 (12)	0.93573 (9)	0.0230 (2)	0.555 (13)
C6	0.34428 (18)	0.13298 (11)	0.76534 (10)	0.0247 (2)	0.604 (14)
C11	-0.15960 (16)	0.34008 (11)	0.63017 (9)	0.0221 (2)	0.611 (13)
C1′	0.25249 (16)	0.48589 (11)	0.87312 (9)	0.0221 (2)	0.445 (13)
C6′	0.15376 (18)	0.06613 (11)	0.75335 (10)	0.0268 (3)	0.396 (14)
C11′	-0.00733 (16)	0.33084 (10)	0.57121 (8)	0.0206 (2)	0.389 (13)
N1′	0.16641 (16)	0.39789 (12)	0.93573 (9)	0.0230 (2)	0.445 (13)
N2′	0.34428 (18)	0.13298 (11)	0.76534 (10)	0.0247 (2)	0.396 (14)
N3′	-0.15960 (16)	0.34008 (11)	0.63017 (9)	0.0221 (2)	0.389 (13)
C2	0.17350 (19)	0.41721 (15)	1.03917 (10)	0.0288 (3)	
H2	0.1159	0.3534	1.0829	0.035*	
C3	0.2666 (2)	0.53190 (17)	1.07748 (11)	0.0354 (3)	
H3	0.2733	0.5481	1.1488	0.042*	
C4	0.3511 (2)	0.62439 (15)	1.01246 (12)	0.0336 (3)	
H4	0.4119	0.7040	1.0394	0.040*	
C5	0.34709 (19)	0.60096 (13)	0.90880 (11)	0.0279 (3)	
H5	0.4078	0.6625	0.8639	0.034*	
C7	0.5050(2)	0.07662 (16)	0.77229 (14)	0.0419 (4)	
H7	0.6388	0.1233	0.7807	0.050*	
C8	0.4648 (4)	-0.0500 (2)	0.7667 (2)	0.0644 (6)	
H8	0.5723	-0.0919	0.7713	0.077*	
C9	0.2670 (4)	-0.11734 (17)	0.75419 (19)	0.0637 (6)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

Н9	0.2414	-0.2047	0.7505	0.076*
C10	0.1110 (3)	-0.05921 (14)	0.74725 (15)	0.0438 (4)
H10	-0.0236	-0.1046	0.7384	0.053*
C12	-0.33579 (19)	0.36479 (14)	0.58824 (12)	0.0304 (3)
H12	-0.4423	0.3720	0.6297	0.037*
C13	-0.3527 (2)	0.37871 (14)	0.48454 (12)	0.0357 (3)
H13	-0.4730	0.3948	0.4534	0.043*
C14	-0.1941 (2)	0.36936 (13)	0.42463 (11)	0.0327 (3)
H14	-0.2068	0.3803	0.3532	0.039*
C15	-0.0198 (2)	0.34451 (12)	0.46814 (10)	0.0264 (2)
H15	0.0882	0.3371	0.4279	0.032*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Si1	0.01513 (13)	0.02434 (16)	0.01861 (15)	0.00486 (11)	0.00187 (11)	0.00053 (11)
Cl1	0.02417 (14)	0.03503 (17)	0.03014 (17)	0.00432 (12)	0.00548 (11)	0.00471 (13)
01	0.0231 (4)	0.0246 (4)	0.0161 (4)	0.0050 (3)	0.0017 (3)	-0.0003 (3)
O2	0.0223 (4)	0.0297 (4)	0.0203 (4)	0.0069 (3)	0.0041 (3)	0.0028 (3)
O3	0.0170 (4)	0.0237 (4)	0.0257 (4)	0.0060 (3)	0.0001 (3)	-0.0006 (3)
O4	0.0209 (4)	0.0258 (4)	0.0335 (5)	0.0039 (3)	-0.0018 (4)	0.0007 (4)
05	0.0179 (4)	0.0313 (4)	0.0189 (4)	0.0073 (3)	0.0006 (3)	-0.0013 (3)
06	0.0177 (4)	0.0354 (5)	0.0218 (4)	0.0091 (3)	0.0021 (3)	0.0042 (4)
N1	0.0167 (4)	0.0310 (6)	0.0206 (5)	0.0102 (4)	-0.0003(4)	-0.0041 (4)
N2	0.0251 (5)	0.0252 (5)	0.0293 (6)	0.0052 (4)	-0.0039 (4)	-0.0045 (4)
N3	0.0188 (4)	0.0231 (5)	0.0196 (5)	0.0041 (4)	-0.0009(4)	-0.0017 (4)
C1	0.0170 (4)	0.0368 (6)	0.0182 (5)	0.0129 (4)	0.0007 (4)	-0.0009 (4)
C6	0.0230 (5)	0.0255 (5)	0.0265 (6)	0.0081 (4)	-0.0007(4)	-0.0029 (4)
C11	0.0179 (4)	0.0277 (5)	0.0211 (5)	0.0061 (4)	0.0005 (4)	0.0013 (4)
C1′	0.0167 (4)	0.0310 (6)	0.0206 (5)	0.0102 (4)	-0.0003(4)	-0.0041 (4)
C6′	0.0251 (5)	0.0252 (5)	0.0293 (6)	0.0052 (4)	-0.0039 (4)	-0.0045 (4)
C11′	0.0188 (4)	0.0231 (5)	0.0196 (5)	0.0041 (4)	-0.0009(4)	-0.0017 (4)
N1′	0.0170 (4)	0.0368 (6)	0.0182 (5)	0.0129 (4)	0.0007 (4)	-0.0009 (4)
N2′	0.0230 (5)	0.0255 (5)	0.0265 (6)	0.0081 (4)	-0.0007(4)	-0.0029 (4)
N3′	0.0179 (4)	0.0277 (5)	0.0211 (5)	0.0061 (4)	0.0005 (4)	0.0013 (4)
C2	0.0193 (5)	0.0548 (9)	0.0174 (5)	0.0194 (5)	0.0010 (4)	-0.0006(5)
C3	0.0226 (6)	0.0654 (10)	0.0240 (6)	0.0243 (6)	-0.0038 (5)	-0.0141 (6)
C4	0.0215 (6)	0.0463 (8)	0.0354 (8)	0.0155 (6)	-0.0073 (5)	-0.0177 (6)
C5	0.0185 (5)	0.0335 (7)	0.0335 (7)	0.0104 (5)	-0.0019 (5)	-0.0067 (5)
C7	0.0306 (7)	0.0450 (9)	0.0548 (11)	0.0208 (7)	-0.0046 (7)	-0.0084 (8)
C8	0.0654 (13)	0.0514 (11)	0.0862 (17)	0.0405 (11)	-0.0166 (12)	-0.0175 (11)
C9	0.0809 (16)	0.0280 (8)	0.0836 (17)	0.0226 (9)	-0.0216 (13)	-0.0183 (9)
C10	0.0499 (10)	0.0241 (7)	0.0529 (11)	0.0030 (6)	-0.0146 (8)	-0.0060 (7)
C12	0.0190 (5)	0.0378 (7)	0.0359 (7)	0.0098 (5)	-0.0014 (5)	0.0046 (6)
C13	0.0337 (7)	0.0370 (7)	0.0363 (8)	0.0117 (6)	-0.0141 (6)	0.0001 (6)
C14	0.0476 (8)	0.0264 (6)	0.0225 (6)	0.0076 (6)	-0.0100 (6)	-0.0020 (5)
C15	0.0352 (7)	0.0236 (6)	0.0199 (6)	0.0051(5)	0.0020(5)	-0.0032(4)

Geometric parameters (Å, °)

Sil—Ol	1.7727 (10)	C6'—N2'	1.3542 (17)	_
Si1-06	1.7729 (9)	C6′—C10	1.3626 (19)	
Sil—O3	1.7782 (9)	C11′—N3′	1.3533 (15)	
Sil—O5	1.7803 (10)	C11′—C15	1.3651 (17)	
Sil—O4	1.7808 (10)	N1′—C2	1.3719 (17)	
Sil—O2	1.7830 (10)	N2′—C7	1.3755 (18)	
01—C1′	1.3396 (14)	N3′—C12	1.3777 (16)	
01—N1	1.3396 (14)	C2—C3	1.375 (2)	
O2—N1′	1.3433 (16)	С2—Н2	0.9500	
O2—C1	1.3433 (16)	C3—C4	1.393 (2)	
O3—N2′	1.3305 (15)	С3—Н3	0.9500	
O3—C6	1.3305 (15)	C4—C5	1.383 (2)	
O4—C6′	1.3399 (15)	C4—H4	0.9500	
O4—N2	1.3399 (15)	С5—Н5	0.9500	
O5—C11′	1.3457 (13)	C7—C8	1.376 (3)	
O5—N3	1.3457 (13)	С7—Н7	0.9500	
O6—N3′	1.3356 (14)	С8—С9	1.398 (3)	
O6—C11	1.3356 (14)	С8—Н8	0.9500	
N1—C1	1.3434 (17)	C9—C10	1.360 (3)	
N1—C5	1.3703 (18)	С9—Н9	0.9500	
N2—C6	1.3542 (17)	C10—H10	0.9500	
N2-C10	1.3626 (19)	C12—C13	1.375 (2)	
N3—C11	1.3533 (15)	C12—H12	0.9500	
N3—C15	1.3651 (17)	C13—C14	1.397 (2)	
C1—C2	1.3719 (17)	C13—H13	0.9500	
С6—С7	1.3755 (18)	C14—C15	1.374 (2)	
C11—C12	1.3777 (16)	C14—H14	0.9500	
C1′—N1′	1.3434 (17)	C15—H15	0.9500	
C1′—C5	1.3703 (18)			
01—Si1—O6	94.90 (5)	N3'—C11'—C15	122.31 (11)	
01—Si1—O3	89.28 (4)	O2—N1′—C1′	114.28 (10)	
O6—Si1—O3	174.02 (5)	O2—N1′—C2	123.88 (12)	
01—Si1—05	89.48 (4)	C1′—N1′—C2	121.81 (13)	
O6—Si1—O5	87.36 (4)	O3—N2′—C6′	114.34 (10)	
O3—Si1—O5	88.40 (4)	O3—N2′—C7	124.56 (13)	
01—Si1—O4	174.42 (5)	C6′—N2′—C7	121.09 (13)	
O6—Si1—O4	88.77 (5)	O6—N3'—C11'	114.24 (10)	
O3—Si1—O4	87.38 (4)	O6—N3′—C12	124.74 (11)	
O5—Si1—O4	94.90 (5)	C11′—N3′—C12	121.02 (12)	
01—Si1—O2	87.28 (4)	N1′—C2—C3	117.86 (14)	
O6—Si1—O2	89.96 (4)	C1—C2—C3	117.86 (14)	
O3—Si1—O2	94.51 (4)	C1—C2—H2	121.1	
O5—Si1—O2	175.60 (5)	C3—C2—H2	121.1	
O4—Si1—O2	88.53 (5)	C2—C3—C4	120.44 (13)	
C1'-O1-Si1	111.97 (8)	С2—С3—Н3	119.8	

N1—O1—Si1	111.97 (8)	С4—С3—Н3	119.8
N1'—O2—Si1	111.62 (8)	C5—C4—C3	120.34 (14)
C1—O2—Si1	111.62 (8)	C5—C4—H4	119.8
N2′—O3—Si1	112.12 (8)	C3—C4—H4	119.8
C6—O3—Si1	112.12 (8)	C1′—C5—C4	117.69 (14)
C6'—O4—Si1	111.55 (8)	N1—C5—C4	117.69 (14)
N2	111.55 (8)	N1—C5—H5	121.2
C11′—O5—Si1	111.74 (7)	C4—C5—H5	121.2
N3-05-Si1	111.74 (7)	N2′—C7—C8	117.54 (17)
N3'-06-Si1	112.42 (7)	C6-C7-C8	117.54 (17)
$C_{11} = 06 = S_{11}$	112.12(7) 112.42(7)	С6—С7—Н7	121.2
01-N1-C1	114.61 (11)	C8—C7—H7	121.2
01-N1-C5	123.59(12)	C7-C8-C9	120.50(17)
C1 - N1 - C5	121 79 (12)	C7—C8—H8	119 7
04 - N2 - C6	11451(11)	C9—C8—H8	119.7
04-N2-C10	123 25 (13)	C10-C9-C8	120.72(17)
C6-N2-C10	122.22 (13)	C10-C9-H9	119.6
05-N3-C11	1122.24(15) 114.23(10)		119.6
05-N3-C15	123 46 (11)	C9-C10-N2	117.00 (17)
$C_{11} N_3 C_{15}$	123.40(11) 122.31(11)	$C_{0} = C_{10} = C_{0}^{2}$	117.90(17) 117.90(17)
02-C1-N1	122.31(11) 114.28(10)	C_{9} C_{10} H_{10}	121.1
02 - C1 - C2	123 88 (12)	N2 C10 H10	121.1
$N_1 - C_1 - C_2$	125.88(12) 121.81(13)	12-10-110	121.1
N1 - C1 - C2	121.01(15) 114.34(10)	$C_{13} = C_{12} = C_{11}$	117.91(13) 117.01(13)
03 - 00 - N2	114.34(10) 124.56(13)	$C_{13} = C_{12} = N_3$	121.0
$V_{3} = C_{6} = C_{7}$	124.30(13) 121.00(13)	$C_{13} - C_{12} - H_{12}$	121.0
$N_2 = C_0 = C_7$	121.09(13) 114.24(10)	$C_{11} = C_{12} = C_{14}$	121.0 120.48(12)
06 - C11 - C12	114.24(10) 124.74(11)	C_{12} C_{13} C_{14} C_{12} C_{12} C_{13} C_{14}	120.46 (13)
$N_{2} = C_{11} = C_{12}$	124.74(11) 121.02(12)	C12 - C13 - H13	119.8
N_{3} $-C_{11}$ $-C_{12}$	121.02(12) 114.61(11)	$C_{14} = C_{13} = H_{13}$	119.0
OI = CI = NI	114.01(11) 122.50(12)	C15 - C14 - C13	120.38 (13)
01-01-05	123.39 (12)	C13—C14—H14	119.7
NI - CI - CS	121.79(12)	C13-C14-H14	119.7
$04 - C_0 - N_2$	114.51(11) 102.25(12)	C11 - C15 - C14	117.70 (13)
04-06-010	123.25(13)	N3 - C15 - C14	117.70(13)
$N2^{}C6^{}C10$	122.24 (13)	N3-C15-H15	121.1
05 - C11' - N3'	114.23(10)	C14—C15—H15	121.1
05-011-015	123.46 (11)		
06 51 01 01	03 66 (8)	O5 N3 C11 O6	-1.10(15)
$O_3 S_{11} O_1 C_1'$	-90.62(8)	$C_{15} N_{3} C_{11} O_{6}$	1.19(13) 179/32(11)
05 - 511 - 01 - 01	-170.02(0)	05 N3 C11 C12	179.45(11) 178.96(12)
03 = 311 = 01 = 01	1/9.03(7)	$C_{15} = N_3 = C_{11} = C_{12}$	-0.4(2)
02 - 511 - 01 - 01	93 66 (8)	$S_{11} = O_{12} = O_{13} = O$	-2.52(12)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-00.62 (8)	$S_{11} = O_1 = O_1 = O_1$ $S_{11} = O_1 = O_1 = O_1$	2.33(12)
05 Sil Ol NI	-170.02(0)	SII = OI = OI = OS	1/0.01(9)
03 - 311 - 01 - 101	1/2.03(7)	S11 - 04 - 00 - 102 S11 04 C6/ C10	1.33(13) -17870(13)
02 - 311 - 01 - N1	3.73(1)	S11 - 04 - 00 - 010 S11 05 011/ N2/	1/0.70(13)
$01 - 511 - 02 - N1^{\prime}$	-4.31(/)	$SII = OS = CIII = INS^{T}$	1.34 (13)
00-S11-02-N1'	-99.42 (8)	511—05—011 C15	-1/9.29 (10)

O3—Si1—O2—N1'	84.55 (8)	Si1—O2—N1′—C1′	4.17 (12)
O4—Si1—O2—N1'	171.81 (8)	Si1—O2—N1′—C2	-174.11 (9)
01—Si1—O2—C1	-4.51 (7)	O1—C1′—N1′—O2	-1.10 (14)
O6—Si1—O2—C1	-99.42 (8)	C5—C1′—N1′—O2	179.75 (10)
O3—Si1—O2—C1	84.55 (8)	O1—C1′—N1′—C2	177.22 (10)
O4—Si1—O2—C1	171.81 (8)	C5—C1′—N1′—C2	-1.93 (17)
01—Si1—O3—N2'	178.35 (8)	Si1—O3—N2'—C6'	-2.72(14)
O5—Si1—O3—N2'	-92.16 (9)	Si1—O3—N2′—C7	178.47 (13)
O4—Si1—O3—N2'	2.82 (9)	O4—C6′—N2′—O3	0.90 (17)
O2—Si1—O3—N2'	91.13 (9)	C10—C6′—N2′—O3	-179.05 (14)
01—Si1—O3—C6	178.35 (8)	O4—C6′—N2′—C7	179.75 (14)
O5—Si1—O3—C6	-92.16 (9)	C10—C6′—N2′—C7	-0.2 (2)
O4—Si1—O3—C6	2.82 (9)	Si1—O6—N3'—C11'	0.47 (13)
O2—Si1—O3—C6	91.13 (9)	Si1—O6—N3′—C12	-179.69 (11)
O6—Si1—O4—C6'	173.11 (9)	O5—C11′—N3′—O6	-1.19 (15)
O3—Si1—O4—C6'	-2.31 (9)	C15—C11′—N3′—O6	179.43 (11)
O5—Si1—O4—C6'	85.86 (9)	O5—C11′—N3′—C12	178.96 (12)
O2—Si1—O4—C6'	-96.90 (9)	C15—C11′—N3′—C12	-0.4 (2)
O6—Si1—O4—N2	173.11 (9)	O2—N1′—C2—C3	-179.73 (10)
O3—Si1—O4—N2	-2.31 (9)	C1'—N1'—C2—C3	2.12 (17)
O5—Si1—O4—N2	85.86 (9)	O2—C1—C2—C3	-179.73 (10)
O2—Si1—O4—N2	-96.90 (9)	N1—C1—C2—C3	2.12 (17)
01—Si1—O5—C11′	-95.80 (8)	N1′—C2—C3—C4	-0.29(18)
06—Si1—O5—C11'	-0.87 (8)	C1—C2—C3—C4	-0.29(18)
O3—Si1—O5—C11′	174.91 (8)	C2—C3—C4—C5	-1.73 (19)
O4—Si1—O5—C11′	87.67 (8)	O1—C1′—C5—C4	-179.23 (10)
01—Si1—O5—N3	-95.80 (8)	N1′—C1′—C5—C4	-0.15 (17)
O6—Si1—O5—N3	-0.87 (8)	O1—N1—C5—C4	-179.23 (10)
O3—Si1—O5—N3	174.91 (8)	C1—N1—C5—C4	-0.15 (17)
O4—Si1—O5—N3	87.67 (8)	C3—C4—C5—C1′	1.94 (18)
01—Si1—O6—N3'	89.47 (9)	C3—C4—C5—N1	1.94 (18)
O5—Si1—O6—N3'	0.22 (9)	O3—N2′—C7—C8	178.70 (17)
O4—Si1—O6—N3'	-94.73 (9)	C6'—N2'—C7—C8	0.0 (3)
O2—Si1—O6—N3'	176.74 (9)	O3—C6—C7—C8	178.70 (17)
01—Si1—O6—C11	89.47 (9)	N2	0.0 (3)
O5—Si1—O6—C11	0.22 (9)	N2′—C7—C8—C9	0.1 (3)
O4—Si1—O6—C11	-94.73 (9)	C6—C7—C8—C9	0.1 (3)
O2—Si1—O6—C11	176.74 (9)	C7—C8—C9—C10	0.1 (4)
Si1-01-N1-C1	-2.53 (12)	C8—C9—C10—N2	-0.3 (3)
Si1—01—N1—C5	176.61 (9)	C8—C9—C10—C6′	-0.3 (3)
Si1-04-N2-C6	1.35 (15)	O4—N2—C10—C9	-179.58 (17)
Si1-04-N2-C10	-178.70 (13)	C6—N2—C10—C9	0.4 (3)
Si1-05-N3-C11	1.34 (13)	O4—C6′—C10—C9	-179.58 (17)
Si1-05-N3-C15	-179.29 (10)	N2'—C6'—C10—C9	0.4 (3)
Si1-02-C1-N1	4.17 (12)	O6-C11-C12-C13	-179.28 (13)
Si1-02-C1-C2	-174.11 (9)	N3—C11—C12—C13	0.6 (2)
01—N1—C1—O2	-1.10 (14)	O6—N3′—C12—C13	-179.28 (13)
C5—N1—C1—O2	179.75 (10)	C11'—N3'—C12—C13	0.6 (2)

O1—N1—C1—C2	177.22 (10)	C11—C12—C13—C14	-0.8 (2)
C5—N1—C1—C2	-1.93 (17)	N3'-C12-C13-C14	-0.8 (2)
Si1—O3—C6—N2	-2.72 (14)	C12-C13-C14-C15	0.9 (2)
Si1-03-C6-C7	178.47 (13)	O5—C11′—C15—C14	-178.84 (12)
O4—N2—C6—O3	0.90 (17)	N3'-C11'-C15-C14	0.48 (19)
C10-N2-C6-O3	-179.05 (14)	O5—N3—C15—C14	-178.84 (12)
O4—N2—C6—C7	179.75 (14)	C11—N3—C15—C14	0.48 (19)
C10-N2-C6-C7	-0.2 (2)	C13—C14—C15—C11′	-0.7 (2)
Si1-06-C11-N3	0.47 (13)	C13—C14—C15—N3	-0.7 (2)
Si1-06-C11-C12	-179.69 (11)		

Mo *K* α radiation, $\lambda = 0.71073$ Å

 $\theta = 2.5 - 33.8^{\circ}$

 $\mu = 1.03 \text{ mm}^{-1}$ T = 100 K

 $R_{\rm int} = 0.059$

 $h = -24 \rightarrow 24$

 $k = -23 \rightarrow 24$

 $l = -23 \rightarrow 24$

Tetrahedron, pale yellow

5067 independent reflections

4360 reflections with $I > 2\sigma(I)$

 $0.18 \times 0.18 \times 0.18 \text{ mm}$

 $\theta_{\text{max}} = 38.5^{\circ}, \ \theta_{\text{min}} = 2.1^{\circ}$

Cell parameters from 4002 reflections

(III) fac-Tris[1-oxopyridine-2-thiolato(1-)]silicon(IV) chloride chloroform-d₁ disolvate

Crystal data

 $C_{15}H_{12}N_{3}O_{3}S_{3}Si^{+} \cdot Cl^{-} \cdot 2CDCl_{3}$ $M_{r} = 682.74$ Cubic, P2₁3 a = 13.9483 (12) Å $V = 2713.7 (7) Å^{3}$ Z = 4 F(000) = 1368 $D_{x} = 1.671 \text{ Mg m}^{-3}$

Data collection

Bruker SMART APEXII CCD Platform diffractometer Radiation source: fine-focus sealed tube ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 2014) $T_{\min} = 0.681, T_{\max} = 0.748$ 66318 measured reflections

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.037$	H-atom parameters constrained
$wR(F^2) = 0.088$	$w = 1/[\sigma^2(F_o^2) + (0.0387P)^2 + 1.2622P]$
S = 1.03	where $P = (F_0^2 + 2F_c^2)/3$
5067 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
103 parameters	$\Delta \rho_{\rm max} = 0.88 \ { m e} \ { m \AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.67 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant	Absolute structure: Flack x determined using
direct methods	1775 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons et
Secondary atom site location: difference Fourier	al., 2013)
map	Absolute structure parameter: -0.018 (18)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cl1	0.47976 (3)	-0.02024 (3)	0.52024 (3)	0.01864 (13)	
Si1	0.48307 (3)	0.48307 (3)	0.48307 (3)	0.01248 (14)	
S1	0.47110 (3)	0.49896 (3)	0.64425 (3)	0.01526 (8)	
01	0.45832 (11)	0.35879 (9)	0.49722 (10)	0.0153 (2)	
N1	0.46124 (12)	0.31975 (11)	0.58645 (11)	0.0138 (2)	
C1	0.46796 (14)	0.37754 (13)	0.66485 (13)	0.0146 (3)	
C2	0.47203 (16)	0.33345 (14)	0.75505 (14)	0.0190 (3)	
H2	0.4772	0.3713	0.8114	0.023*	
C3	0.46853 (18)	0.23462 (15)	0.76169 (15)	0.0220 (4)	
H3	0.4708	0.2045	0.8228	0.026*	
C4	0.46163 (15)	0.17883 (14)	0.67861 (15)	0.0187 (3)	
H4	0.4592	0.1109	0.6831	0.022*	
C5	0.45834 (14)	0.22276 (13)	0.59068 (14)	0.0161 (3)	
Н5	0.4541	0.1858	0.5337	0.019*	
C6	0.30918 (15)	0.30918 (15)	0.30918 (15)	0.0212 (6)	
D6	0.3506	0.3506	0.3506	0.025*	
Cl2	0.30061 (7)	0.19603 (5)	0.36357 (6)	0.04462 (19)	
C7	0.12879 (19)	0.37121 (19)	0.62879 (19)	0.0264 (7)	
D7	0.0874	0.4126	0.5874	0.032*	
C13	0.21080 (7)	0.44529 (6)	0.68782 (8)	0.0511 (2)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	<i>U</i> ²²	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.01864 (13)	0.01864 (13)	0.01864 (13)	0.00093 (14)	-0.00093 (14)	-0.00093 (14)
Si1	0.01248 (14)	0.01248 (14)	0.01248 (14)	-0.00028 (14)	-0.00028 (14)	-0.00028 (14)
S1	0.01940 (18)	0.01277 (16)	0.01360 (16)	-0.00101 (14)	0.00168 (14)	-0.00190 (13)
01	0.0215 (6)	0.0125 (5)	0.0121 (5)	-0.0009 (4)	-0.0009 (4)	0.0005 (4)
N1	0.0148 (6)	0.0134 (6)	0.0132 (6)	0.0002 (5)	0.0003 (5)	0.0004 (5)
C1	0.0158 (7)	0.0144 (6)	0.0137 (6)	0.0004 (5)	0.0008 (5)	-0.0009(5)
C2	0.0252 (9)	0.0184 (7)	0.0134 (7)	0.0009 (7)	0.0013 (7)	0.0004 (6)
C3	0.0300 (10)	0.0182 (8)	0.0176 (8)	0.0021 (8)	-0.0003 (7)	0.0049 (6)
C4	0.0218 (8)	0.0144 (7)	0.0201 (8)	0.0008 (6)	0.0004 (7)	0.0028 (6)
C5	0.0177 (7)	0.0130 (7)	0.0178 (7)	0.0005 (5)	-0.0005 (6)	-0.0001 (5)
C6	0.0212 (6)	0.0212 (6)	0.0212 (6)	-0.0019 (7)	-0.0019 (7)	-0.0019 (7)
Cl2	0.0654 (5)	0.0202 (3)	0.0482 (4)	0.0016 (3)	0.0125 (4)	0.0041 (3)
C7	0.0264 (7)	0.0264 (7)	0.0264 (7)	-0.0015 (8)	0.0015 (8)	-0.0015 (8)
Cl3	0.0493 (5)	0.0432 (4)	0.0610 (5)	-0.0147 (3)	-0.0130 (4)	-0.0089 (4)

Geometric parameters (Å, °)

Si1—O1 ⁱ	1.7784 (14)	C3—C4	1.399 (3)
Si1—O1 ⁱⁱ	1.7784 (14)	С3—Н3	0.9500
Sil—Ol	1.7784 (14)	C4—C5	1.372 (3)
Sil—S1	2.2654 (7)	C4—H4	0.9500

Si1—S1 ⁱ	2.2654 (7)	С5—Н5	0.9500
Si1—S1 ⁱⁱ	2.2654 (7)	C6—C12 ⁱ	1.7552 (13)
S1—C1	1.7184 (19)	C6—Cl2 ⁱⁱ	1.7552 (13)
O1—N1	1.359 (2)	C6—C12	1.7552 (13)
N1—C5	1.355 (2)	C6—D6	1.0000
N1—C1	1.362 (2)	C7—C13 ⁱⁱⁱ	1.7476 (16)
C1—C2	1.402 (3)	C7—C13 ^{iv}	1.7476 (16)
C2—C3	1.383 (3)	C7—C13	1.7476 (16)
C2—H2	0.9500	C7—D7	1.0000
O1 ⁱ —Si1—O1 ⁱⁱ	86.60 (7)	C3—C2—H2	120.1
O1 ⁱ —Si1—O1	86.59 (7)	C1—C2—H2	120.1
O1 ⁱⁱ —Si1—O1	86.59 (7)	C2—C3—C4	120.09 (18)
O1 ⁱ —Si1—S1	96.31 (5)	С2—С3—Н3	120.0
O1 ⁱⁱ —Si1—S1	174.00 (5)	C4—C3—H3	120.0
O1—Si1—S1	88.33 (4)	C5—C4—C3	119.64 (17)
O1 ⁱ —Si1—S1 ⁱ	88.33 (4)	C5—C4—H4	120.2
O1 ⁱⁱ —Si1—S1 ⁱ	96.31 (5)	C3—C4—H4	120.2
O1—Si1—S1 ⁱ	174.00 (5)	N1—C5—C4	118.94 (17)
S1—Si1—S1 ⁱ	89.04 (3)	N1—C5—H5	120.5
O1 ⁱ —Si1—S1 ⁱⁱ	174.00 (5)	C4—C5—H5	120.5
O1 ⁱⁱ —Si1—S1 ⁱⁱ	88.33 (4)	Cl2 ⁱ —C6—Cl2 ⁱⁱ	110.91 (11)
O1—Si1—S1 ⁱⁱ	96.31 (5)	Cl2 ⁱ —C6—Cl2	110.91 (11)
S1—Si1—S1 ⁱⁱ	89.04 (3)	Cl2 ⁱⁱ —C6—Cl2	110.91 (11)
$S1^{i}$ $Si1$ $S1^{ii}$	89.04 (3)	$C12^{i}$ — $C6$ — $D6$	108.0
C1 - S1 - Si1	94.09 (6)	$Cl2^{ii}$ — $C6$ — $D6$	108.0
N1—O1—Si1	119.10 (11)	C12—C6—D6	108.0
C5—N1—O1	116.05 (15)	$C13^{iii}$ — $C7$ — $C13^{iv}$	110.93 (14)
C5—N1—C1	123.93 (16)	Cl3 ⁱⁱⁱ —C7—Cl3	110.93 (14)
01—N1—C1	120.02 (14)	Cl3 ^{iv} —C7—Cl3	110.93 (14)
N1—C1—C2	117.64 (16)	Cl3 ⁱⁱⁱ —C7—D7	108.0
N1—C1—S1	116.80 (13)	Cl3 ^{iv} —C7—D7	108.0
C2-C1-S1	125.56 (14)	Cl3—C7—D7	108.0
$C_3 - C_2 - C_1$	119.75 (18)		
	11)((0 (10)		
$O1^{i}$ —Si1—O1—N1	-108.75 (16)	Si1—S1—C1—N1	-7.82(15)
O1 ⁱⁱ —Si1—O1—N1	164.47 (14)	Si1—S1—C1—C2	171.97 (18)
\$1—\$i1—01—N1	-12.32(12)	N1-C1-C2-C3	-0.4(3)
S1 ⁱⁱ —Si1—O1—N1	76.53 (13)	S1—C1—C2—C3	179.79 (18)
Si1—O1—N1—C5	-168.92 (13)	C1—C2—C3—C4	0.5 (4)
Si1-01-N1-C1	10.3 (2)	C2—C3—C4—C5	0.0 (4)
C5—N1—C1—C2	0.0 (3)	01—N1—C5—C4	179.61 (17)
01—N1—C1—C2	-179.14 (18)	C1—N1—C5—C4	0.5 (3)
C5—N1—C1—S1	179.76 (15)	C3—C4—C5—N1	-0.4(3)
01—N1—C1—S1	0.7 (2)		
	× /		

Symmetry codes: (i) *y*, *z*, *x*; (ii) *z*, *x*, *y*; (iii) *z*-1/2, -*x*+1/2, -*y*+1; (iv) -*y*+1/2, -*z*+1, *x*+1/2.