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Abstract

The fitness of a pathogen is a composite phenotype determined by many different factors influencing growth rates both within and
between hosts. Determining what factors shape fitness at the host population-level is especially challenging because both intrinsic
factors like pathogen genetics and extrinsic factors such as host behavior influence between-host transmission potential. This chal-
lenge has been highlighted by controversy surrounding the population-level fitness effects ofmutations in the SARS-CoV-2 genome and
their relative importance when compared against non-genetic factors shaping transmission dynamics. Building upon phylodynamic
birth–death models, we develop a new framework to learn how hundreds of genetic and non-genetic factors have shaped the fitness of
SARS-CoV-2. We estimate the fitness effects of all amino acid variants and several structural variants that have circulated in the United
States between February 2020 and March 2021 from viral phylogenies. We also estimate how much fitness variation among pathogen
lineages is attributable to genetic versus non-genetic factors such as spatial heterogeneity in transmission rates. Before September
2020, most fitness variation between lineages can be explained by background spatial heterogeneity in transmission rates across geo-
graphic regions. Starting in late 2020, genetic variation in fitness increased dramatically with the emergence of several new lineages
including B.1.1.7, B.1.427, B.1.429 and B.1.526. Our analysis also indicates that genetic variants in less well-explored genomic regions
outside of Spike may be contributing significantly to overall fitness variation in the viral population.
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1. Introduction
Determining what factors shape the overall fitness of a novel
pathogen such as SARS-CoV-2 is key to understanding the
pathogen’s epidemiological and evolutionary dynamics. However,
quantifying pathogen fitness poses a number of conceptual aswell
as practical challenges. The fitness of a pathogen within a host,
usually defined in terms of replication or growth rates, may only
have a tenuous relationship with fitness at the host population-
level, which is normally defined in terms of a pathogen’s transmis-
sion potential (Handel and Rohani 2015; Xue and Bloom 2020). In
addition to being scale-dependent, fitness is generally a compos-
ite phenotype determined bymany different intrinsic (e.g. genetic)
and extrinsic (e.g. environmental) factors. Several recent exam-
ples have highlighted how genetic mutations can dramatically
increase the fitness of newly emerging viral pathogens includ-
ing SARS-CoV, avian influenza and Ebola virus (Consortium et al.,
2004; Long et al., 2016; Urbanowicz et al., 2016). At the same time,
extrinsic factors such as climate and host behavior also strongly
shape transmission dynamics and thereby pathogen fitness at the
population-level (Shaman and Kohn 2009; Dalziel et al., 2018;

Kissler et al., 2020). Studying fitness only on one scale, or only

a single component of fitness, may therefore distort our overall

picture of what factors most strongly determine pathogen fitness

and transmission potential.
For SARS-CoV-2, reports of novel genetic variants with

enhanced infectiousness or transmissibility emerged within the

first months of the global pandemic and have since received con-

siderable attention (Korber et al., 2020a; MacLean et al., 2020b;

Tang et al., 2020). Early on, the most notable of these vari-

ants was the D614G mutation in the receptor binding domain of

the Spike glycoprotein that binds human ACE2 receptors during

cell entry. This variant spread rapidly around the globe in the
spring of 2020 and apparently out-competed other viral genotypes
that were already established in several locations (Korber et al.,
2020b). Then in late 2020, several new variants of SARS-CoV-2with
increased transmissibility and potential antigenic escape muta-
tions emerged, including lineage B.1.1.7 in the UK (Volz et al., 2021;
Davies et al., 2021), B.1.351 in South Africa (Tegally et al., 2020) and
P.1 in Brazil (Naveca et al., 2021). All of these variants were sub-
sequently introduced into the United States as early as October
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or November, 2020 (Larsen and Worobey 2021; Washington et al.,
2021). However, quantifying the fitness of these variants in the
US and their impact on national-level epidemic dynamics poses a
considerable challenge due to the rapidly evolving epidemic land-
scape in the US. In addition to introduced variants, new ‘domestic’
variants have emerged such as B.1.427/B.1.429 in California and
B.1.526 in New York (Deng et al., 2021; Walensky, Walke and Fauci,
2021; Zhang et al., 2021). At the same time, older lineages like
B.1.2 continued to dominant across large geographic regions even
as new variants emerged (Pater et al., 2021). Furthermore, mul-
tiple lineages have independently acquired the same amino acid
mutations suspected to increase transmission potential or escape
immunity, including Spike E484K, Spike N501Y and Spike Q677P/H
(Hodcroft et al., 2021; Martin et al., 2021), suggesting that lineages
are adapting through convergent evolution.

While the fitness effect of genetic variants can be precisely
quantifiedwithin hosts in controlled lab experiments (Urbanowicz
et al., 2016; Muth et al., 2018; Zhang et al., 2020), laboratory
conditions may not faithfully mimic within-host environments
and immune responses encountered during natural infections.
Moreover, due the scale-dependence of fitness, increased cellu-
lar infectivity or replication rates may not scale up to increase
transmission potential between hosts, especially if within-host
growth rates already produce sufficient viral loads or optimize a
tradeoff between virulence and transmission (Fraser et al., 2007;
Alizon et al., 2009; Ke et al., 2020). Thus, in order to provide a
definitive answer about the epidemiological significance of a novel
pathogen variant, we also need to quantify transmission fitness at
the between-host level.

Transmission fitness at the between-host level can be inferred
based on the evolutionary dynamics of pathogen variants in the
host population. For example, the growth rate of alternate vari-
ants in a host population can be estimated from time series of
variant frequencies or pathogen phylogenies as a surrogate for
fitness (Foll, Shim, and Jensen, 2015; Kühnert et al., 2018). How-
ever, because fitness is a composite phenotype determined by
multiple factors, inferring the fitness effect of a single feature
such as a mutation can be easily confounded by other factors
shaping pathogen fitness if these confounding factors are not
accounted for. For example, a mutation of interest may be linked
to other non-neutral mutations in the same genetic background
and thereby confound estimates of themutation’s fitness effect by
altering the background fitness of pathogen lineages carrying the
mutation (Illingworth and Mustonen 2012; Neher 2013). Extrin-
sic factors such as climate and host behavior also strongly shape
transmission dynamics (Dalziel et al., 2018; Kissler et al., 2020),
such that a novel variant may increase rapidly in frequency and
appear to have a fitness advantage simply by being in the right
host population at the right time.

Viral phylogenies offer a promising way to estimate transmis-
sion fitness and disentangle the fitness effects of multiple genetic
and extrinsic factors by tracking the genetic and non-genetic
changes occurring along each lineage in the phylogeny. Here, we
use the term lineage generally to refer to one or more branches
in the phylogeny related by shared ancestry. On average then,
a pathogen lineage with increased between-host fitness will be
transmitted more frequently and have a higher probability of per-
sisting through time. More fit lineages will therefore have a higher
branching rate in the phylogeny and leave behind more sam-
pled descendants. The fitness of a viral lineage can therefore be
inferred from its branching pattern in a phylogeny using phylody-
namic approaches such as birth–deathmodels (Neher, Russell and
Shraiman 2014). Multi-type birth-death (MTBD) models extend

this basic idea by allowing the birth and death rate of lineages, and
thereby fitness, to depend on a lineage’s state or type, which may
represent its genotype or any other feature representing a discrete
character trait (Maddison, Midford and Otto, 2007; Stadler and
Bonhoeffer 2013; Kühnert et al., 2018). Here we develop a phylody-
namic inference framework that builds on earlier MTBD models
to allow the fitness of a lineage to depend on multiple evolving
traits or features (Rasmussen and Stadler 2019). In this frame-
work, we first reconstruct ancestral states for all features that
potentially predict fitness and then use a fitness mapping function
to translate a lineage’s reconstructed ancestral features into its
expected fitness. We also develop a new approach that combines
recent advances in machine learning with likelihood-based sta-
tistical inference under a birth–death model to learn this fitness
mapping function from a phylogeny with reconstructed ancestral
features.

We apply this new phylodynamic framework to learn what
genetic as well as extrinsic features determined the transmission
fitness of SARS-CoV-2 in the United States over the first year of
the pandemic. This approach allows us to estimate the fitness
effects of a large number of genetic variants while accounting
for confounding factors such as background spatial heterogene-
ity in transmission. This approach also allows us to explore the
relative importance of different features to overall transmission
fitness by decomposing or partitioning fitness variation among lin-
eages into parts attributable to different components of fitness.
We therefore obtain a clearer picture of what factors have most
strongly shaped the fitness of SARS-CoV-2 lineages circulating in
the US.

2. Results
2.1 Phylogenetic and ancestral state
reconstruction
We originally analyzed a data set containing 22,416 SARS-CoV-2
whole genome sequences sampled in the United States prior to
September 1st, 2020 (pre-2020-09 data). Since the evolutionary
dynamics of SARS-CoV-2 underwent a dramatic transition in late
2020, we subsequently performed an updated analysis on an addi-
tional 66,339 sequences sampled in the US between September
1st, 2020 and March 1st, 2021 (post-2020-09 data). We combine
these two data sets (combined data) for some analyses below.
Dated or time-calibrated maximum likelihood (ML) phylogenetic
trees were reconstructed from whole genome sequences in each
data set. For all sampled viruses, we also assembled a set of
features that potentially predict fitness, including both genetic
and non-genetic, environmental features. The genetic features
include amino acid variants (AAVs) in coding regions spanning
the SARS-CoV-2 genome as well as structural (deletion) variants.
The non-genetic features include each sample’s spatial location
both at the level of US state and geographic region as determined
by the US Department of Health and Human Services. Ancestral
states for all features were then reconstructed for each node in the
ML phylogeny. Thus, for each lineage in the phylogeny we obtain
a vector of categorical variables representing ancestral features
which we use to predict a lineage’s fitness.

2.2 Background sampling and transmission
heterogeneity
Because phylodynamic estimates will inevitably depend on what
pathogens are sampled for genomic sequencing, we first esti-
mated how sampling efforts varied across the US by time and
geographic region. Sampling fractions were estimated based on
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Figure 1. Background spatiotemporal heterogeneity in sampling fractions and effective reproductive number Re of SARS-CoV-2 in the US. (A) Sampling
fractions estimated based on the number of full viral genomes deposited to GISAID relative to the estimated number of total COVID infections in each
region and time interval. (B) Effective reproductive number Re estimates from the ML SARS-CoV-2 phylogeny. A regional transmission effect was
estimated for each region and time interval, which was then used to rescale the estimated base transmission rate to compute Re. The base
transmission rate was estimated to be 0.184 per day, which assuming a constant recovery/removal rate of 0.14 per day yields an estimated
time-averaged Re = 1.31. States are grouped into the geographic regions designated by the US Department of Health and Human Services.

the number of whole-genome sequences submitted to GISAID rel-
ative to the total number of COVID infections imputed based on
reported COVID deaths (see Methods). Overall, sampling frac-
tions were extremely variable over the first eight months of the
pandemic, but have become less variable and increased steadily
over time since fall 2020 (Fig. 1A). When averaged across all
times and regions, the mean sampling fraction is estimated
to be 0.14%.

Before considering models that include genetic variants
as fitness-predicting features, we considered several models
accounting for background spatial and temporal variability in
transmission, which could otherwise confound fitness esti-
mates. The best fitting model allowed transmission rates to
vary by both monthly time interval and geographic region (see
Model Selection and Table 3). We therefore use a model that
directly accounts for time-varying regional transmission rates

and time-varying regional sampling fractions (as estimated in
Fig. 1A) in all subsequent analysis. Note also that because the
recovery rate and sampling fractions are treated as fixed param-
eters in subsequent analyses, all variation in fitness between
lineages is attributable to variation in estimated transmission
rates.

Using our best-fitting phylodynamic birth–death model, we
estimated how background transmission rates varied across geo-
graphic regions from the SARS-CoV-2 phylogeny. Fig. 1B illustrates
the changing transmission dynamics in terms of the effective
reproductive number Re for each region. Estimated transmission
rates and Re peak in February 2020, substantially earlier than
peaks in reported cases. This pattern has been reported in other
phylodynamic studies (Fauver et al., 2020; Nadeau et al., 2021;
Ragonnet-Cronin et al., 2021), and may reflect considerable unde-
tected transmission as well as lags in reporting before routine
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testing began. Transmission rates then remain low through the
spring and early summer 2020 but are extremely variable across
regions, likely reflecting the extreme variability in imputed sam-
pling fractions during this same time period. Transmissions rates
then steadily increase through late summer and fall of 2020 before
declining in early 2021, consistent with trends observed in case
report data.

2.3 Fitness effects of genetic variants
We next estimated the fitness effect of individual genetic vari-
ants while controlling for spatial heterogeneity in background
transmission rates and sampling fractions. We consider the
fitness effect of 66 AAVs in the pre-2020-09 data and 110 AAVs
in the post-2020-09 data. However, in both data sets several
variants are tightly linked and nearly always co-occur together

Figure 2. Estimated transmission fitness effects of amino acid variants in the pre-2020-09 data. Fitness effects are jointly estimated under a model of
multiplicative fitness, such that neutral variants have a fitness of one. Variants are ordered from top to bottom by their genomic position. Vertical
lines indicate the maximum likelihood estimate (MLE) and boxes reflect the extent of the 95% CI. The MLE of each fitness effect is also shown for ten
replicate bootstrap trees as transparent circles. Sets of strongly linked variants are grouped together as single features to avoid collinearity among
features. The nsp1 D75E-linked set includes nsp1 D75E, nsp3 P153L, nsp14 F233L and ORF8 V62L; the nsp14 N129D-linked set includes nsp14 N129D,
nsp16 R216C, ORF3a G172V, ORF9 P199L and ORF9 P67S. The nsp14 N129D-linked set is referred to as the B.1.2 linked set below.
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Table 1. Amino acid variants with significantly positive fitness
effects in the pre-2020-09 data.

Variant MLE 95% CI Frequency

nsp2 A336V 1.15 1.13–1.22 0.006
nsp2 G199E 1.223 1.13–1.26 0.005
nsp3 K384N 1.068 1.06–1.12 0.015
nsp13 P47L 1.113 1.01–1.13 0.006
S Q675R 1.17 1.14–1.22 0.005
ORF9 S194L 1.13 1.01–1.24 0.048
ORF9 T205I 1.177 1.05–1.24 0.007

(Supplementary Fig. S1), leading to strong collinearity among fea-
tures in our model. We therefore encode sets of linked variants
with correlation coefficients greater than 0.95 as single features.

Fitness effects were estimated under a model where each vari-
ant has a multiplicative effect on the base transmission rate of a
lineage such that a neutral variant has a fitness effect of 1.0 and
deleterious or beneficial mutants have fitness effects less than or
greater than 1.0, respectively. These fitness effects therefore also
directly quantify the variant’s effect on the Re of lineages with the
variant. We only consider a variant to be significantly deleteri-
ous or beneficial if the estimated 95% credible interval (CI) does
not overlap with 1.0. A full list of all estimated fitness effects are
available in Supplementary Data Files 1 and 2.

For the pre-2020-09 data, most AAVs are inferred to be neu-
tral, with maximum likelihood estimates (MLE) of fitness effects
close to 1.0 and 95% CIs overlapping 1.0 (Fig. 2). Variants with
larger positive fitness effects (>1.05) are generally rare mutations
or have wide confidence intervals surrounding the MLE. AAVs
with large and significant positive effects are summarized in
Table 1. Estimated fitness effects are generally consistent across
10 bootstrapped phylogeny replicates, indicating that our fitness
estimates are not overly sensitive to the exact topology of the
reconstructed ML tree.

The Spike D614G variant nearly always co-occurs with the
P323L variant in nsp12 (RdRp), so we consider these two vari-
ants together as a single feature, but hereafter refer to this as the
Spike D614G variant. Despite rapidly increasing in frequency in
the spring of 2020 (Fig. 4A), the Spike D614G variant is estimated
to have only amodest fitness benefit of 1.095with a fairlywide 95%
CI of 0.89–1.29. Simulations using a two-strain epidemiological
model show that a transmission fitness effect of this magnitude is
insufficient to explain D614G’s rapid increase in frequency during
the spring of 2020. Even if D614G entered the US through exter-
nal introductions at a much higher rate than the ancestral 614D
variant, D614G would have required a fitness advantage much
larger than 10% to rise so rapidly in frequency (Supplementary Fig.
S3). We therefore explore other plausible explanations for D614G’s
rapid rise below.

For the post-2020-09 data, most individual AAVs are again esti-
mated to be approximately neutral (Fig. 3). Only one AAV, Spike
A701V, is estimated to be significantly deleterious with a fitness
effect of 0.937 (95% CI: 0.91–0.98). However, there are a rela-
tively large number of AAVswith significant positive fitness effects
between 1.05 and 1.10, especially in Spike as well as nsp3, ORF3a
and ORF9 (Table 2).

Within the Spike domain, the putative antigenic escape muta-
tion S E484K is estimated to have a significant fitness advantage
(MLE: 1.117; 95% CI: 1.10–1.15). Two receptor binding domain
mutations at position 501 with increased ACE2 binding avidity
are also estimated to have significant positive fitness effects: S

N501T (MLE: 1.091; 95% CI: 1.07–1.13) and S N501Y (MLE: 1.090;
95% CI: 1.05–1.11). The S Q677P variant, which has arisen in mul-
tiple genetic backgrounds (Pater et al., 2021; Hodcroft et al., 2021),
linked with nsp6 Q160R is likewise estimated to have a significant
fitness advantage (MLE: 1.109; 95% CI: 1.05–1.15), while the related
mutation S Q677H is estimated to have a much smaller advan-
tage (MLE: 1.026; 95% CI: 1.02–1.04). Finally, S P681H which has
arisen multiple times including in B.1.1.7 and may aid cell entry
by increasing the efficiency of furin cleavage (Garry et al., 2021), is
estimated have a fitness effect of 1.069 (95% CI: 1.04–1.08).

To gain a better understanding of how the sampling of indi-
vidual AAVs impacted estimated fitness effects, we explored how
both the number of times each mutation was sampled and the
number of times each mutation occurred independently in dif-
ferent lineages impacted inference. We found no apparent rela-
tionship between the number of samples and the MLE fitness
effects (Pearson correlation coefficient R=−0.009, Supplemen-
tary Fig. S4A) and only a very weak negative correlation between
the number of independent mutations and the MLE fitness effects
(R=−0.173, Supplementary Fig. S4B), suggesting that the over-
all prevalence of each mutation did not unduly impact our fitness
estimates. Likewise, there was only a weak negative correlation
between the number of samples and the uncertainty surround-
ing our fitness estimates (R=−0.116, Supplementary Fig. S4C),
although the mutations with the widest CIs were all rare muta-
tions. Lastly, there was a slightly stronger negative correlation
between the number of independent mutations and the width
of the CIs (R=−0.283, Supplementary Fig. S4D), suggesting that
our estimates becamemore confident formutations that occurred
independently many times in different genetic and spatial back-
grounds.

Overall, the genetic features with the largest positive fitness
effects in the post-2020-09 data are all sets of linked AAVs asso-
ciated with major lineages. The B.1.526-linked variants are esti-
mated to have the largest fitness effect (MLE: 1.322; 95% CI:
1.27–1.41), followed by the set of the nine B.1.1.7-linked variants
(MLE: 1.183: 95% CI: 1.14–1.21) and then the B.1.427 and B.1.429-
linked variants including Spike L452R (MLE: 1.159; 95% 1.08–1.229).
Unfortunately, due to tight genetic linkage among these muta-
tions, we are unable to determine whether individual AAVs within
these linked sets contribute disproportionately to the fitness of
these lineages.

2.4 Explaining the rapid rise of the Spike D614G
variant
If the Spike D614G variant is not itself strongly beneficial as
our fitness estimates suggest, what explains the rapid increase
in the frequency of the D614G variant across the US? Stochas-
tic processes including founder effects alone seem implausible
given that the 614G variant appears to have out-competed and
replaced the ancestral 614D variant even in geographic locations
where the 614G variant arrived after the 614D variant (Korber
et al., 2020b). We therefore consider two alternative hypotheses
for the success of 614G: (1) the 614G variant gained an advan-
tage by occurring in genetic backgrounds with higher fitness on
average than the 614D variant; or (2) the 614G variant tended to
occur in geographic locations with higher transmission rates on
average.

We estimated the average background fitness of lineages with
either the 614D or 614G variant, discounting the fitness effects
of the Spike 614 variants themselves. Thus each lineage’s back-
ground fitness reflects its geographic location as well as the fitness
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Figure 3. Estimated transmission fitness effects of amino acid variants in the post-2020-09 data. The fitness of each AAV is reported as a multiplicative
effect on the base transmission rate. The B.1.1.7-linked set includes nsp3 T183I, nsp3 A890D, nsp3 I1412T, S A570D, S D1118H, S S982A, ORF8 Q27*,
ORF8 R52I, ORF8 Y73C. The nsp14 V167L-linked set includes nsp12 V776L, nsp14 V167L, ORF3a S180P and ORF9 Q389L. The B.1.526-linked set includes
nsp13 D260Y, S S13I, S W152C and S L452R. The B.1.2-linked set includes nsp14 N129D, ORF3a G172V, ORF9 P67S and ORF9 P199L.

effects of all genetic features besides the Spike 614 variants. Lin-
eages with the 614G variant have an average background fitness
that is 10.6% higher than the 614D variant. After partitioning
total background fitness into genetic and spatial components, the
614G variant occurs in genetic backgrounds with 7.1% higher fit-
ness. The genetic background fitness advantage of 614G lineages
derives mostly from the ORF8 S84L variant, which we estimate
had a fitness effect of 1.073 but with a high degree of uncertainty

(95% CI: 0.87–1.26). However, the ORF8 S84L variant almost always
occurs in the same genetic background as D614G, so it is unclear
whether this fitness advantage should be attributed exclusively
to S84L or to the overall genetic fitness background of lineages
with 614G.

In addition to its genetic background, the 614G variant occurs
in spatial backgrounds (i.e. geographic regions) with 3.4% higher
transmission rates on average, although this average conceals the
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Table 2. Amino acid variants with significantly positive fitness
effects in the post-2020-09 data.

Variant MLE 95% CI Frequency

nsp3 K384N 1.057 1.05–1.07 0.016
nsp3 T1189I 1.057 1.03–1.06 0.012
nsp3 G1300D 1.052 1.05–1.07 0.023
nsp4 T429I 1.093 1.04–1.13 0.019
nsp13 Q88H 1.077 1.04–1.14 0.012
nsp14 V381L 1.06 1.05–1.07 0.014
S E484K 1.117 1.10–1.15 0.016
S N501T 1.091 1.07–1.13 0.011
S N501Y 1.090 1.05–1.11 0.026
S Q677H 1.026 1.02–1.04 0.054
S P681H 1.069 1.04–1.09 0.095
ORF3a T151I 1.074 1.07–1.11 0.015
ORF3a D155Y 1.053 1.04–1.06 0.018
ORF3a T223I 1.053 1.04–1.06 0.033
ORF3a E226G 1.124 1.12–1.15 0.014
ORF9 D3L 1.068 1.03–1.08 0.015
ORF9 P207S 1.063 1.05–1.07 0.015
ORF9 M234I 1.063 1.03–1.086 0.054
ORF9 E378Q 1.055 1.05–1.08 0.012

fact that the spatial background fitness advantage of the 614G
variant was initially more than 10% due to first spreading in
geographic regions with higher average transmission rates dur-
ing the earliest stages of the pandemic, but this spatial advantage
dissipated over time (Fig. 4). Directly comparing phylogenies with
reconstructed ancestral states for the 614 variants with ances-
tral geographic locations makes clear that lineages carrying the
614G variant tended to be in locations like Region 2 (NY and
NJ) and Region 5 (upper Midwest) with the highest transmission
rates during the earliest stages of the pandemic (Supplementary
Fig. S5).

The above analysis suggests that while lineages carrying the
614G variant may have had a small genetic fitness advantage, the
614G variant’s rapid rise in frequency across the US was largely
driven by establishing first in regions with higher average trans-
mission rates. This can be seen by comparing the cumulative
number of branching events in the phylogeny for lineages with
the 614D or 614G variant. Using branching events as a proxy for
transmission events, lineages with the 614G variant branch more
often first in Region 2 and then subsequently in all other regions
(Supplementary Fig. S6). Nevertheless, this pattern alone does not
necessarily imply that the 614G variant has an intrinsic fitness
advantage or elevated transmission rate as the 614G variant is
also importedmore frequently into each region than the D variant
(Supplementary Fig. S7). To place the variants on more equi-
table footing, we therefore compare the branching/transmission
rate of the variants per lineage, which accounts for the fact that
the total number of lineages with the 614G variant in a given
region may be higher due to either a higher transmission rate or
importation rate. Contextualizing variant dynamics in this way, it
becomes very clear that neither variant has a consistently higher
branching rate through time (Fig. 5), supporting our model-based
inference that the 614G variant may not have a major intrinsic fit-
ness advantage. Averaging over all regions and time intervals up
to May 1st, after which the 614D variant is rarely sampled, the
branching rate of the 614G variant (mean = 0.13 per week) is 13%
higher than the 614D variant (mean = 0.115 per week), consistent
with our model-based estimate of a ∼10% fitness advantage, but

these means are not significantly different (Welch’s t-test= −1.42;
P-value=0.15).

2.5 Fitness of major lineages circulating in the US
Because the genetic features with the largest fitness effects are all
linked sets of AAVs associated with individual lineages, we also
estimated the fitness of major lineages circulating in the US as of
March, 2021. Assignment of viruses to named lineages is based
on the PANGO nomenclature system (Rambaut et al., 2020). For
our purposes, we only consider PANGO lineages with at least 1,000
samples in the post-2020-09 data, plus B.1.526 (n=797). Note, that
this excludes some variants of concern that remained rare in the
US, including the B.1.351 and P.1 variants.

Similar to the AAVs considered above, we estimated a mul-
tiplicative fitness effect on the base transmission rate for each
lineage (Supplementary Fig. S8). Fig. 6 shows how the transmis-
sion fitness of these lineages fluctuated over time. The B.1 lineage
carrying the Spike D614G variant has a clear fitness advantage
over the ancestral A.1 lineage, but the fitness of both lineages
declines rapidly during the spring of 2020. B.1.2 in turn has a
moderate transmission fitness advantage over B.1, although the
large peak in B.1.2’s fitness relative to B.1 during the summer of
2020 is mostly attributable to a spatial transmission advantage
of occurring in the Upper Midwest and other geographic regions
with elevated transmission rates. The fitness of all major lin-
eages then increases again in late 2020 just as four lineages with
successively larger fitness advantages emerge. The rank order of
these four lineages’ fitness follows the same order as their associ-
ated sets of linked AAVs. B.1.427 and B.1.429, two sister lineages
that first appeared in California and carry the Spike L452R muta-
tion (Zhang et al., 2021), are estimated to have a transmission
fitness effect of 1.232 (95% CI: 1.14–1.30) and 1.211 (95% CI: 1.13–
1.28), respectively. B.1.1.7 has the second largest transmission
fitness effect of 1.318 (95%CI: 1.27–1.35). B.1.526, which has spread
rapidly in New York and carries the suspected antigenic escape
mutation Spike E484K, is estimated to have the largest estimated
transmission fitness effect (MLE: 1.397, 95% CI: 1.35–1.49) of all
lineages.

The fitness advantage we estimate for B.1.1.7 is much smaller
than the 50–70% increase in transmissibility estimated for B.1.1.7
in the UK (Davies et al., 2021; Volz et al., 2021). However, in
the US, B.1.1.7 did not have the same explosive growth as it did
in the UK and remained at relatively low frequencies in early
2021 despite arriving in the US as early as October or Novem-
ber, 2020 (Larsen and Worobey 2021; Washington et al., 2021).
Nevertheless, to ensure our phylodynamic model is not under-
estimating the fitness of B.1.1.7, we also estimated the fitness of
B.1.1.7 from a phylogeny of 30,000 SARS-CoV-2 genomes sampled
in England between Sept 1st, 2020 and Feb. 1st, 2021. In Eng-
land, we estimate the transmission fitness effect of B.1.1.7 to be
1.634 (95% CI: 1.61–1.65) relative to B.1, on par with earlier esti-
mates (Supplementary Fig. S9). Thus, using the parental lineage
B.1 as a basis for comparison, we estimate that the fitness of
B.1.1.7 is 63% higher than B.1 in England but only 32% higher in
the US.

Moreover, if anything, B.1.1.7 and other newly emerging
variants are likely over-represented in the GISAID database
due to preferential sequencing of variants of concern/interest.
In particular, it is suspected that B.1.1.7 and other lineages
with the Spike ∆H69/V70 deletion mutation were preferentially
selected for sequencing because this deletion leads to Spike gene
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Figure 4. Evolutionary dynamics and background fitness of the Spike 614 variants. (A) Frequency of lineages carrying the Spike D614G and nsp12 P323L
variants over time relative to all lineages in the ML phylogeny. These two variants are tightly linked so that they largely share the same evolutionary
trajectory. (B) Relative background fitness of lineages with the Spike 614G variant versus the 614D variant. Background fitness was computed by
averaging the fitness of all lineages with either variant present in the ML phylogeny at each time point. Total background fitness was then further split
into a spatial and genetic component. Relative fitness is only shown up to July 1st, 2020 as the 614D variant was not sampled after this date.

target failure (SGTF) during diagnostic qPCR testing (Washington
et al., 2020). Systematic oversampling of SGTF-associated vari-
ants with ∆H69/V70 could severely bias our phylodynamic
fitness estimates. Indeed, a sensitivity analysis shows that
the estimated fitness of B.1.1.7 declines exponentially as the
assumed sampling fraction of B.1.1.7 increases (Supplementary
Fig. S10).

Because other lineages besides B.1.1.7 share the ∆H69/V70
deletion and are also likely oversampled, we consider models
that allow lineages with ∆H69/V70 to have their own SGTF-
specific sampling fraction. SGTF-specific sampling fractions were
estimated based on the number of GISAID sequences with the
∆H69/V70 deletion relative to the total number of COVID infec-
tions caused by a ∆H69/V70 variant. The later was imputed
based on the number of SGTF-positive samples relative to all

positive COVID tests using Helix’s nation-wide diagnostic qPCR
testing data (see Methods). Nationally, we estimate that SGTF
samples were oversampled 4.11-fold, although there is extreme
spatiotemporal heterogeneity in estimated sampling fractions
(Supplementary Fig. S11). Regionally, we estimate that SGTF vari-
ants were oversampled by less than fourfold in most regions, but
there were larger than tenfold sampling biases in the Southeast
(Region 4) and Southwest (Region 9).

Accounting for SGTF-specific sampling fractions in our phy-
lodynamic model by fixing the sampling fractions for the
∆H69/V70 variants at their estimated values did not substan-
tially alter the estimated fitness of PANGO lineages (Supple-
mentary Fig. S8). For lineages with the ∆H69/V70 deletion
mutation, we estimate slightly lower transmission effects for
B.1.427/B.1.429 but observe no change for B.1.1.7, suggesting that
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Figure 5. Branching rates per lineage in each region for lineages with the Spike 614D versus 614G variant. Branching rates are reported here as the
number of branching events per week in the ML phylogeny for lineages with either variant.

our fitness estimates are largely robust to SGTF-specific sampling
biases.

2.6 Decomposing the sources of fitness variation
Finally, we fit a model that included genetic features, spatiotem-
poral effects and branch-specific random effects to account for
additional fitness variation not attributable to any feature ormod-
eled source of variation in the model. Fitting this model to the
SARS-CoV-2 phylogeny yields a fitness mapping function that we
can use to predict the fitness of all lineages in terms of their
transmission rate (Fig. 7).

Given the fitness of each lineage, we can compute how much
fitness varies between lineages and then decompose total fitness
variation into parts attributable to different components of fitness
(see Methods: Decomposing fitness variation). At the beginning
of the pandemic, virtually all fitness variation is attributable to
spatial heterogeneity in transmission among geographic regions
or to random effects which cannot be explained by spatial or
genetic features in our model (Fig. 8B). As expected, genetic vari-
ants explain little to no fitness variation at the beginning of the
pandemic when the virus population was genetically homoge-
neous. However, the fraction of fitness variation attributable to
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Figure 6. Time-varying transmission fitness of major PANGO lineages circulating in the US over time. The fitness of PANGO lineages is quantified as
the average effective reproductive number Re of all branches present in the phylogeny at each time point belonging to each PANGO lineage.

genetic variation quickly rises and then falls with the rise of Spike
D614G in spring 2020. Genetic fitness variation then rises again
in late summer and plateaus in late 2020, during which time
approximately 30%of fitness variation is explained by genetic vari-
ants. Genetic variation in fitness then declines in early 2021 as less
fit lineages are gradually replaced by more fit variants. Finally, a
growing fraction of fitness variation through time is explained by
random fitness effects, suggesting that an increasing fraction of
fitness variation may be attributable to features not included in
ourmodel or that theremay bemore complex interactions among
modeled features (e.g. epistatic interactions among mutations)
that cannot be captured by our fitness mapping function.

Most genetic fitness variation is in turn attributable ta a small
subset of genetic features including AAVs in Spike and sets of AAVs
linked tomajor PANGO lineages (Fig. 8C).We also included AAVs in
nsp3, ORF3a, and ORF9 as we found these coding regions contain
several AAVs with large positive fitness effects (Fig. 3). Unexpect-
edly, AAVs in ORF3a and ORF9 at times contribute more fitness
variation than AAVs in Spike, although this occurs mainly during
the fall of 2020 when overall fitness variation is low. Neverthe-
less, this does suggest that less well-characterized regions of the
genome outside of Spike may be shaping viral fitness in ways that
remain poorly understood.

3. Discussion
Determining what factors shape viral fitness variation at the
between-host level poses a major challenge to understanding a
pathogen’s transmission dynamics more generally. We therefore
developed a new phylodynamic framework for learning how a
large number of genetic and non-genetic features shape the over-
all fitness of SARS-CoV-2 at the host population-level. A major
advantage of this framework is that it allows us to decompose
or partition total fitness into different fitness components to
learn how both intrinsic and extrinsic factors shape viral fitness.
Applying this framework to over 88,000 viral whole genomes sam-
pled in the United States over the first year of the pandemic,
our results suggest that fitness variation among lineages was

largely attributable to spatial heterogeneity in background trans-
mission rates during the first months of the pandemic. The ability
to partition fitness components between intrinsic genetic and
non-genetic factors even revealed that the rapid rise of Spike
D614G was due, at least in part, to a large spatial transmission
advantage.

Before the emergence of several more fit variants in late 2020,
we found that extrinsic, non-genetic factors like spatial hetero-
geneity in transmission rates consistently contributed more to
overall variability in transmission fitness than viral genetic vari-
ation. Given that human mobility and non-pharmaceutical inter-
ventions such as social distancing appear to explain considerable
variation in transmission rates within and between communities
(Flaxman et al., 2020; Kissler et al., 2020; Chang et al., 2021), we
strongly suspect that these same behavioral variables underlie
the spatial transmission heterogeneity we infer from phylogenies.
Unfortunately, the spatial resolution of our phylogenetic analy-
sis was limited to geographic regions or at best US states. If we
were able to track the movement of lineages with finer spatial
resolution at the scale of individual communities where changes
in human behavior appear to be most strongly correlated with
reported cases, we could likely quantify how changes in human
mobility or other behaviors shape transmission rates from phy-
logenies. We believe that this is an important direction for future
work, as it would provide an independentmeans of measuring the
impact of public health interventions on transmission rates using
increasingly abundant pathogen sequence data (Ragonnet-Cronin
et al., 2021; Rasigade et al., 2020).

However, since late 2020, an increasing fraction of fitness vari-
ation in the US is attributable to emerging variants, including
the PANGO lineages B.1.1.7, B.1.427/B.1.429 and B.1.526. Although
quantifying the relative fitness of these lineages is complicated
by sampling biases, we estimate that these lineages have major
transmission fitness advantages over earlier circulating lineages,
and that our phylodynamic fitness estimates are largely robust to
variant-specific sampling biases such as SGTF. In particular, we
estimate that the ‘domestic’ variants B.1.427/B.1.429 and B.1.526
have a 20% and 40% fitness advantage relative to the ancestral



L. Kepler et al. 11

Figure 7. SARS-CoV-2 phylogeny with lineages colored by their transmission fitness (Re). The annotation block provides each sampled tip’s PANGO
lineage assignment and genotype for several ‘landmark’ genetic features in Spike. Fitness is predicted based on each lineage’s ancestral features using
the fitted fitness mapping function with spatial, genetic and random effects. For the purposes of visualization, the full ML tree was thinned to include
only 1000 randomly sampled tips and the fitness color scale was capped at a Re = 2 to emphasize variation in fitness surrounding the mean rather
than the full range of fitness values.

B.1 lineage, respectively. While the large fitness advantage we
infer for B.1.526 may have been partially driven by increasing
sampling in New York and the Northeast where this variant first
emerged, this type of sampling bias is accounted for by the time
and region-specific sampling fractions built into our model. We
therefore think this variantmay have had a true fitness advantage,
possibly driven by the antigenic escape mutation Spike E484K.
While our estimate of B.1.1.7’s transmission advantage of 32%
is not substantially lower than previous estimates of a 35%–45%
advantage in the US (Washington et al., 2021), these estimates

are much smaller than the 50%–70% transmission advantage esti-
mated for B.1.1.7 in the UK using epidemiological data (Davies
et al., 2021), coalescent-based methods (Volz et al., 2021), and
our own phylodynamic birth–death methods. This smaller fitness
advantage of B.1.1.7 is however consistent with its less explosive
growth in the US. Despite arriving in the US as early as October
or November, 2020 (Larsen and Worobey 2021; Washington et al.,
2021), B.1.1.7 remained at low frequencies in many regions until
early spring 2021. B.1.1.7 may have also faced increased compe-
tition from nearly equally fit ‘domestic’ variants, such that its
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Figure 8. Fitness variation among lineages decomposed into sources attributable to different components of fitness. (A) Overall variation in fitness
among lineages in the SARS-CoV-2 phylogeny through time. (B) Fraction of fitness variation explained by genetic, spatial and random fitness effects.
(C) Fraction of fitness variation explained by different sets of genetic features.

growth rate in the US was impeded in an increasingly immunized
population.

Another major advantage of our phylodynamic framework is
that we can go beyond estimating the fitness of entire lineages
and estimate the fitness effects of individualmutations while con-
trolling for the fitness effects of other linked mutations. Exploring
a large number of AAVs across the entire SARS-CoV-2 genome
revealed moderate to large fitness effects in both expected and
unexpected regions of the genome. As expected, we found sev-
eral AAVs in Spike with substantial positive fitness effects on
the order of 5%–10%. Most of these mutations are previously
described variants that either increase cellular binding avidity

(D614G), escape neutralizing antibodies (L452R and E484K) or both
(N501Y/T) (Deng et al., 2021; Greaney et al., 2021; Zahradnik et al.,
2021). Perhaps more surprisingly, we found several AAVs in cod-
ing regions outside of Spike with large positive fitness effects,
including nsp3, ORF3a and ORF9. While these proteins remain
less studied than Spike, they nonetheless play important roles in
the viral life cycle or host-virus interactions. Nsp3 is the largest
protein encoded by the SARS-CoV-2 genome and functions both
as a protease and in anchoring the viral replication/transcription
complex to cellular membranes (Lei, Kusov and Hilgenfeld, 2018).
ORF3a is a multifunctional protein involved in cell membrane
trafficking, host innate immune responses and apoptosis (Issa
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et al., 2020). Among bat and other non-human betacoronaviruses,
ORF3a was found to have the greatest number of sites under
(positive) episodic diversifying selection outside of Spike and the
nucleocapsid, suggesting that it may facilitate host adaptation
across species (MacLean et al., 2020a). ORF9 encodes the nucle-
ocapsid (N), a key structural protein that is also immunogenic,
although it is unclear if antibodies that recognize epitopes in N
provide any neutralization potential (Gao et al., 2015; Ladner et al.,
2021).

The general picture that emerges from our estimated fitness
effects is that mutations across the entire SARS-CoV-2 genome
are generally close to neutral but skewed towards small to mod-
erate beneficial fitness effects at the between-host level. Previous
work characterizing the fitness effects of de novo mutations sug-
gests that a large fraction of mutations are expected to be neutral,
but also suggests that most non-neutral mutations are delete-
rious rather than beneficial (Sanjuán, Moya and Elena, 2004;
Eyre-Walker and Keightley 2007). This discrepancy between the
fitness effects of de novo mutations and those circulating at the
host population level is likely due to an ascertainment bias against
the inclusion of deleterious mutations in our analysis, as these
mutations would likely not have reached a frequency above our
inclusion criteria of 0.5%. Another general trend that emerges
based on the limited number of viral mutations in which fitness
effects have been estimated both at the cellular or within-host
level and at the between-host level is that the sign of the muta-
tional fitness effects (beneficial or deleterious) tend to agree but
the magnitude of fitness effects tend to be much smaller at the
between-host scale (Rasmussen and Stadler 2019). Here, for exam-
ple, we estimate much smaller fitness effects for Spike L452R,
N501Y/T and D614G than their effects on cellular binding and
infectivity would suggest (Starr et al., 2020; Deng et al., 2021;
Zahradnik et al., 2021). We suspect that this trend towards muta-
tions having more modest fitness effects at the between host level
may arise simply due to the fact that an increasing number of
processes influence fitness at higher scales. This could be anal-
ogous to how mutations in enzymes often have large effects on
their kinetic activity but smaller effects on total metabolic flux if
the enzyme impacted is not the rate limiting factor in amulti-step
metabolic pathway (Kacser and Burns 1981). Similarly, mutations
in Spike may increase binding avidity and thereby within host fit-
ness, but may not have a proportional effect on between host
fitness if cellular infection rates are not the process ultimately
limiting transmission rates between hosts.

Spike D614G serves as an interesting case study to explore dis-
crepancies in fitness estimated at the within and between scales.
There is now considerable evidence that the Spike D614G muta-
tion significantly alters viral fitness within individual hosts by
increasing Spike’s binding affinity to the human ACE2 receptor,
more than doubling cellular infectivity and viral replication rates
(Korber et al., 2020b; Plante et al., 2021). Higher viral replication
rates could in turn explain why individuals infected with the 614G
variant tend to have slightly higher viral loads (Wölfel et al., 2020;
Korber et al., 2020b; Volz et al., 2021). Nevertheless, we estimate
that D614G increases transmission fitness at the host-population
level by only about 10%, which is at the low end of previous phylo-
dynamic estimates from theUKwhich ranged from10 to 29% (Volz
et al., 2021). First, we note that increased replication rates and
viral loads may not directly translate into increased infectious-
ness or transmission rates between hosts. While the relationship
between viral load and infectiousness remains poorly understood
for most respiratory viruses including SARS-CoV-2, recent work
modeling clinical viral load data suggests that infectiousness does

not increase linearly with viral load but with the logarithm of
viral load such that it saturates at higher viral loads (Ke et al.,
2020; Wölfel et al., 2020). This appears to fit a general pattern, as
the amount of exhaled virus also saturates with increasing viral
load for other seasonal coronaviruses (Leung et al., 2020). Given
that the ancestral 614D variant was already able to efficiently
replicate to high viral loads (Wölfel et al., 2020), it is conceivable
that any additional replication advantage provided by the 614G
variant would not significantly increase transmission rates fur-
ther. The enhanced cellular infectivity and replication rates of
D614G within hosts is therefore not irreconcilable with our infer-
ence that the mutant had more modest population-level fitness
effect.

It does initially seem more challenging to reconcile the small
estimated fitness advantage of D614G with its rapid spread and
near universal rise in frequency around the world, especially as
our simulations show that such a moderate fitness advantage
would have been insufficient to explain the explosive growth of
614G observed in the US. Our phylogenetic analysis may par-
tially explain this discrepancy, at least in the US. The ancestral
614D variant was largely limited to the West Coast (Regions 9
and 10), whereas the 614G variant established early in the East-
ern US, especially in New York and New Jersey (Region 2). Due
to the disproportionately large number of infections in New York
and New Jersey during the early stages of the pandemic, the
overall prevalence of the 614G variant also increased rapidly.
Borrowing the concept of gene surfing from spatial population
genetics may help to explain the rapid rise of the D614G variant.
Gene surfing describes a scenario where a mutation can rapidly
expand its geographic range by occurring along the edge or wave
front of a spatially expanding population and then ‘surf’ to high
frequencies by riding the wave of spatial expansion (Edmonds,
Lillie, and Cavalli-Sforza, 2004; Klopfstein, Currat, and Excoffier,
2006; Hallatschek and Nelson 2008). While perhaps not a perfect
metaphor here because SARS-CoV-2 did not spread as a spatially
cohesive wave across the US, the gene surfing analogy captures
the idea of how even a neutral mutation can be propelled to high
frequencies across a range of spatial locations as a result of rapid
population expansion. Viewed from this perspective, one can see
why spatially aggregated time series of variant frequencies can be
positivelymisleading about the fitness of a variant during a rapidly
spatially expanding epidemic. Phylogenetic analysis coupled with
ancestral state reconstructions offer a means of avoiding these
pitfalls because they allow us to first identify lineages in the same
transmission environment (e.g. geographic region) and then quan-
tify the relative transmission rate of lineages from their branching
pattern in the phylogeny.

Although some of the genetic features we considered were
highly correlated with one another, relatively high mutation rates
and viral movement rates between geographic regionsmeans that
most mutations were found in several different genetic and geo-
graphic backgrounds, providing us with sufficient information
to disentangle the fitness effects of individual features. Several
amino acid mutations also occurred repeatedly and indepen-
dently in different lineages, which appears to have increased the
precision of our fitness estimates (Supplementary Fig. S4D). How
applicable our phylodynamic framework is to other pathogens
beyond SARS-CoV-2 will therefore likely depend on the correla-
tion structure among features being considered. If combinations
of features are highly correlated or nearly collinear, such as if
a mutation only occurs once in a single geographic context, it
may not be possible to identify the fitness effects of individual
features.
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While our phylodynamic inference framework accounts for
many potentially confounding factors including background vari-
ation in transmission rates, our analysis still has a number of limi-
tations. First, inferences of pathogen fitness from phylogenies will
inevitably depend on what lineages are sampled and included in
the phylogeny. We can partially correct for sampling biases using
time, location and even variant-specific sampling fractions but
our fitness estimates will be dependent on the assumed sampling
fractions. Second, our ancestral reconstructions did not account
for external introductions or the possibility of ancestral lineages
residing outside of the US. While neglecting introductions likely
introducedminimal bias here due to the large size of the pandemic
in the US, including global ‘reference’ samples collected outside of
the US would have allowed us to identify and mask external lin-
eages. Third, the computational efficiency of our approach relies
on first reconstructing phylogenies and ancestral states before fit-
ting our phylodynamic birth–deathmodel. Althoughwe did not do
so here, we note that our fitness mapping functions do allow for
ancestral features to be specified probabalistically to account for
uncertainty in ancestral state reconstructions. Fourth, while we
partially accounted for phylogenetic uncertainty by fitting mod-
els to replicate bootstrap phylogenies, using pseudoreplication
to account for uncertainty is certainly a large step back from
fully Bayesian phylodynamic methods that jointly infer key evo-
lutionary and epidemiological parameters while simultaneously
integrating over phylogenetic histories. Finally, we chose a sim-
ple fitness mapping function that assumes each feature has a
multiplicative effect on lineage fitness. In reality, the relationship
between a pathogen’s genotype, environment and other features
may be considerably more complex due to nonlinear relation-
ships between features and fitness or interactions among genetic
features (epistasis) and the environment (G×E interactions). It is
therefore likely that some of the fitness variation attributed to
random effects under our model are actually due to additional
genetic sources such as epistatic interactions among mutations
that cannot be captured under our simple multiplicative fitness
model. Learning what types of functions are expressive enough to
capture these complexities while remaining statistically tractable
and biologically interpretable is amajor challenge for future work.

As natural and vaccine-induced immunity continues to rise,
new antigenic escape mutations and more transmissible vari-
ants like the B.1.617 (Delta) variant will likely continue to arise.
Our phylodynamic framework can be used to examine the epi-
demiological significance of such mutations by estimating their
transmission potential while accounting for confounding sources
of fitness variation. Another major advantage of our approach
is that it allows us to learn the relative importance of different
features to overall pathogen fitness by decomposing fitness vari-
ation into its component parts. In the future, this will allow us
to determine the contribution of new genetic variants relative
to extrinsic factors such as host mobility. It may even be possi-
ble to tease apart fitness advantages driven by antigenic escape
from increases in intrinsic transmission potential by incorporat-
ing antigenic fitness effects that depend on the immune profile of
local host populations into the fitnessmapping functions. Because
fitness variation at the host population-level is essentially equiva-
lent to variation in transmission potential, learning what features
contribute the most to fitness variation is tantamount to learning
what featuresmost strongly regulate transmission. Thus, our phy-
lodynamic learning framework not only allows us to estimate fit-
ness, but understand what components of fitness shape both the
evolutionary and epidemiological dynamics of viral pathogens.

4. Models and Methods
4.1 General approach
Our primary goal is to learn how multiple different character
traits or features, which may include genetic variants, phenotypic
traits and environmental variables, all act together to deter-
mine the fitness of pathogen lineages in a phylogenetic tree.
We assume here that the phylogeny as well as ancestral features
corresponding to the ancestral state of each feature is recon-
structed beforehand. The relationship between predictive features
and fitness is modeled using a fitness mapping function that pre-
dicts the expected fitness of a lineage based on its reconstructed
ancestral features. The fitness mapping function can then be
used to compute the expected fitness a lineage in terms of its
birth and/or death rate. For a pathogen phylogeny, birth events
are assumed to correspond to transmission events and deaths
correspond to recovery or removal from the infected population.
Given the birth and death rates of each lineage in a phylogenetic
tree, the likelihood of the tree evolving as observed can be com-
puted analytically under a birth–death-sampling model (Stadler
2009; Barido-Sottani, Vaughan, and Stadler, 2018). Our problem
therefore reduces to finding the fitness mapping function that
maximizes the likelihood of the phylogeny given the ancestral
features of all lineages in the tree.

4.2 Phylogenetic reconstruction
For the original pre-2020-09 data set, a total of 22,416 SARS-
CoV-2 whole genome sequences from the United States were
downloaded from GISAID (Elbe and Buckland-Merrett 2017) on 2
October 2020 representing sequences that were sequenced prior
to 1 September 2020. Genomes were aligned against a refer-
ence genome (NC_045512.2) using MAFFT version 7.475 (Katoh
and Standley 2013). A ML phylogenetic tree was reconstructed in
RAxML (Stamatakis 2014) using the rapid bootstrapping method
with 10 bootstrap replicates assuming a GTR model of sequence
evolution with Gamma-distributed rate variation among sites.
The best ML and all bootstrapped trees were then dated using LSD
(To et al., 2015) assuming a fixed clock rate of 0.0008 substitutions
per site per year. A total of 93 sequences were discarded due to
inconsistencies in sampling times or poor sequence quality.

Due to the large number of viral samples in the post-2020-
09 data set, we extracted a ML phylogeny from a precomputed
global SARS-CoV-2 ML phylogeny provided by Rob Lanfear’s group
on GISAID (Lanfear 2020). For all analyses conducted here, we use
the 2021-03-13 version of the global tree. A focal tree containing all
66,339 viruses sampled in the US between 1 September 2020 and
1 March 2021 was then extracted using the extract_tree_with_taxa
function in Dendropy version 4.5.1 (Sukumaran and Holder 2010).
The extracted ML tree was then dated using LSD (To et al., 2015).
For the fitness analysis of B.1.1.7 in the UK, we randomly sampled
30,000 viral isolates sampled in England between 1 September
and 1 February. A focal tree containing these samples was then
extracted from the global SARS-CoV-2 ML phylogeny.

4.3 Ancestral state reconstruction
In the original analysis of the pre-2020-09 data, ancestral states
were reconstructed for each feature under a continuous-time
Markov chain model of trait evolution using PastML (Ishikawa
et al., 2019). PastML estimates the relative transition rate between
each pair of states and the global (absolute) rate at which tran-
sitions occur. The relative transition rates are constrained to be
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proportional to the equilibrium frequencies of each state as under
a F81model of nucleotide substitution. Rate parameters were esti-
mated independently for each feature. At each internal node, the
state with the highest marginal posterior probability was taken to
be the ancestral state for a given feature.

For the larger post-2020-09 data set, we reconstructed ances-
tral states using maximum parsimony (MP) to expedite analysis.
This was motivated by the observation that there was typically
little uncertainty surrounding the ML ancestral state reconstruc-
tions performed by PastML. For most genetic features, there was
only a single or a small number of state transitions across the
entire tree. In this case, MP and ML reconstructions are expected
to agree as themost parsimonious andmost likely reconstructions
will be consistent given a slow rate of character evolution (Tuffley
and Steel 1997; Zhang andNei 1997). MP reconstructions were per-
formed using Sankoff’s dynamic programming algorithm (Sankoff
1975) implemented in Python.

Reconstructed ancestral features were then combined into a
vector of categorical variables xn for each lineage n. For categorical
variableswithmore than one state, we used one-hot binary encod-
ing to yield a strictly binary feature vector. Ancestral features were
reconstructed for each bootstrap phylogeny independently.

4.4 Fitness mapping functions
Our main goal is to learn the fitness mapping function F(xn) that
maps the features of a lineage xn to that lineage’s expected fitness.
Note that here, a lineage n will always refer to a single branch in
the phylogeny. While F(xn) could be any arbitrary function, we use
a simple model that assumes the fitness effect βi of each feature
i is multiplicative:

F(xn) =
∏
i∈X

βixn,i, (1)

where X is the set of all features used to predict fitness. Each fea-
ture xn,i is assumed to be encoded as a binary variable or as the
probability of the lineage having a particular feature.

In order to decompose fitness into its component parts below
we consider fitness effects on a log scale, which gives us the
additive linear model:

log(F(xn)) =
∑
i∈X

log(βi)xn,i. (2)

We also consider a fitness mapping function with random,
branch-specific fitness effects un:

log(F(xn)) =
∑
i∈X

log(βi)xn,i + log(un). (3)

These random effects capture unmodeled sources of fitness
variation such as genetic background effects at loci not included
as features in the model.

Estimating branch-specific random fitness effects without
additional constraints leads to extreme variability in fitness
among lineages. In particular, long branches are estimated to
have low fitness and short branches are estimated to have high
fitness as this maximizes the likelihood of each branch under a
birth–death model. We therefore use a Brownian motion model
of trait evolution that constrains the branch-specific random fit-
ness effects to be correlated between parent and child branches.
Because each branch is assumed to have a unique random effect,
we only allow fitness to change at branching events in the tree.

The probability of a child having random fitness effect uc given its
parent’s random fitness effect up is:

p(uc|up,∆t) = e−
(uc−up)

2

2α∆t+ϵ , (4)

where ∆t is the time elapsed between the parent and child
node and α scales the variance of the child’s fitness distribu-
tion. For numerical stability, we include a small value ϵ to
ensure the probability does not become infinitely small when
σ∆t << 1.0. Thismodel is conceptually similar to the ClaDSmodel
of Maliet, Hartig and Morlon (2019) which estimates lineage-
specific diversification rates by allowing for small shifts in birth
and/or death rates at branching events, although the CLaDS
model assumes a log-normal fitness distribution for child lineages
independent of branch lengths.

How much fitness is allowed to vary between parent-child
lineage pairs due to random effects is controlled by the hyperpa-
rameter α. We estimate α using k-fold cross-validation. Inspired
by cross-validation techniques for time series data (Roberts et al.,
2017), we longitudinally cross-section or block phylogenetic trees
into training and test intervals. Random fitness effects are esti-
mated for each branch in the tree during the training interval
and then lineages in the test interval inherit their random fitness
effects from their parent (or most recent ancestor) in the training
interval. Thus, if the random fitness effects capture true fitness
variation among lineages in the training interval, these fitness
effects should more accurately predict the fitness of descendent
lineages and improve the likelihood of the phylogeny in the test
period. In contrast, a model with α set too high will overfit the
fitness variation among lineages in the training period but will
not improve performance in the test period. We can therefore
use cross-validation to estimate an optimal value of α that max-
imizes the likelihood of trees in the test period while preventing
the randomfitness effects fromoverfitting fitness variation among
lineages.

4.5 The phylodynamic birth–death-sampling
model
The likelihood of a phylogenetic tree evolving as observed can
be computed under a phylodynamic birth–death-sampling model
(Stadler 2009) given the expected fitness of each lineage, which
we predict based on a lineage’s ancestral features xn using a fit-
ness mapping function F(xn). We assume throughout that fitness
is directly proportional to a lineage’s birth or transmission rate
λn = fnλ0, where λ0 is a base transmission rate which is scaled by
a lineage’s fitness fn. We also assume that the removal rate µ and
sampling fraction σ are constant across all lineages, although we
consider models where σ is allowed to vary by time and region
below. This dramatically simplifies the model, as instead of hav-
ing amulti-type birth–death process we have a series of connected
single-type birth–death processes along lineages who’s birth and
death rates are piecewise constant.

Under thismodel, it is possible to analytically compute the like-
lihood of the phylogeny evolving as observed, allowing for efficient
statistical inference. Given the birth, death and sampling rates
and the fitness mapping function to compute the expected fitness
of each lineage, the likelihood of each lineage or subtree evolving
is independent conditional upon knowing the ancestral features
used to predict fitness. The total likelihood of a phylogenetic tree T
can be decomposed into the likelihood of a set of sampling events
S, a set of branching (transmission) events B, and a set of lineages
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N:

L(T|F(x),λ0,µ,σ) =
∏
b∈B

Lbranch(b)
∏
s∈S

Lsample(s)
∏
n∈N

Lline(n). (5)

The likelihood of an individual branching or transmission event
is:

Lbranch(b) = F(xn(b))λ0 = λn(b), (6)

where we use the notation n(b) to refer the parent lineage involved
in a particular branching event b.

The likelihood of an individual sampling event at time t in the
past is:

Lsample(s) =

σµ if t> 0

ρ if t= 0.
(7)

Before the present, the probability of a sampling event depends
on the removal rate µ and the probability σ that the lineage is sam-
pled upon removal. At the present (t=0), any extent (i.e. currently
infected) individual is sampled with probability ρ.

Lline(n) gives the likelihood a lineage n evolved as observed;
i.e. the probability that the lineage survived without giving rise
to other sampled lineages. As shown in Barido-Sottani, Vaughan,
and Stadler (2018), over a time interval of length∆t, this likelihood
can be computed as:

Dn(∆t) = ec∆t

(
yn − xn

(yn +λnEn(t))e−c∆t − (xn +λnEn(t))

)2

, (8)

with:

cn =
√

(λn +µ)2 − 4µ(1−σ)λn. (9)

xn =
−(λn +µ)− c

2
, (10)

yn =
−(λn +µ)+ c

2
. (11)

The En(t) terms in (8) represent the probability that a lineage
at time t in the past produced no sampled descendants. Assum-
ing that the birth, death and sampling rates do not change along
unsampled lineages from their values at time t, these probabilities
are given by:

En(t) =−
1

λn

(yn +λnE(0))xne−cnt − yn(xn +λnE(0))

(yn +λnE(0))e−cnt − (xn +λnE(0))
. (12)

E(0) is the initial condition or probability of lineage not being
sampled at the present (t=0). Given that the proportion of indi-
viduals sampled at present is ρ, we set E(0) = 1− ρ. For simplicity
we assume that ρ= σµ/365 so that the probability of a lineage
being sampled on the final day of sampling is proportional to the
probability of an individual being removed from the infectious
population on that day, but the sampling fraction is the same as
any point in the past.

4.6 Model fitting and statistical inference
Learning the fitness mapping function from a phylogenetic tree is
a somewhat non-standard problem in that we do not have direct
observations of a lineage’s fitness to which we can compare our
predictions under F(x). Nevertheless, we can formulate statistical
inference as an optimization problem where we seek to find the

fitness mapping function F(x) with parameters θ̂ that maximizes
the overall likelihood of the phylogeny given the reconstructed
ancestral features under the birth–death-sampling model:

θ̂ = argmax
θ
L(T|Fθ(x),λ0,µ,σ). (13)

Formulating the problem in this way opens the way to
using efficient optimization algorithms developed in recent years
to train neural networks and other machine learning models.
Instead of optimizing a typical loss function (e.g. least-squares),
we simply maximize the likelihood of the phylogeny under the
birth–death-sampling model. In particular, we use the ADAM
optimizer (Kingma and Ba 2014), a form of stochastic gradient
descent (SGD) which adapts learning rates based on gradients
(i.e. first-order derivatives) of the likelihood function with respect
to different parameters. Adapting the learning rates allows the
algorithm to accelerate its momentum towards parameters that
optimize the loss function. To make use of ADAM and other
high-performance SGD algorithms, we implemented our fitness
mapping function and birth–death likelihood function in Tensor-
Flow 2 (Abadi et al., 2016). Gradients in the likelihood function
are computed using TensorFlow’s auto-differentiation functional-
ity, allowing us to efficiently fit complex models with hundreds of
features or parameters. Using this approach, even fitting our most
complex model with over 300 free parameters to a phylogeny with
over 22,000 tips only takes a few minutes on a standard desktop
computer.

Learning the fitness mapping function through gradient
descent provides MLEs of each parameter in the model. To quan-
tify uncertainty surrounding the MLEs, we compute the like-
lihood of the phylogeny over a fixed grid of parameters val-
ues and then determine which values fall within the 95% CIs
using an asymptotic chi-square approximation to the likelihood
ratio test.

4.7 Performance on simulated data
To test the ability of our methods to correctly estimate fitness
effects, we ran forward simulations where both genetic and spa-
tiotemporal features influence viral fitness. Phylogenies were sim-
ulated under a birth–death-sampling model using the stochastic
Gillespie algorithm (Gillespie 2007) starting with a single infected
individual. In all simulationswe assume a constant base birth rate
of 1.2 and death rate of 1.0 per time unit. A virus’s genotype is
represented by ten binary sites where zeros indicate the ancestral
state and ones indicate the mutant state. Each site has a random,
multiplicative effect on fitness when mutated to the one state.
Mutation occurs at a constant per site rate of 1.5× 10−2 per time
unit. A lineage’s spatial location is encoded as an additional evolv-
ing character trait. To emulate background fitness variation due to
spatiotemporal heterogeneity in transmission, each combination
of region and time interval is assigned a background transmission
rate. Individuals move from one region to another with a transi-
tion rate of 0.3 per time unit. Furthermore, in order to emulate an
additional source of fitness variation not directly accounted for in
the inferencemodel, we added transmission heterogeneity by hav-
ing each infected individual draw a random effect that rescales
their transmission rate from a gamma distribution (Lloyd-Smith
et al., 2005). Here the gamma distribution has a dispersion param-
eter 0.15 and scale parameter 10, such that on average, there
is a branch-specific fitness of 1.5, but individually, fitness varied
substantially.
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Performance was tested under both a high sampling regime
(σ = ρ= 0.5) and a low sampling regime (σ = ρ= 0.05). A phy-
logeny was built from the true ancestral history of sampled
individuals. True ancestral features (states) were assumed to be
known for the purposes of validating the inference algorithm.
Simulations were run for 8 time units and those that ended more
than 0.2 time units before then, or that had less than 800 sam-
pled individuals, were discarded. We then estimated background
transmission rates and genetic fitness effects from each simulated
phylogeny.

Estimated spatiotemporal and genetic fitness effects are gen-
erally well correlated with the true values used in simulations
(Supplementary Fig. S12). However, estimation accuracy depends
largely on the overall sampling fraction and the number of individ-
uals sampled with a given feature (spatial location or genotype).
In particular, the fitness effects of rare features sampled at low
frequencies tend to have the most variable and least accurate
estimates. Because estimating the fitness of rare features under a
birth–death model appears to be inherently difficult (Rasmussen
and Stadler 2019), we only estimate fitness effects for features
with a sampling frequency above 0.5% from empirical SARS-CoV-2
phylogenies.

We also tested our ability to estimate branch-specific ran-
dom effects under the Brownian motion model (4). Phylo-
genies were simulated with site-specific fitness and random
branch effects evolving with the variance scaling parameter α

set to 0.05, resulting in considerable random fitness variation
between lineages. Estimated random effects for each branch were
tightly correlated with their true random effects (Supplementary
Fig. S13A). Furthermore, accounting for branch-specific random
effects improves estimates of site-specific fitness effects rela-
tive to a model without random branch effects (Supplementary
Fig. S13B-C).

4.8 Birth–death-sampling model parameters for
SARS-CoV-2
Because it is not possible to estimate all of the parameters in
the birth–death-sampling model from a phylogeny alone (Stadler
et al., 2013), we fix some parameters at values based on prior
knowledge. We assume individuals infected with SARS-CoV-2
stay infected (and infectious) for 7 days on average, leading to a
removal rate µ= 1

7 per day.
In several models we allow the base transmission rate λ0 or

sampling fraction σ to vary over time. In this case we have a time-
varying transmission rate λ(t) and σ(t) that depends on the time
t. However, this can easily be incorporated into the birth–death
model above. If a lineage’s transmission rate or sampling fraction
changes along a branch due to an underlying change in λ(t) or
σ(t), we simply divide the branch into segments corresponding to
the time intervals over which these parameters remain piecewise
constant and add each lineage segment to the set of lineages in N.

We assume that the sampling fraction σ was zero before the
first sample in our data set was collected in January 2020. After
the first sampling date, we allow the sampling fraction to vary by
time and region as described below.

4.9 Modeling sampling heterogeneity
In order to estimate how sampling fractions vary across space and
time, we count the number of sequence samples gi,t submitted to

GISAID within each geographic location i over each time interval t.
An unbiased estimate of the sampling fraction σi,t would therefore
be:

σi,t =
gi,t
ci,t

, (14)

where ci,t is the total number of infections or cumulative incidence
in region i over time interval t.

We of course do not know ci,t but can obtain a pseudo-empirical
estimate ĉi,t by considering the number of deaths attributed to
SARS-CoV-2 di,t and the estimated infection fatality ratio ϕ, which
was assumed to be 0.5% (Perez-Saez et al., 2021). We can therefore
approximate the total number of cases ci,t as:

ĉi,t =
di,t
ϕ

. (15)

Substituting ĉi,t for ci,t in (14), we arrive at a crude estimate of the
sampling fraction.

While the case fatality ratio likely also fluctuates over space
and time due to changes in the age distribution of infections
among other reasons, it seems reasonable to assume that themor-
tality rate fluctuates less than the testing or sequence sampling
fraction (Flaxman et al., 2020). We can therefore roughly esti-
mate the total number of cases based on the number of observed
deaths. Using this approach, we estimate that there were a total of
35,134,400 cumulative cases in the US by September 1st, whereas
the total number of positive cases reported by the COVID Project
(https://covidtracking.com/data/national) on the same date was
6,017,826. Our estimate for the total number of cases suggests that
83% of all infections were not detected in the US, which is consis-
tent with recent estimates byWu et al., (2020), who estimated that
up to 89% of all infections are unreported using an independent
approach.

Using data from the COVID Project to tabulate cumula-
tive deaths di,t for each region and time interval, we estimate
how the sampling fraction σi,t varied across regions and time
(Fig. 1A). For these estimates we assume reported deaths lag
behind reported cases by three weeks when estimating sampling
fractions.

4.10 Modeling variant-specific sampling biases
An additional complication arises here because B.1.1.7 and other
lineages carrying the Spike ∆H69/V70 deletion mutation are
likely oversampled due to preferential sequencing of viral iso-
lates suspected of being newly emerging variants based on
Spike gene target failure (SGTF) during diagnostic qPCR testing
(Washington et al., 2020). To account for SGTF-related sam-
pling bias, we estimate a SGTF-specific sampling fraction for
lineages with the ∆H69/V70 deletion. Note that we estimate
sampling fractions for all lineages with the ∆H69/V70 deletion
rather than just B.1.1.7 as other lineages share this deletion
and are therefore likely also preferentially selected for sequenc-
ing. We estimate SGTF-specific sampling fractions based on
the fraction of SGTF-positive samples ξSGTFi,t relative to the total
number of SARS-CoV-2 positive samples using Helix’s nation-
wide diagnostic qPCR data (https://github.com/myhelix/helix-
covid19db/blob/master/counts_by_state.csv). We then modify
(14) by multiplying the total number of infections ci,t by the
SGTF-positive fraction ξi,t:

https://covidtracking.com/data/national
https://github.com/myhelix/helix-covid19db/blob/master/counts_by_state.csv
https://github.com/myhelix/helix-covid19db/blob/master/counts_by_state.csv
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Table 3. SGTF-specific sampling fractions (as percentages) and the
ratio of SGTF versus non-SGTF sampling fractions (parentheses).

Region Nov 2020 Dec 2020 Jan 2021 Feb 2021

Region 1 1.07 (24.8) 1.83 (28.8) 0.9 (4.31) 0.23 (0.50)
Region 2 0.1 (1.74) 0.42 (3.38) 0.61 (3.04) 0.62 (1.04)
Region 3 0.04 (1.07) 0.16 (3.68) 0.39 (3.24) 0.18 (1.26)
Region 4 0.08 (1.66) 0.50 (16.3) 0.62 (9.9) 0.12 (0.8)
Region 5 <0.01 (0.16) 0.15 (2.33) 0.37 (3.40) 0.31 (1.00)
Region 6 0.02 (0.15) 0.06 (0.85) 0.35 (1.18) 0.07 (0.57)
Region 7 – 0.03 (1.46) 0.18 (1.95) 0.15 (0.94)
Region 8 0.04 (0.87) 0.43 (2.45) 1.36 (2.67) 0.95 (1.53)
Region 9 0.45 (3.48) 0.93 (11.68) 1.46 (11.32) 0.32 (3.0)
Region 10 0.09 (0.55) 0.22 (1.0) 0.56 (1.41) 0.38 (1.06)

Table 4. Model selection using the maximum log likelihood L̂ for
each model and AIC.

Model # params L̂ AIC ∆AIC

Base 1 15630.6 −31259.2
Spatial effects (by
region)

10 15667.6 −31315.2 −56.0

Spatial effects (by
state)

52 15717.2 −31330.4 −71.2

Temporal effects 9 16655.9 −33293.8 −2034.6
Spatial (by region) ×
temporal effects

90 17290.1 −34400.2 −3141.0

Spatial (by state) ×
temporal effects

468 18083.6 −35231.2 −3972.0

σSGTF
i,t =

g∆H69/V70
i,t

ci,tξSGTFi,t

. (16)

Here, g∆H69/V70
i,t is the number of sequence samples deposited to

GISAID with the ∆H69/V70 deletion.

4.11 Model selection
We initially fit several different models that allowed background
transmission rates to vary over space and time in different ways
and compared their relative fit using AIC. This model selection
step was performed only on the pre-2020-09 data set. Compared
to our base model which assumes a constant transmission rate
across both space and time, a model that allows transmission
rates to vary by geographic region increases the likelihood of the
phylogeny and model fit as quantified by AIC (Table 4). A similar
model that allowed transmission rates to vary by US state instead
of region further improves model fit.

Allowing transmission rates to vary over time in a piecewise
constantmanner usingmonthly time intervals improvesmodel fit
more than allowing transmission rates to vary by location. Using
biweekly rather than monthly time intervals does not improve
model fit further. In turn, all models with only spatial or tem-
poral effects are vastly outperformed by a model that allows
transmission rates to vary by both time interval and geographic
location (spatiotemporal effects). Using states instead of geo-
graphic regions increases the likelihood of the spatiotemporal
effects model and has lowest overall AIC value, but we continue
to use the model with regional spatial resolution as several states
are very poorly represented in the GISAID database. We there-
fore allow transmission rates to vary by geographic region over
monthly time intervals in all subsequent analyses.

4.12 Decomposing fitness variation
Given the ancestral features xn of a lineage, we can compute the
lineage’s fitness using the fitness mapping function. We can then
partition or decompose total variation in fitness between lineages
into sources attributable to different components of fitness. To
do this, we first partition the features in X into different dis-
joint, non-overlapping subsets Xk ⊂X ; Xk ∩Xl = ∅ for all subsets
k and l.

In the fitness mapping functions presented above, each feature
i has a fitness effect fn,i on a lineage’s fitness, where fn,i = βixn,i. We
let the vector fi hold the fitness effect of feature i for all lineages
in the phylogeny and f hold the overall fitness of each lineage
in the phylogeny. Under the additive model that considers fit-
ness on the log scale (2), f=

∑
i fi. Using the general property

that the variance in the sum of random variables is equal to
the sum of their individual variances and covariances, we can
partition the total variation in fitness into variances attributable
to individual features and covariances attributable to pairs of
features:

Var
(
f
)
= Var

(∑
i∈X

fi
)
=

∑
i∈X

Var( fi)+
∑
i ̸=j

Cov( fi, fj) =
∑
i,j∈X

Cov( fi, fj),

(17)

where the covariances account for the fact that the features may
be correlated across lineages and therefore not independent.

We can take advantage of the additive property of the vari-
ances to compute the fraction of total variance attributable to any
particular subset of features Xk:

Pk =
Var

(∑
i∈Xk

fi
)

Var
(∑

i∈X fi
) . (18)

In our SARS-CoV-2 analysis, we partition features into three
different components of fitness: genetic, spatial and random
(unexplained) effects. To ensure that the fraction of vari-
ance attributable to each component sum to one, we com-
pute the fraction of variation attributable to each fitness
component as:

Pk =
Var

(∑
i∈Xk

fi
)

Var( fgenetic)+Var( fspatial)+Var( frandom)
. (19)

In other words, we ignore the covariances among fitness com-
ponents. We do this to ensure that negative covariances among
components do not cause the variance attributable to a particular
component to be greater than the total variance.

4.13 Two-strain epidemiological model
In order to explore if the transmission fitness effect of approx-
imately 10% that we estimate for Spike D614G would have
been sufficient to explain its rapid rise in frequency over the
spring of 2020, we simulated the evolutionary dynamics of a
mutant variant in a single host population under a two-strain
Susceptible-Infected-Exposed-Recovered (SEIR) model parameter-
ized for Covid-19. In this model, an initial resident strain (614G)
with transmission rate β seeds the epidemic and then a mutant
strain (614D) with transmission rate βm = βfm enters the pop-
ulation through external introductions. We then systematically
vary the mutant’s fitness fm to see how much more fit the
mutant needs to be in order to match the evolutionary trajectory
of D614G.
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The epidemic dynamics in the host population are described
by the following system of differential equations:

dS

dt
= −S

(
βI+βmIm

)
dE

dt
= βSI− ηE

dEm
dt

= βmSIm − ηEm (20)

dI

dt
= ηE− νI+ ξ

dIm
dt

= ηEm − νIm + ξm

dR

dt
= ν

(
I+ Im

)
.

Here, η is the incubation rate at which exposed individu-
als become infectious and ν is the removal or recovery rate.
We assume a 4-day incubation period (η = 0.25) and a 7-day
infectious period (ν = 0.143) (Davies et al., 2020; Ferretti et al.,
2020). ξ and ξm give the rate of external introductions into the
host population (per capita) of the resident and mutant strain,
respectively.

We assume that there was a single infected individual in the
population on 15 January 2020, reflecting the timing of the earliest
probable infections in the US (Worobey et al., 2020). External intro-
ductions of the resident strain occur at a rate of 1 per day after
Jan. 15th. The external introduction rate of the mutant is initially
zero, but switches to ξm > 0 after 15 February to reflect the earliest
probable introductions of D614G into the US. Because the relative
rate at which the 614D and 614G entered the US through external
introductions is a key unknown that largely determines the evo-
lutionary trajectory of the mutant, we explore different ratios of ξ
and ξm.

Finally, since no constant transmission rate can recapitulate
the epidemic dynamics of Covid-19 in the US under the SEIR
model, we allow the base transmission rate β to decline over
time to mimic the effects of social distancing or other interven-
tions. We let β decrease between piecewise constant intervals
such that Re is 2.5 between 15 January and 15 February, 1.5
between 15 February and 15 March, 1.25 between 15 March and
15 April and 1.1 after 15 April, reflecting the average Re val-
ues inferred for these time intervals under our phylodynamic
model.

Code and data availability
Code and data to replicate our phylodynamic analysis is freely
available on GitHub at github.com/davidrasm/phyloTF2.

Supplementary data
Supplementary data is available at Virus Evolution online.
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