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Cryptosporidium spp. and Giardia duodenalis infect the gastrointestinal tracts of

animals and humans. Both parasite groups are distributed worldwide and cause

significant economic losses in animal productivity. Infected hosts presenting with and

without clinical manifestations can eliminate infective forms of these protozoa, which

are particularly important to One Health. Compared to the published research on

cattle, relatively few studies have examined the epidemiology of cryptosporidiosis

and giardiasis in buffaloes. This short review describes the global occurrence of

Cryptosporidium spp. andG. duodenalis in buffaloes, including the molecular techniques

employed for the identification of species/assemblages and genotypes of these protozoa.

Genetic analyses of isolates of G. duodenalis and Cryptosporidium spp. from various

sources (environmental, animal, and human) have been performed to investigate their

epidemiology. In buffaloes, the species Cryptosporidium parvum, Cryptosporidium

ryanae, Cryptosporidium bovis, and Cryptosporidium suis-like have been characterized,

as well as assemblages A and E of G. duodenalis. We demonstrate that buffaloes

can be infected by species of Cryptosporidium spp. and G. duodenalis assemblages

with zoonotic potential. Epidemiological studies that utilize molecular biology techniques

represent an important resource for efforts to control and prevent the spread of

these protozoans.

Keywords: Cryptosporidium, Giardia, water buffalo, zoonosis, genotypes, assemblages

INTRODUCTION

Cryptosporidium spp. and Giardia duodenalis (synonym: Giardia lamblia, Giardia intestinalis)
are unicellular protozoan parasites that infect the intestinal tracts of humans and animals (1–3).
Although these parasites possess biological differences, they are frequently discussed together
because they share transmission pathways and cause diseases in the gastrointestinal tract (4).

Oocysts and cysts are transmitted via the fecal–oral route following direct or indirect contact
with the transmissible stages. Possible propagation mechanisms of Cryptosporidium spp. and G.
duodenalis include from animal to animal, from person to person, through zoonotic transmission,
via contaminated food (5), by water delivery through drinking water, and in the course of
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recreational activities (6). Insects can also act as mechanical
carriers of these protozoa (7). These parasitic forms of G.
duodenalis and Cryptosporidium spp. remain infectious for
months in environments with favorable temperature and
humidity conditions, which enables the perpetuation of the
biological cycle and parasitic spread (4).

Ruminants are frequently considered a major source of
excretion of Cryptosporidium spp. and G. duodenalis for humans
(8, 9). Although most studies on this topic have investigated
cattle, water buffaloes can also become infected and excrete
Cryptosporidium spp. oocysts (Table 1) and G. duodenalis cysts
(Table 2). In general, young buffaloes are more affected by these
agents than are older animals (11, 16, 18, 25, 27, 34).

Cryptosporidium spp. and G. duodenalis cause mild and/or
moderate disease, with diarrhea being the main clinical sign.
There are few reports describing the economic burden of
Cryptosporidium spp. and G. duodenalis infection in ruminants.
The costs of treatment, reduced feed conversion, production
inefficiency, and the involvement of many animals in the herd
cause considerable economic losses on farms worldwide (25, 35).
Dairy calves determined to be negative for Cryptosporidium
or G. duodenalis by immunofluorescence microscopy showed

TABLE 1 | Occurrence of Cryptosporidium spp. in buffaloes worldwide using different diagnostic techniques.

Country Study period Number of

animals

Animal age

(months old)

Positive numbers of buffaloes according to the diagnostic technique

Diagnostic method Microscopy Immunologic PCR References

Italy NA 57 - ELISA/IFA/PCR - 8 6* (10)

Italy 2006 347 <1 ELISA - 51 - (11)

India 2009–2010 162 <5 ZN/ PCR 62 - 62* (12)

Nepal 2010 81 2–7 ZN/ PCR 30 - 16* (13)

Egypt 2010–2011 538 ≤4–>4 ZN/ PCR 17 - 17* (14)

India 2009–2010 113 <6 PCR - - 41 (15)

Egypt 2011 211 ≤1–≥1 TRQ/PCR - 43 75a (16)

India 2009–2012 264 <3 ZN/ PCR 64 - 16a (17)

Australia NA 476 ≤24 PCR - - 62 (18)

Sri Lanka 2012–2013 297 <6–≥6 PCR - - 29 (19)

Thailand 2010–2011 600 ≤3–≥3 DMSO-MAFS/PCR 34 - 34 (20)

Egypt 2010–2011 466 ≤3–≥3 ZN/ PCR 6 - 6* (21)

Chine 2012 181 - PCR - - 43 (22)

Brazil 2010 222 5≤6 PCR - - 107 (23)

India 2012–2013 246 ≤3–≥3 ZN/ PCR/ S 91 - 6a (24)

Egypt 2014 130 <2–>12 ZN/ PCR 16 - 4a (25)

Australia 2015 100 24≤60 qPCR - - 21 (26)

India 2014–2016 83 ≤3–≥3 /PCR - 9 1* (27)

Brazil NA 122 <12 Nested PCR/RFLP - - 16 (28)

Australia 2017 313 - PCR - - 42 (29)

*PCR was performed only on positive samples by a previous screening method.
aPCR was performed on only some of the positive samples by the screening method.

PCR, Polimerase Chain Reaction; ZN, Ziehl-Neelsen; ELISA, Enzyme-Linked Immunosorbent Assay; IFA, Immunofluorescence Assays; TRQ, Test RIDA®QUICK; DMSO- MAFS, DMSO-

DMSO- modified acid-fast stain; IM, Imunofluorescent Microscopy; S, Sheather.

NA, not available.

higher average daily gain than did calves that were positive for
these parasites (36).

The application of molecular approaches for the identification
of these two parasites has led to significant advances in knowledge
regarding the epidemiology of these protozoans, with different
species being characterized (37).

Molecular analysis of human and animal isolates has
demonstrated that G. duodenalis is a complex species, with eight
assemblages being recognized. Assemblages A and B are observed
in humans and other mammals, assemblages C and D are specific
to dogs and other canids, assemblage E is found in hoofed
animals, including livestock, assemblage F is detected in cats,
assemblage G is found in rodents, and assemblage H is observed
in pinnipeds (38).

To date, at least 38 species of Cryptosporidium spp. have
been recognized by molecular characterization (39–41), with
73 genotypes (42–44) and 17 species having been identified in
humans (45).

Cryptosporidium spp. and G. duodenalis may represent a
problem to the buffalo industry due to their economic cost and
the risk of human exposure associated with oocysts and cysts
eliminated in the environment by infected hosts. Thus, in this
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TABLE 2 | Occurrence of G. duodenalis in buffaloes worldwide using different diagnostic techniques.

Country Study period No of.

animals

Animal age

(months)

Positive numbers of buffaloes according to the diagnostic technique

Diagnostic

method

Microscopy Immunologic PCR References

Italy NA 57 - ELISA/IFA/PCR - 15 8* (10)

Italy 2006 347 <1 ELISA - 63 - (11)

Australia NA 476 ≤24 PCR - - 62 (18)

Sri Lanka 2012–2013 297 <6–≥6 PCR - - 2 (19)

Egypt 2011 211 ≤1–≥1 Test

RIDA®QUICK/PCR

10 - 10 (30)

India 2012 22 - IMS/DFA - 9 - (31)

Egypy 2013–2014 100 1<4 DSM/ FEST /

S/PCR

25 - 25 (32)

India 2014–2016 83 ≤3–≥3 IM/PCR - 9 1 (27)

Brazil 2016 183 ≤6 PCR - - 12 (33)

Australia 2017 313 - PCR - - 14 (29)

*PCR was performed only on positive samples by a previous screening method.

PCR, Polymerase Chain Reaction; IMS, Immunomagnetic separation; DFA, Direct immunofluorescence; ELISA, Enzyme-Linked Immunosorbent Assay; IFA, Immunofluorescence Assays;

Direct smear method; Formalin-ether sedimentation technique; IM, Immunofluorescent microscopy; S, Sheather; RIDA®QUICK. NA, not available.

review, we demonstrate the global occurrence of these protozoa,
emphasizing the importance of the molecular characterization of
their species/assemblages and genotypes reported in buffaloes.

DIAGNOSTIC METHODS

Cryptosporidiosis and giardiasis can be diagnosed by a wide
variety of parasitological, serological, and molecular techniques
(4, 46–48).

Regarding the parasitological diagnosis technique,
the identification of the morphological structures of the
Cryptosporidium spp. oocysts and G. duodenalis trophozoites or
cysts is important, with G. duodenalis being diagnosed by direct
microscopic observation of the trophozoites or cysts in feces.
Trophozoites can be observed by direct microscopic examination
of freshly collected samples, which are immediately prepared
with saline solution at 37◦C (49). Concentration techniques,
such as zinc sulfate (50), sucrose (51), formalin (52), and the
“three fecal test” (TF test) (53), are recommended before the
observation of cysts since these methods promote an increase in
diagnostic sensitivity. Centrifugal flotation with zinc sulfate is
one of the most commonly employed methods for the detection
of G. duodenalis from fecal samples; however, sucrose flotation
works adequately well, and it is generally employed in ruminant
samples since oocysts of Eimeria spp. and Cryptosporidium spp.
may also be encountered (4).

Various staining procedures can be used to differentiate
between Cryptosporidium spp. oocysts and G. duodenalis cysts
from coexisting protists and for excluding similarities from
environmental or fecal debris. Smear preparations stained by
the trichome and iodine or iron hematoxylin methods can
be utilized to assist in the detection of various stages of G.
duodenalis (49). The most frequently used routine techniques for
examining stained slides to identify Cryptosporidium spp. are the

modified Ziehl–Neelsen (54, 55), modified Kinyoun (56, 57), and
methylene blue safranin (58, 59) stains. Additionally, the negative
coloring observed with the malachite green technique (53, 60)
can be used. The centrifugal flotation technique with Sheather’s
solution (61), which uses brightfield or phase contrast optical
microscopy, can be employed to visualize oocysts (8). However,
differentiating between Cryptosporidium species/genotypes using
microscopy is not possible because oocysts are similar in shape
and overlap in size (37).

Immunological methods have higher sensitivity and
specificity than light microscopy in characterizing diverse
types of samples (49, 62, 63). Monoclonal antibodies targeting
antigens in fecal samples are sensitive diagnostic methods
(64, 65). Antigens of Cryptosporidium spp. and G. duodenalis
in fecal contents can be detected by direct immunofluorescence
assay (63, 66), ELISA (67–69), and rapid solid-phase qualitative
immunochromatography assays (67). Some immunoenzymatic
tests can be employed to detect infection in animals that are not
eliminating cysts in the feces (70), which means that these tests
can be utilized to screen large numbers of animals rapidly (67).
However, these methods have the disadvantage of not being able
to identify species or genotypes (45).

The application of molecular techniques has resulted in
expanded knowledge regarding the taxonomy and epidemiology
of Cryptosporidium spp. and G. duodenalis. Molecular
diagnostics are widely used to differentiate Cryptosporidium
spp. and G. duodenalis species or genotypes (35). Therefore,
such methods as polymerase chain reaction (PCR), real-time
PCR, or multiplex PCR together with DNA sequencing can
identify species/assemblages with high sensitivity and specificity,
and these techniques can be employed to identify sources of
transmission as well as the zoonotic potential of these two
parasites (71–73).

Genotyping targeting the small subunit of the ribosomal
RNA gene (ssu rRNA) aligned with PCR and sequencing
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the restriction fragment polymorphism (RFLP) are sensitive
molecular tools used in the detection of Cryptosporidium spp.
DNA in fecal and environmental samples (74, 75). Other
genetic regions have also been studied, such as the 70-kDa
heat shock protein (hsp70), thrombospondin-related adhesive
proteins, Cryptosporidium spp. oocyst wall protein (cowp), and
actin genes (76).

The 60-kDa glycoprotein (gp60) is located on the surface
of the apical region of invasive stages of the parasite.
This gene is a highly polymorphic marker that is widely
used in Cryptosporidium spp. subtyping because of its high
polymorphism and relevance to parasite biology, and the use
of gp60 subtyping has identified human-specific, animal-specific,
and zoonotic subtypes for Cryptosporidium parvum species-
specific subtypes (37). More than 20 gp60 genotype families
of C. parvum have been described, including several subtypes
within each family, with families IIa and IId being identified
from ruminants and humans and recognized as zoonotic. The
IIa family and subtype IIaA15G2R1 are frequently identified in
calves (3, 77).

Many genetic markers have been employed for the molecular
characterization of G. duodenalis using degenerated primers,
such as the ssu rRNA, glutamate dehydrogenase (gdh), elongation
factor 1-alfa (el1-α), triose-phosphate isomerase (tpi), or genes
uniquely associated with the parasite, such as beta-giardin (bg)
(78). The ssu rRNA gene is strongly conserved and can be utilized
to identify G. duodenalis assemblages, but it is of little use for
studies where genetic variation within assemblages needs to be
determined (78). Consequently, the tpi, bg, and gdh sequences are
employed because polymorphism enables the characterization
of the genetic heterogeneity of this parasite (79) as well as its
zoonotic potential (78, 80). However, molecular methods are
mostly restricted to research and specialized laboratories (37).

EPIDEMIOLOGY

Infections by Cryptosporidium spp. and G. duodenalis in
water buffalo (Bubalus bubalis) have been less thoroughly
well-investigated compared with other bovid species. Tables 1,
2 summarize the occurrence of these protozoa in different
buffalo populations.

According to the findings described in Table 1, the infection
rates of cryptosporidiosis reported in buffaloes ranged from
1.3% (Egypt) to 48.2% (Brazil). However, the epidemiology of
giardiasis has been more heavily studied in cattle, with few
reports describingG. duodenalis infections in buffaloes (Table 2),
and a prevalence ranging from 1.3% (Sri Lanka) to 10.5% (India)
was reported.

Differences in the prevalence of infection for Cryptosporidium
spp. and G. duodenalis in buffaloes are common among
epidemiological studies. The discrepancies in the reported
infection rates may be attributed to the differences in
environmental conditions, management practices, time between
collection and processing of fecal samples, the diagnostic
techniques used, age, and the number of animals analyzed in
each study.

High population density, with more than 100 buffaloes being
raised on a farm, intensive management systems where buffalo
calves are reared at high density (11), poor or inadequate hygiene,
concrete floor (81), canalized or underground water sources
(16, 81), and the winter period (24, 81), as well as rainy periods
(17), were relevant risk factors associated with the occurrence of
infection by Cryptosporidium spp.

In preweaned calves, C. parvum causes high morbidity
associated with profuse diarrhea, lethargy, anorexia, and
dehydration (82). The clinical signs are evident 3–5 days after
infection, and the duration of the clinical signs can vary between
4 and 18 days (83). Diarrhea is accompanied by the excretion of
large amounts of oocysts, which can be subsequently dispersed
within the environment (82).

Some studies have observed an association between infection
by Cryptosporidium spp. and diarrhea in buffalo calves (17, 24,
34, 81), with a higher occurrence of infection being observed in
the 1st months of age (24, 25, 34).

In calves of cattle and buffaloes from the Mumbai region
of India, diarrheic feces showed a higher prevalence of
Cryptosporidium spp. than did apparently normal feces. The
highest prevalence was observed in the youngest group, declining
gradually with advancing age, with the lowest prevalence being
observed in adults, indicating an inverse correlation between
the prevalence rate and age of the host (24). The presence of
Cryptosporidium spp. oocysts in the feces of water buffaloes
without clinical signs was verified at 6 weeks of age, which
suggests that asymptomatic individuals are potential sources of
infection (84).

Mixed infections by Cryptosporidium spp. and G. duodenalis
in buffalo were detected by real-time PCR in 36% of animals
(cattle and buffaloes) from Egypt (30). These parasites may be
detected together in calves with diarrhea, and coinfection with
other pathogens has also been reported (84).

In Egypt, the occurrence of Cryptosporidium spp. was 9.5%
(17/179) in calves of buffaloes and absent in 359 adult water
buffaloes (14). In some studies, C. parvum was identified only
in buffaloes <6 months of age (18, 34). However, in Northeast
Australia, all samples positive for C. parvum were isolated from
adult buffaloes (2–5 years), indicating that this species can also
commonly infect adult buffaloes (26). In Thailand, C. parvum
infection was identified in all age groups, with no significant
difference in the infection rates being observed among the age
groups assessed (20).

The epidemiology of giardiasis has been more studied in
cattle, and there are few reports of G. duodenalis infections in
buffaloes (Table 2). In Pakistan, 2.7 × 102 cysts per gram of
feces of G. duodenalis were excreted in fecal samples with normal
consistency. Additionally, in cases of diarrhea, the intensity of
elimination was higher (4.3 × 103 cysts per gram of feces). In
that same study, buffalo calves (≤1 year) had significantly higher
cyst prevalence (85).

The prevalence of G. duodenalis in Australia was 13%
(62/476) with the identification of assemblages A (11.8%) and E
(1.2%), respectively.

In an overpopulated province of Egypt, G. duodenalis
cyst/trophozoites were observed in 20% of fecal samples from
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people and in 25% of buffalo calves by nested PCR. Contact with
calf manure and inappropriate personal hygiene practices, such
as hand washing and changing shoes after handling the animals,
were considered to be risk factors significantly associated with
giardiasis (32).

MOLECULAR ASPECTS

Molecular diagnostic tools play an important role in
understanding the transmission of Cryptosporidium spp. and G.
duodenalis, mainly due to the existence of many morphologically
identical species and genotypes within both groups of protozoa.
Thus, these tools are required for the differentiation of these
species and genotypes (86).

Although the molecular epidemiology of Cryptosporidium
spp. and G. duodenalis is well-studied in cattle, studies
are scarce in buffaloes. Cattle are commonly infected by
four species of Cryptosporidium, with C. parvum being
predominant in preweaned calves, Cryptosporidium bovis and
Cryptosporidium ryanae predominant in the postweaning phase,
and Cryptosporidium andersoni predominant in adults (45, 75,
87). However, differences in the occurrence of different species
according to age groups in buffaloes were not observed.

Previous studies have determined the species of
Cryptosporidium infecting buffaloes in different countries;
C. parvum, C. ryanae, C. bovis, and a genotype similar to that
of Cryptosporidium suis were identified (Table 3). Phylogenetic

analysis using a range of sequences of the ssu rRNA gene of
Cryptosporidium spp. retrieved from the GenBank database
from various geographical regions supports the classification
of the species and genotypes of Cryptosporidium spp. in
buffaloes (Figure 1).

Cryptosporidium parvum is the most frequently reported
zoonotic species that infects humans and ruminants worldwide
(8). Numerous studies have been conducted to subtype
C. parvum in farm animals, especially calves, to characterize
the transmission dynamics and zoonotic potential of C. parvum.
Table 3 shows that most of the studies using gp60 and sequencing
analysis have observed that buffaloes are commonly infected
with the IIa family. Additionally, family IId has been found in
buffaloes in Egypt (14, 21, 25, 30) and India (27).

Cryptosporidium ryanae infects ruminants and has been
widely reported in calves from different age groups worldwide
(13, 14, 18, 19, 22–24, 28, 29). Data from recent studies suggest
that there is a host-adapted C. ryanae in water buffaloes, as
reflected by the high occurrence of this species in these animals
(13, 23, 28). Some findings show that the genotypes of C. ryanae
found in water buffaloes are different from those identified in
cattle (13, 18, 22, 23). Therefore, further research is warranted
to determine the taxonomic status and host specificity of these
genotypes found in water buffaloes (19).

Cryptosporidium bovis is predominantly a parasite of livestock
and has been reported in buffaloes on several occasions (16, 18,
22, 26, 27). Due to the lower occurrence of this species compared

TABLE 3 | Species and subtypes of Cryptosporidium in buffaloes worldwide.

Country Number of

animals

Genes Species of Cryptosporidium gp60 genotype References

Italy 57 ssu rRNA C. parvum - (10)

India 162 ssu rRNA Cyptosporidium spp. - (12)

Nepal 81 ssu rRNA C. ryanae - (13)

India 113 ssu rRNA Cyptosporidium spp. - (15)

India 264 ssu rRNA C. parvum - (17)

Australia 476 ssu rRNA C. bovis. C. parvum. C. suis like. C. ryanae - (18)

Egypt 211 ssu rRNA, gp60 C. bovis.C. parvum. C. ryanae IIaA15G1R1(1). IIdA20G1 (1) (16)

Egypt 538 ssu rRNA, gp60 C. parvum. C. ryanae (10) IIaA15G1R1 (5). IIdA20G1 (2) (14)

Egypt 466 ssu rRNA, gp60 C. parvum. C. ryanae (21)

Sri Lanka 297 ssu rRNA, gp60 C. ryanae. C. suis like - (19)

Thailand 600 ssu rRNA C. parvum.C. ryanae - (20)

Chine 181 ssu rRNA C. bovis. C. ryanae - (22)

Brazil 222 ssu rRNA, gp60, cowp C. parvum. C. ryanae. C. suis like IIaA15G2R1(2) (23)

Egypt 130 ssu rRNA, gp60, cowp C. parvum IIdA20G1 (4) (25)

India 246 ssu rRNA C. parvum. C. ryanae - (24)

Australia 100 ssu rRNA, gp60 C. bovis. C. parvum IIaA18G3R1(5) IIdA19G1 (4). IIdA15G1 (1) (26)

India 83 ssu rRNA, gp60 C. bovis. C. parvum IIdA15GR1 (1) (27)

Brazil 122 ssu rRNA, gp60 C. parvum. C. ryanae IIdA20G1R1 (4) (28)

Australia 313 ssu rRNA C. ryanae - (29)

ssu rRNA, Small Subunit of the ribosomal RNA gene; gp60, 60 kDa glycoprotein gene; cowp, Cryptosporidium spp. oocyst wall protein.
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FIGURE 1 | Phylogenetic tree of species of Cryptosporidium using the ssu rRNA gene obtained from buffalo samples. The evolutionary history was inferred by using

the maximum likelihood method and the Tamura–Nei model using MEGA software.

to other species of Cryptosporidium spp. reported in buffaloes,
the possibility of a higher affinity of C. bovis for Bos taurus or Bos
indicus was considered than for B. bubalis (18).

The ssu rRNA sequences of C. suis-like obtained from
buffaloes in Brazil (23), Australia (18), and Sri Lanka (19) were
similar to those previously identified in cattle (88–90). Based on
the analysis of other genetic markers, such as hsp 70 and actin, it
was observed that the sequences generated were clearly different
from those of C. suis (23).

Regarding G. duodenalis infection in buffaloes, the first
molecular characterization of G. duodenalis was performed
in Italy with the detection of assemblage E and assemblage
A, subassemblage AI. Based on this finding, buffaloes were
suggested to contribute to environmental contamination due
to the elimination of potentially infectious parasitic cysts in
humans (10).

There are a limited number of studies on giardiasis in
buffaloes, and in most of these, the dominant assemblage
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identified was assemblage E (Table 4); however, zoonotic
assemblage A was reported to be predominant in buffaloes
from Australia (18). The predominance of this assemblage was
unexpected (18).

Few studies have typed assemblage A isolates in buffaloes, but
subassemblage AI was the most common (10). Studies on the
prevalence of G. duodenalis in cattle observed the existence of
different subtypes of assemblage E identified by the multilocus
genotyping scheme (MLG) based on the bg, gdh, and tpi genes
(91, 92). The differences in the distribution of G. duodenalis
assemblage E MLGs from cattle likely indicate geographical
segregation (91).

PUBLIC HEALTH IMPACT

Due to the close relationship of these protozoans with
poor basic sanitation and low population purchasing power,
Cryptosporidium spp. and G. duodenalis were included in the
World Health Organization’s Neglected Diseases Initiative (93).

Water transmission of Cryptosporidium spp. and G.
duodenalis is particularly important (94), with outbreaks
being reported in several countries (95, 96). Most people in
undeveloped countries do not have access to good quality water.
Consequently, the contamination of drinking and bathing water
with these two pathogens and the use of sewage for agricultural
purposes pose a serious threat to millions of individuals
worldwide (97).

The transmission of Cryptosporidium spp. and G. duodenalis
has also been associated with the consumption of contaminated
food due to the use of fertilizers based on animal feces (manure),
the use of untreated water for the irrigation of farmland, and
runoff from feedlots. In addition, food can be contaminated
during harvesting, packaging, transportation, and preparation
under unhygienic conditions (98).

Human infections by Cryptosporidium spp. are commonly
caused by Cryptosporidum hominis and C. parvum (1, 99),
although other species have previously demonstrated
zoonotic potential, such as Cryptosporidum ubiquitum (100),

Ctenocephalides canis and Ctenocephalides felis (101–103),
Crytosporidium muris (104, 105), C. suis (106), Crytosporidium
cuniculus (107, 108), and Crytosporidium meleagridis (109–111).

Assemblages A and B of G. duodenalis can be observed in
both humans and animals. Less frequently, other G. duodenalis
genotypes have been only occasionally detected in humans
(112, 113), with the possible exception of assemblage E, which
has recently been detected in substantial numbers of human
cases in rural areas of Egypt (25, 30, 114), Brazil (115), and
Australia (116).

Cattle are recognized as a major contributor to zoonotic
sources because the species and genotypes of Cryptosporidium
spp. and G. duodenalis that infect humans have also been isolated
from cattle (35).

Especially in developing countries, these parasites cause
diarrhea in malnourished children under 5 years of age
(117). Cryptosporidiosis in immunocompetent individuals is
considered self-limiting, but with the appearance of the acquired
immunodeficiency syndrome (HIV), opportunistic infections
have been associated with more serious and even fatal clinical
manifestations in immunosuppressed individuals (35, 118, 119).

The common occurrence of C. parvum subtypes IIaA15G1R1
and IIdA20G1 in buffaloes and humans in Egypt, respectively
(16, 25), highlights the importance of zoonotic transmission
with a special emphasis to the potential role of these animals as
significant reservoirs of infection to humans.

In humans, most of the infections related to G. duodenalis are
asymptomatic; however, acute or chronic diarrhea, dehydration,
abdominal pain, nausea, vomiting, and weight loss can occur
(120, 121). Most cases occur in individuals who are under
5 years of age, malnourished, and immunocompromised (80).
Functional intestinal disorders, such as irritable bowel syndrome,
can be associated with a previous infection (122). Infected
children may show developmental delays, decreased cognitive
function and nutritional status (123).

Among the assemblages of G. duodenalis, assemblages A and
B have the broadest host specificity, having been known to infect
humans and various other mammals (124). Both assemblages can

TABLE 4 | Assemblages and sub-assemblages of G. duodenalis in buffaloes worldwide.

Country Study period Number of

animals

Animal age

(months)

Genes Assemblages Sub-

assemblages

References

Italy NA 57 - bg A. E A1 (10)

Australia NA 476 A/c tpi A. E - (18)

Sri Lanka 2012–2013 297 <6–≥6 tpi E - (19)

Egypt 2011 211 A/c bg. gdh. tpi E - (30)

India 2012 22 - gdh - - (31)

Egypt 2013–2014 100 1–4 ssu rRNA - - (32)

India 2014–2016 83 A/c ssu rRNA. tpi A - (27)

Brazil 2016 183 ≥6 ssu rRNA. bg. gdh. tpi E - (33)

Australia 2017 313 - bg. gdh E - (29)

ssurRNA, Small Subunit of the ribosomal RNA gene; bg, β-giardin gene; gdh, Glutamate dehydrogenase gene; tpi, triosephosphate isomerase gene; A/c, Adults/calves; NA, not available.
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be transmitted zoonotically, indicating a significant public health
impact, and there are reports of farmers being infected with these
assemblages (37). However, assemblage B has not been reported
in buffaloes (124).

Assemblage E is considered species-specific; however, there
are reports of humans being infected with this assemblage, and
it was suggested that this assemblage might present an emerging
anthropozoonotic cycle (30, 114–116, 125).

In Ismailia, one of the most densely populated provinces
of Egypt (regarding livestock and people), fecal samples from
children, cattle, and buffaloes were examined for the detection of
G. duodenalis coproantigens and analyzed by MLG (bg, gdh, and
tpi). Assemblage B was dominant in humans, while assemblage
E was more frequent in ruminants and was detected in two
children, indicating a potential route for anthropogenic infection.
It was also observed that drinking tap water, but not contact with
animals, was associated with an increased risk for children to be
infected (30).

In Egypt, the contact of people with buffaloes and their feces
was identified as a risk factor for the prevalence of infection by G.
duodenalis, drawing attention to zoonotic transmission (32).

In rural regions of India, G. duodenalis and Cryptosporidium
spp. have been detected in humans, buffaloes, cattle, goats,
sheep, dogs, and water sources (tube wells and lakes). These
findings show preliminary evidence of the diversity of possible
transmission routes and help to elucidate the distribution of these
parasites in coexistence with humans and animals and their water
sources (31).

CONTROL AND PREVENTION

To date, there is still no vaccine or drug that is effective in the
treatment of ruminants with cryptosporidiosis, which makes the
control of infection difficult. Therefore, the best strategy is to
adopt management measures to reduce the spread of the disease
in herds (126, 127).

The recommended methods for controlling Cryptosporidium
spp. infection in ruminants are similar to those recommended
for other protozoa and coccidia. Consequently, good breeding
practices should be employed out, such as separating
animals with diarrhea, cleaning the premises before the
animals are introduced, removing and eliminating fecal
content or wet garbage, cleaning feeders and drinking
fountains, developing strategies to reduce humidity in
facilities, and providing adequate supplies of colostrum to
neonates (128, 129).

The survival time of oocysts can be reduced by freezing,
desiccation, exposure to ultraviolet light, and variations in
hydrogen potential (pH) and temperature (74). Cryptosporidium
spp. oocysts are sensitive to ozone, at temperatures of 55◦C for
30 s or 70◦C for 5 s (130). Thus, viable solutions for disinfecting
the environment consist of 10% formaldehyde for 18 h and 5 or
50% ammonia for 30 min (131–133).

In some studies, there has been a reduction in the
excretion of Cryptosporidium spp. oocysts in cattle calves treated
with azithromycin (134, 135). Other studies with intestinal

microbiota found that fiber deprivation in the diet increases
the susceptibility of mice to cryptosporidiosis, and there is a
need for research to confirm this possibility in other animal
models (136).

Such compounds such as paromomycin (9), albendazole (137,
138), and fenbendazole (9, 139) can be used for the treatment
of giardiasis in cattle calves. The action of probiotics against G.
duodenalis was primarily investigated in vitro. Probiotics that
modulate the immune response have a beneficial effect on the
composition of the intestinal microbiota and minimize parasite–
host interactions (140, 141).

There is no vaccine available for the prevention and control
of giardiasis in ruminants (142). Prophylactic measures are
similar for the two protozoa and should include complete
cleaning and disinfection of housing facilities using such
products as ammonia, chlorine dioxide, hydrogen dioxide,
and ozone. Additionally, maintaining a dry environment
inside buildings may hinder the development of parasites
(46, 143).

Minimizing the spread of G. duodenalis infections
among ruminants is a considerable challenge (137). Thus,
environmental disinfection associated with drug therapy
is recommended (9, 137, 138). The daily removal of feces
in the stable, pens, and surroundings is also important.
Additionally, it is essential to ensure adequate intake of
colostrum by newborns for the establishment of passive
immunity (37). These measures need to be incorporated into the
management of the herd with the main priority of adopting good
health practices.

CONCLUSION

Based on recently published research, we demonstrate the global
occurrence of Cryptosporidium and G. duodenalis in buffaloes
from different geographic regions. Although these parasites
possess biological differences, they are frequently discussed
together because they share transmission pathways and cause
diseases in the gastrointestinal tract. Water buffaloes can also
become infected and excrete Cryptosporidium spp. oocysts and
G. duodenalis cysts. In general, young buffaloes are more
affected by these agents than are older animals. Infected hosts
presenting with and without clinical manifestations can eliminate
the infective forms of these protozoa in the environment.
Cryptosporidiosis and giardiasis can be diagnosed by a wide
variety of parasitological, serological, and molecular techniques.
The application of molecular approaches for the identification
of these two parasites has led to significant advances in
knowledge regarding the epidemiology of these protozoans, with
different species being characterized. The common occurrence
of these parasites in both buffaloes and humans highlights the
potential role of zoonotic transmission in the epidemiology of
cryptosporidiosis and giardiasis. However, molecular methods
are mostly restricted to research and specialized laboratories,
and further research is warranted to determine the taxonomic
status and host specificity of these genotypes found in water
buffaloes. We recommend that measures need to be incorporated
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into the management of the herd with the main priority of
adopting good health practices and highlighting the importance
of using molecular tools to identify species/genotypes for a better
understanding of the epidemiology of these protozoa relevant in
public health.
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