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Over the last decade, the development of multiple strategies to allow the safe transfer

from the donor to the patient of high numbers of partially HLA-incompatible T cells has

dramatically reduced the toxicities of haploidentical hematopoietic cell transplantation

(haplo-HCT), but this was not accompanied by a similar positive impact on the incidence

of post-transplantation relapse. In the present review, we will elaborate on how the unique

interplay between HLA-mismatched immune system and malignancy that characterizes

haplo-HCT may impact relapse biology, shaping the selection of disease variants that are

resistant to the “graft-vs.-leukemia” effect. In particular, we will present current knowledge

on genomic loss of HLA, a relapse modality first described in haplo-HCT and accounting

for a significant proportion of relapses in this setting, and discuss other more recently

identifiedmechanisms of post-transplantation immune evasion and relapse, including the

transcriptional downregulation of HLA class II molecules and the enforcement of inhibitory

checkpoints between T cells and leukemia. Ultimately, we will review the available

treatment options for patients who relapse after haplo-HCT and discuss on how a deeper

insight into relapse immunobiology might inform the rational and personalized selection

of therapies to improve the largely unsatisfactory clinical outcome of relapsing patients.

Keywords: haploidentical allogeneic hematopoietic stem cell transplantation, relapse, immune escape, HLA,

immune check point

INTRODUCTION

Allogeneic hematopoietic cell transplantation from haploidentical family members represents
a promising solution to offer allogeneic HCT to virtually all patients with an indication to
transplant, but lacking a fully compatible and/or rapidly available donor. However, from the
immunological standpoint, haplo-HCT also represents the most challenging transplantation
setting, counterpoising two largely HLA-incompatible immune systems and thus posing a severe
risk of graft-vs.-host disease (GvHD) and immune rejection. To overcome this obstacle, over the
last few decades, many strategies have been developed to improve the feasibility and safety of haplo-
HCT (1, 2). In particular, two main haplo-HCT “philosophies” were progressively refined over
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the years: the ex vivo manipulation of the graft to deplete the
most alloreactive cell subsets (3), eventually reinfusing them in a
subsequent moment in combination with regulatory T cells (4, 5)
or upon incorporation of safety switches (6–8), vs. the infusion
of unmanipulated grafts, followed by administration of drugs
capable of eliminating alloreactive cells in vivo (9, 10). Noticeably,
some of these platforms have demonstrated remarkable success,
leading to an exponential increase in the number of haplo-HCT
performed worldwide (11, 12).

The development of innovative strategies to render
haplo-HCT feasible was fueled by intensive research on
the immunobiology of allo-HCT, leading to a number of
observations that were later extended to other transplantation
settings or even served as the foundation to explain the
physiological metrics of immune responses to pathogens
and tumors.

In the present review, we will present one of the most
paradigmatic examples of this process by describing how
investigation of mechanisms of relapse after haplo-HCT paved
the way to understanding the interplay between transplanted
immune system and tumor also in other transplantation settings
and, importantly, to the development of new rationales for
relapse therapy.

TUMOR-INTRINSIC MECHANISMS OF
RELAPSE

Seminal studies conducted by the Seattle group more than 25
years ago led to the identification of donor-derived T cells as
one of the major drivers of the graft-vs.-leukemia (GvL) effect
(13). It is thus no surprise that all the best-characterized tumor-
intrinsic mechanisms of immune evasion and relapse after allo-
HCT have as a final output the abrogation of interactions between
T cells and the tumor. This can occur either because leukemia
cells become “invisible” to patrolling T cells, for instance through
genetic or epigenetic alterations in the antigen processing and
presenting machinery, or because they enact mechanisms to
render the encounter ineffectual, as when inhibitory immune
checkpoints are enforced (Figure 1).

Genomic Loss of HLA
Alterations in the expression and functionality of HLA class I
and II molecules have long been characterized in solid tumors,
underlining also in this setting the importance of T cell-mediated
responses in shaping tumor immunogenicity (14).

Interestingly, in hematological tumors, and acute myeloid
leukemia (AML) in particular, alterations in the HLA region are
quite uncommon, especially at the time of diagnosis (15, 16). This
feature is critical, since the donor T cell-mediated GvL effect of
allo-HCT mostly depends on the HLA molecule expression on
the surface of leukemic cells. As part of the antigen-presenting
machinery, HLA molecules serve as restriction elements for
minor histocompatibility antigens and tumor-associated antigens
or, when incompatible, as direct targets of primary alloreactivity.
In haplo-HCT especially, where an entire HLA haplotype

is mismatched between patient and donor, T cell-mediated
alloreactivity converges against the incompatible molecules that
rapidly become the immunodominant GvL targets.

Given this fundamental role of HLAs in the biology of haplo-
HCT, it is reasonable that a possible getaway for malignant cells
to escape the bottleneck of immunological pressure might be to
exploit alterations in the HLA locus, mirroring what happens in
solid tumors.

The first characterization of such a strategy being used in
AML after haplo-HCT was provided nearly 10 years ago, when
genomic loss of the mismatched HLA haplotype (from this point
on referred to as “HLA loss”) was first reported (17). Behind
this discovery, there is a curious case of serendipity: While
investigating intermediate-resolution genomic HLA typing of
bone marrow aspirate samples as an alternative technique for
the assessment of hematopoietic chimerism (18), our group
encountered several cases of AML post-transplantation relapse
that typed negative for the patient HLAs. Genomic HLA
typing of leukemic blasts purified from these relapses confirmed
the absence of all HLA class I and class II genes encoded
on the mismatched patient-specific HLA haplotype. A deeper
examination of this phenomenon was then carried out exploiting
whole-genome single-nucleotide polymorphism (SNP) arrays,
demonstrating loss of heterozygosity (LOH) of chromosome
6p in the absence of copy number variations (CNVs), thus
suggesting an event of acquired somatic uniparental disomy
(aUPD). UPD has been described as a common chromosomal
aberration in different tumor types, both solid and hematological
(19–21). This genomic alteration consists of the loss of a
chromosome region that is subsequently replaced by the
homologous copy, resulting in acquired homozygosity of that
region without the actual loss of genomic material. The
consequences of this event can be diverse: We can witness an
increase in the expression of oncogenes, loss of heterozygosity of
mutated tumor-suppressors, or in this specific context, the loss
of the HLA molecules not shared between donor and recipient,
which represented the most immunodominant targets for donor
T cell alloreactivity. In the case of HLA loss, the observed
rearrangements had variable boundaries and extension in the
different patients, but inmost cases, encompassed the entire HLA
region and, therefore, included all HLA class I and class II loci.

Ex vivo coculture of donor T cells with leukemic cells
demonstrated that whenHLA loss occurs, mutated blasts become
completely invisible to donor T cells that were capable of
recognizing them before transplantation, thus taking the upper
hand over other clones and rapidly becoming the predominant
population (17, 22). Documentation of HLA loss not only
provides an explanation for how disease escaped a pre-existing
control, but also contraindicates the infusion of additional donor
T cells as a strategy to try to revert relapse, since also these cells
would fail to find a target to attack.

Conversely, HLA loss variants that become invisible to donor
T cell allorecognition could in principle still represent viable
targets for alloreactive donor natural killer (NK) cells. Indeed,
while themechanism of aUPD does not reduce the overall surface
levels of HLA class I molecules on the leukemia cell surface, thus
avoiding to trigger “missing self ” recognition by NK cells (23),
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FIGURE 1 | Tumor-Intrinsic Mechanisms of Immune Evasion and Relapse. This cartoon summarizes the features of the three modalities of leukemia immune evasion

and relapse after allo-HCT better characterized to date. Chromosomes indicate the HLA haplotype homo- or hetero-zygosity, showing in cyan the donor-recipient

shared haplotype and in red the patient-specific incompatible haplotype. The padlock symbolizes epigenetic silencing of the HLA class II loci. On the cell surface, HLA

class I molecules are shown as heterodimers of HLA and beta-2-microglobulin (in yellow), HLA class II as dimers of two transmembrane single-chain HLA molecules,

and inhibitory ligands as green homodimers.

the HLA alleles that are lost by leukemia cells often also represent
ligands for donor inhibitory KIRs (24). Nonetheless, HLA loss
relapses still occur, and the biology at the basis of NK cell failure
in preventing or controlling the emergence of HLA loss relapses
needs to be investigated further. This is highly relevant from the
translational standpoint, since an improved understanding of NK
cell responses in the context of HLA loss could also serve as a
springboard to design adoptive immunotherapy trials based on
NK cells to treat, or even prevent, these relapse variants.

One of the most relevant open issues regarding HLA loss
is understanding when the genetic alteration occurs, or in
other terms, if an infinitesimally small immune-resistant clone
exists before allo-HCT or not. To date, the molecular drivers
of aUPD are poorly known. It has been demonstrated that
an increased susceptibility for chromosomal breaks and the
effects of DNA damage inducers, including chemotherapeutic
agents, might lead to higher aUPD risk in tight proximity
of mitotic recombination sites (20), jeopardizing those heavily
treated patients who undergo the transplantation procedure after
multiple lines of chemotherapy. However, there is also evidence
that aUPD can also be a common finding in AML samples

at the time of diagnosis, with a large study on 454 samples
reporting aUPD frequency of 15–20%. This alteration mainly
affects specific chromosome arms, including 13q, 11p, and 11q
(25). Of note in these reports, the involvement of the HLA region
located in chromosome 6p is exceptional, with an estimated 3–4%
of myeloid malignancies characterized by HLA LOH at disease
onset (26, 27).

Some suggestions on the biological origin of HLA loss
relapses come from retrospective clinical studies. In the
largest analysis on this topic performed to date (28), HLA
loss relapses were shown to occur significantly later than
their “classical” counterparts and to be strongly associated to
allo-HCTs performed in an active disease stage. A possible
explanation linking these two observations might be that
patients transplanted with a sizable leukemia burden probably
present also much higher intratumoral heterogeneity than
those transplanted with minimal or even undetectable residual
disease and are thus also more likely to carry a clone with
HLA loss or with high predisposition to aUPD, which may
then slowly but steadily grow in the subsequent months
following transplantation.
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Soon after the initial description (17), a number of other
studies reported cases of HLA loss relapses after haplo-HCT,
with an incidence ranging between 20 and 40% of all relapses
occurring in this setting (22, 29, 30). Of interest, analysis of
two different cohorts transplanted at our institution using the
same haplo-HCT backbone and differing only in the use of anti-
thymocyte globulin (31) or high-dose cyclophosphamide (32) as
in vivo T cell-depleting agent showed superimposable frequency
of HLA loss relapses, suggesting that regardless of the strategy
used, a significant population of alloreactive T cells escapes the
initial purging and is capable to mediate significant antileukemic
immune pressure. Studies specifically focused on T cell-depleted
haplo-HCTs are to date lacking, but available data from T cell
replete platforms indicate that the frequency of HLA loss is
directly associated to the number of T cells transferred as part of
the graft or after that (28), thus suggesting that in “T cell naked”
transplants, HLA loss might be a rare event and relapses might
have different underlying biology.

Interestingly, there have been reports of HLA loss relapses
occurring in other transplantation settings, in particular after
mismatched unrelated donor HCT (33–36) and, less frequently,
after matched unrelated donor HCT (36). Although these reports
originate from small cohorts of patients and therefore cannot
provide an accurate estimate of the actual incidence of HLA loss
in these settings, they appear to indicate a lower incidence of
the phenomenon as compared to haplo-HCT. We can speculate
that this lower frequency might indicate that, when donor-
recipient incompatibilities are fewer, T cell alloreactivity and
GvL effect is less pronouncedly focused against incompatible
HLAs and possibly outperformed by immunodominant minor
histocompatibility antigens. Moreover, it should be considered
that in the unrelated HCT setting, the incompatibilities are
often not in cis on the same haplotype, meaning that losing
one haplotype by aUPD might not be as effective in abrogating
immune pressure as in the haplo-HCT setting. Finally, the
relative contribution of mismatches at the different HLA loci in
driving alloreactivity and the GvL effect is not entirely clear, and
it may be possible that some, but not other, incompatibilities
might be more potent in promoting immune escape by HLA
loss. In conclusion, more studies regarding the characterization
of relapses outside of the haploidentical setting are still needed,
and the complete understanding of how the GvL effect and the
strength of the selective pressure mediated by alloreactive T-cells
influences and shapes the underlying biological mechanisms of
relapse in these contexts is yet to be entirely dissected.

It has already been stated how the occurrence of this genomic
alteration greatly impairs T cell allorecognition, prompting
the need for a more personalized clinical management of
these relapses. As a consequence, the acute leukemia working
party (ALWP) of the European Society for Blood and Marrow
Transplantation (EBMT) recently made recommendations for
testing eventual HLA loss at the time of relapse before employing
donor lymphocyte infusions (DLIs) (37). However, until recently,
documentation of HLA loss at relapse required the presence of
a considerable tumor burden to perform HLA typing of either
unprocessed bone marrow samples or, when possible, sorted
leukemic blasts (18). To overcome these limitations, we recently

developed “HLA-KMR,” a rapid, reliable, and economic assay
based on quantitative PCR (qPCR) (38) that almost immediately
became a commercially available diagnostic tool (GenDx, The
Netherlands). The rationale of HLA-KMRs is to combine the
detection of non-HLA-polymorphisms together with ad hoc
qPCR reactions targeting the most common HLA allele groups.
Therefore, in “classical” relapses, non-HLA and patient-specific
HLA markers are concordantly positive, whereas the absence
of HLA-specific signal indicates HLA loss relapse. This tool
provides a sensitive method to detect HLA loss relapses event at
early stages, allowing fast clinical decision-making and the use of
a personalized therapeutic approach for every patient.

Finally, what should be the most appropriate therapeutic
approach for HLA loss relapses occurring after haplo-HCT?
Taking into consideration the mechanism and immunological
consequences of this genomic alteration, a possible strategy could
be a second haploidentical transplantation from an alternative
donor, selected to target the remaining HLA haplotype. This
originates from a unique situation, where donor T cells still
share one haplotype with non-hematopoietic tissues, while being
fully mismatched with the leukemic blasts, possibly providing
an even stronger GvL effect (39). As a proof of concept, this
approach was the one associated with the longest survival
after relapse for patients experiencing HLA loss at our center
(28) and might explain the superior outcome described by
Imus and collaborators upon choosing donors with a different
HLA-haplotype for second haplo-HCT (40). Unfortunately, a
second allo-HCT is often not feasible in elderly or heavily
pretreated patients, prompting further preclinical and clinical
studies to treat HLA loss relapses using non-HLA-restricted
immunotherapy approaches, including bispecific antibodies and
chimeric antigen receptor (CAR)-modified T cells.

Downregulation of HLA Class II Molecules
Two very recent studies provided remarkable evidence that
genomic haplotype loss is not the only strategy used by
leukemic cells to alter their HLA assets and avoid detection by
donor-derived T cells. In both studies, comparison of samples
pairwise collected from patients before and after allo-HCT led to
appreciate that in up to 40% of post-transplantation relapses, the
surface expression of HLA class II molecules (HLA-DR, -DQ, and
-DP) becomes virtually absent, and this translates to the failure of
donor T cells primed against the original disease to recognize the
relapse variants (41, 42). Supporting previous studies conducted
in animal models (43), this evidence suggests that interactions
between HLA class II molecules and CD4T cells are necessary
for a proficient GvL effect and that this non-redundant arm of
the antitumor immunity represents a vulnerability that is easily
exploited by leukemia to reemerge. It should be noted, however,
that HLA class II expression is also emerging as a relevant
prognostic parameter in a number of other malignancies. HLA
class II negativity has in fact been linked to unfavorable outcome
in patients diagnosed with germinal center B-cell like diffuse
large B cell lymphoma (44, 45) and with microsatellite stable
carcinomas (46). In a study performed on relapsed/refractory
classical Hodgkin’s lymphoma, in addition to the positivity for
PD-L1, high surface expression of HLA class II molecules also

Frontiers in Immunology | www.frontiersin.org 4 February 2020 | Volume 11 | Article 147

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Rovatti et al. Immune Evasion and Relapse After HCT

correlated with a better response to the anti PD-1 monoclonal
antibody nivolumab (47).

Coming back to leukemia post-transplantation relapses,
similar to the previously described genomic HLA loss
mechanism, in this case a higher dose of T cells infused
with the graft is also associated with a higher likelihood of
also experiencing this modality of relapse (41). However,
different from haplotype loss, class II downregulation has
to date been observed with similar frequencies in both
HLA-compatible and incompatible transplants (41, 42). This
observation suggests that the driver of this event might not
be alloreactivity toward incompatible HLA class II molecules,
but rather against their presented repertoire of tumor-specific
antigens and minor histocompatibility antigens. Recently, in
silico studies convincingly showed that the number of minor
histocompatibility antigens that are presented by HLA class II
molecules surpasses its HLA class I counterpart by more than
one logarithm (48, 49), suggesting that in the unrelated donor
setting, immune reactivity against minors might be even more
potent than the one against the few incompatible HLAmolecules.

Of note, in both studies that first described HLA class
II downregulation as an immune escape modality, in-depth
genetic profiling of the relapsed leukemia found no evidence of
mutations in HLA genes or their regulators, arguing toward an
epigenetic origin of the observed phenotype. Gene expression
analysis, performed to assess the mechanism of HLA class
II expression defects, revealed a significant downregulation
of the major histocompatibility class II transactivator CIITA
(MHC2TA) (41, 42), which in some patients was linked to
hypermethylation of its promoters (42). We further showed
that this feature is stably maintained upon transplantation and
serial passages in immune-compromised mice, with levels of
surface expression of HLA class II molecules in patient-derived
xenografts (PDXs) perfectly mirroring those observed in the
corresponding primary human samples (41).

Unexpectedly, however, when we infused donor-derived T
cells to animals harboring the HLA class II-expressing diagnosis
or the HLA class II-defective relapse, we observed that, although
with a slower kinetics, the latter was also eventually recognized
and eradicated. An in-depth study of this phenomenon showed
that cross-recognition of murine antigens by the infused T
cells led to the release of high levels of interferon-γ (IFN-
γ) in the animal plasma and that this was followed by the
recovery of HLA class II expression on leukemic cells (41). These
findings were also confirmed by ex vivo experiments, in which
post-transplantation leukemic blasts exposed to recombinant
human IFN-γ recovered HLA class II expression, and this in
turn reconvened donor T cell-mediated recognition (41, 42).
From a translational perspective, these results imply that a
proinflammatory environment, driven by GvHD or recognition
of antigens presented by HLA class I molecules, might actually
revert this mechanism of relapse and re-establish a proficient
antileukemic response.

Whereas, the description of deregulated HLA class II
expression as a mechanism of AML post-transplantation relapse
is extremely recent, there are a number of other malignancies
in which alterations in HLA class II have been extensively

investigated and that might provide precious hints on the
molecular driver of the phenomenon in AML. For instance,
there have been several reports of HLA class II downregulation
in lymphoma cells as a consequence of deletions and point
mutations of HLA class II genes and their regulators, including
CIITA (44, 45). Moreover, in lymphomas, CIITA has been
reported to be a recurrent fusion partner of the programmed
death-ligands CD274/PD-L1 and CD273/PD-L2, leading to the
downregulation of HLA class II genes and the upregulation
of PD-L1 and PD-L2 (50). In addition, loss of HLA class
II expression has also been linked to epigenetic silencing,
as a consequence of mutations in epigenetic regulators (e.g.,
enhancer of zeste homolog 2, EZH2) or of hypermethylation or
hypoacetylation of the promoters of HLA genes and/or CIITA
(42, 44, 45, 51). Finally, Tarafdar et al. also proposed a cytokine-
mediated pathway of HLA class II silencing active in chronic
myeloid leukemia: In this disease, tumor cells can produce anti-
inflammatory cytokines including IL-4 (52) and TGF-β (53) that
downregulate the expression of CIITA, rendering themselves less
immunogenic and susceptible to T cell recognition (52, 54).

Upregulation of T Cell Inhibitory Ligands
While genomic and epigenetic alterations in HLA genes have
all the final effect of turning tumor cells invisible to the
donor-derived immune system, there is emerging evidence
that leukemic cells can also hide in plain sight, using their
encounter with T cells to transmit inhibitory signals that stun
and impair antigen-specific responses. A number of reports
have in fact shown that over the course of treatments and
in particular after allo-HCT, hematologic malignancies increase
their expression of molecules that inhibit T cell responses or
drive their exhaustion, including members of the programmed
death-ligand family (41, 55). In a recent study, retrospectively
analyzing samples pairwise collected from AML patients at
the time of diagnosis and at post-transplantation relapse, we
showed increased expression of the inhibitory molecules PD-
L1, CD276/B7-H3, and CD155/PVRL2 in up to 40% of cases
of relapse. PD-L1 overexpression on AML blasts impaired
donor T cell functions ex vivo, and antileukemic responses
could be partially restored upon treatment with anti-PD-L1
monoclonal antibody (41). It should be noted, however, that
in most patients, the landscape of expression of inhibitory
ligands at time of relapse was quite composite, with high inter-
patient variability, hinting at the fact that blocking a single
interaction might yield limited clinical benefits and that efforts
should rather be aimed at identifying and targeting a shared
regulator of these molecules. The relative frequency of changes in
T cell costimulation molecules remained superimposable when
analyzed in different cohorts of patients receiving allo-HCT
from donors with variable levels of HLA-compatibility (37),
similarly to patients experiencing downregulation of HLA class II
molecules at relapse and differently from patients with genomic
loss of HLA-haplotype.

However, to date, little is known about the molecular drivers
of this phenotype in the post-transplantation setting, and most
of the currently available knowledge relates to PD-L1 and its
regulation in other malignancies. Activation of aberrant janus
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kinase (JAK) signaling through 9p24.1 amplification has been
shown to be a potent driver of PD-L1 upregulation in Hodgkin’s
lymphoma (56). Also, myeloproliferative neoplasms bearing
the JAKV617F point mutation had the same effect on PD-L1
expression (57). With that said, loss-of-function mutations in the
JAK/STAT pathway observed in several other tumor types (e.g.,
melanoma) have been proven to be associated with resistance
to PD-1/PD-L1 blockade (58–60). Also, Myc-driven lymphomas
display constitutive upregulation of inhibitory molecules: Myc
oncogenic signaling has been shown in fact to increase the
expression of PD-L1 and of the “don’t eat me” signal CD47
in tumor cells, impairing interactions with T lymphocytes
and dendritic cells (61). Beside oncogenes driving PD-L1
overexpression, several epigenetic mechanisms have also been
reported. Expression of PD-L1 has been shown, for instance,
to be inversely correlated with methylation of its promoter
and robustly induced upon treatment of tumor cells with
hypomethylating agents (62). Also, micro RNAs (miRNAs),
have been implicated in the regulation of PD-L1 expression by
binding to the PD-L1 mRNA and driving its degradation; in
AML, for instance, the levels of miRNA-34a showed inverse
correlation with PD-L1 expression (63). Another emerging layer
of regulation of PD-L1 is represented by post-translational
modifications—for instance, through glycosylation of the mature
protein (64).

In addition to all the tumor-intrinsic mechanisms of PD-
L1 regulation mentioned in the previous paragraph, pro-
inflammatory molecules (e.g., IFN-γ) secreted in the tumor
microenvironment can also potently drive upregulation of PD-
L1 on tumor cells (65). This might be extremely relevant
in the setting of leukemia post-transplantation relapses, since,
as discussed in the previous section, induction of a pro-
inflammatory microenvironment conversely represents the key
to reverting epigenetic downregulation of HLA class II molecules.
Indeed, when data regarding expression of HLA molecules
and inhibitory ligands at relapse in our patient cohorts were
plotted together, it appeared quite evident that these two
modalities of relapse are largely non-overlapping (41) and should
prospectively be discriminated one from the other to enact the
most appropriate salvage treatments.

Noticeably, the phenotypic features of T cells circulating in
patients at the time of relapse mirror the changes observed
in leukemic cells, with significant upregulation of inhibitory
receptors in the patients whose leukemias express the respective
ligands (41, 66). Recent studies showed that expression of
inhibitory receptors such as PD-1 on T lymphocytes can at
least in part be prompted by the intense stimulation conveyed
to the donor immune system upon transfer into an allogeneic
environment (67), as suggested also by the observation of higher
expression of inhibitory receptors on the T cells of patients who
received haplo-HCTs (66). However, in-depth analysis of T cells
from patients who did or did not experience relapse allowed
for the identification of specific exhaustion features in T cells
from relapsing patients, with co-expression of multiple inhibitory
receptors not only in terminally differentiated effectors, but also
in early-differentiated memory stem and central memory T cells
(66, 68). The exhausted phenotype was particularly evident in

the patients’ bone marrow, where T cell-leukemia interactions
are mainly expected to occur and associated with a skewed T
cell receptor (TCR) repertoire (66). Importantly, backtracking
the clinical follow-up of patients who eventually relapsed, it
was possible to identify the T cell exhaustion signature even
months before relapse (41, 66) and in patients who relapsed after
sole chemotherapy (69), suggesting that, upon further validation,
these features might be used as an indicator to guide pre-emptive
therapeutic approaches.

TUMOR-EXTRINSIC MECHANISMS OF
RELAPSE

Beside altering their features to increase aggressiveness and
reduce immunogenicity, malignant cells can also accelerate
disease progression by rewiring the microenvironment to their
advantage, coopting the niche and the physiological mechanisms
at the basis of immune tolerance. Mostly investigated in the
context of solid tumors, interactions between cancer cells and
the microenvironment are also starting to gain more attention in
hematological diseases and gain an additional layer of complexity
upon allo-HCT, when the niche becomes an admixture of
pathological and non-pathological elements of both host and
donor origin (Figure 2).

One of the best characterized modalities employed by
hematological tumors to alter the immune microenvironment
that surrounds them is switching from the production of pro-
inflammatory cytokines to the release of immunosuppressive
molecules, including IL-10 and TGF-β. For instance, it has been
shown that during transformation, myeloid cells can reduce
their production of granulocyte colony-stimulating factor (G-
CSF), IL-15, and IFN-γ. Defects in IFN-γ production have been
correlated to a specific polymorphism, which has been also
linked to clinical risk parameters (e.g., prednisone response) in
patients affected by B-lineage acute lymphocytic leukemia (ALL)
(70). Strongly produced by normal myeloid progenitors, the
physiological function of IL-15 is to expand and activate effector
T and NK cells (71) and to promote the generation of memory
stem T cell subset (72). Therefore, it is not difficult to understand
why high levels of this cytokine in the tumor microenvironment
are unfavorable for leukemic cells. In the post-transplantation
setting, low plasma levels of IL-15 have been correlated to higher
risk of relapse in patient affected by different hematological
malignancies (73). One recently discovered mechanism at the
basis of the reduced production of IL-15 by AML cells is the
internal tandem duplication (ITD) of the FLT3 tyrosine kinase
(FLT3-ITD) (74).

Even though in non-transplantation setting, the dysregulated
effect of several metabolites has been shown to mediate immune
suppression. The expression of indoleamine 2,3-dioxygenase-
1 (IDO1) by leukemia cells was for instance correlated with
unfavorable prognosis in childhood AML (75). IDO1 is the
first actor of an enzymatic cascade resulting in the inhibition
of T cell function and the T regulatory cell reprogramming
(76). Moreover, AML exhibits the ability to block T cell
function through the amino acid arginase, which can also drive
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FIGURE 2 | Tumor-Extrinsic Mechanisms of Immune Evasion and Relapse. This cartoon summarizes several of the pathways exploited by leukemic cells in order to

rewire the bone marrow microenvironment and evade immune recognition. In particular, featured in the figure are the deregulated release by AML blasts of cytokines,

such as interferon-γ (IFN-γ), interleukin-15 (IL-15), and granulocyte-colony stimulating factor (G-CSF); the expression of enzymes involved in aminoacid metabolism,

such as arginase (Arg) and indoleamine 2,3-dioxygenase (IDO-1); and the upregulation of the ectonucleotidases CD73 and CD39 that leads to the increase in

extracellular adenosine (ADO). All of these mediators can have an impact on the frequency and function of immune cell subsets, impairing T and NK cell activity,

driving effector T cells toward exhaustion, inducing the expansion of regulatory T cells (Treg), and promoting the phenotypic switch of macrophages from

pro-inflammatory M1 to immuno-suppressive M2.

macrophages toward the suppressive M2-like phenotype (77).
Other two enzymes that are gaining recent attention for their
possible role in inducing leukemia immune escape are the
ectonucleotidase CD73 (78) and the ectonucleoside triphosphate
diphosphohydrolase-1 CD39 (79).

Recently, moreover, studies conducted in solid tumors
highlighted a major role of tumor-induced metabolic remodeling
in altering T cell state and function. Specifically, Vodnala
et al. revealed that the elevated presence of extracellular
potassium in the tumor microenvironment can promote a
state of functional starvation in tumor-specific T cells. The
starvation response results in induction of autophagy and in
epigenetic reprogramming, impairing T cell differentiation and
function (80).

TRANSLATING RELAPSE BIOLOGY INTO
RATIONALES FOR TREATMENT

The ideal strategies to treat relapse after allo-HCT should
exert both a direct anti-tumor activity and enhance the
alloreactive GvL effect of allogeneic T cells, sparing the risks of
inducing significant cytopenias, immunosuppression, or GvHD.
Moreover, considering the numerous and complexly combined

modalities of relapse that were summarized in previous section,
it should be considered that, ideally only using combinatorial
therapies, it might be possible to hit a target without exposing the
flank to compensatory responses that ultimately select alternative
mechanisms of escape.

Here, we summarize the most recent evidence about post-
HCT relapse treatment modalities, categorizing strategies that
rely on cellular therapies or that aim at boosting or redirecting
the pre-existent donor-derived immune system.

Cellular Therapies
Donor Lymphocyte Infusions
One of the simplest and most intuitive ways to induce a GvL
response after allogeneicHCT is to administer donor-lymphocyte
infusions (DLIs). The main advantage of this strategy is the
induction of a polyclonal T cell response able to target multiple
antigens on malignant cells, reducing the risks of escaping T
cell recognition just by loss of a single antigen. The major
drawback of DLIs is represented by the possibility of donor T
cells recognizing and attacking non-hematopoietic tissues, with
the risk of triggering GvHD, which can turn out to be a serious,
and often fatal, complication. This hazard can be significantly
reduced either by incorporating suicide genes in the infused cells,
acting as a “safety switch” in case of unwanted reactions (81, 82),
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or by infusing specific T cell subsets endowed with lower intrinsic
alloreactivity, such as memory (83, 84) or γδ (85, 86) T cells.

As discussed in previous sections, when considering the
therapeutic use of DLI for relapses after haplo-HCT, it is
fundamental to rapidly determine if relapse is sustained by HLA
loss immune-escape leukemia variants that represent a clear
counter indication to DLI administration. In fact, the genomic
loss of the unshared HLA haplotype in leukemia cells not only
renders them invisible to the major HLA alloreactivity exerted
by infused T cells, but it also does not impact their recognition
of healthy tissues, leaving the risk of DLI-induced GvHD largely
unaltered. For these reasons, upon documentation of HLA
loss, other salvage options should be prioritized as treatment
strategies (17, 39).

Outside of this specific context, a considerable body of
literature exists on the use of DLI as therapy of relapse after
haplo-HCT. The first study after unmanipulated haplo-HCT
performed under ATG-based GvHD prophylaxis utilized a
median dose of donor T cells of 0.6 × 108 CD3+/Kg, reporting
significant risks of both severe acute GvHD (aGvHD, 30%)
and chronic GvHD (cGvHD, 64%) (87). More recently, a study
testing DLI after post-transplant cyclophosphamide (PTCy)-
based GvHD prophylaxis yielded a 30% complete remission (CR)
rate, with a risk of developing grade III–IV aGvHD or cGvHD of
15 and 8%, respectively. In this trial, a dose of 1 × 106 CD3+/Kg
was considered a reasonable starting dose (88). Another study
showed that escalating doses of DLI after PTCy-based haplo-
HCT were accompanied by at least a 33% CR rate, a 14% risk
of grade II–III aGvHD, and no cases of grade III–IV aGvHD or
cGvHD. In this study, the initial administered DLI dose was 1
× 105 CD3+/Kg, in case of molecular relapse, and higher (from
1 × 106 rising to 1 × 107 CD3+/Kg), in case of hematological
relapse (89).

Several studies also reported results from combinatorial
administration of DLI and immunomodulating agents, with the
aim of increasing the immunogenicity of tumor cells, rendering
them more susceptible to DLI action. The diverse dose schedules
and time points of infusions preclude a clear guideline, but most
trials employed a starting dose of 1 × 105 CD3+/Kg, eventually
escalating in the absence of GvHD development (88, 90–98).

Second Allogeneic Transplantation
Second allogeneic transplantation (allo-HCT2) to treat relapse
after the first allo-HCT has recently gained more popularity,
thanks to the introduction of reduced-intensity conditioning and
improvements of supportive therapies, which have significantly
reduced toxicities after allo-HCT2, historically burdened by
treatment-related mortality up to 40–50% (99, 100). As
in the case of DLI, when considering HCT2 for relapse
after HLA-mismatched HCT, it is mandatory to discriminate
whether relapse after the first transplant was classical or
HLA loss. Especially in the second case, as mentioned above,
selecting a second haploidentical donor with a different HLA
haplotype provided some very promising preliminary results
(40). Unfortunately, for all the studies on this subject, the
inevitable selection bias of patients fit to receive a second
conditioning and further transplantation must be taken into

account, and clinical decisions must balance individual patient
comorbidities and alternative therapeutic strategies.

Adoptive Immunotherapy With Genetically

Redirected Immune Cells
Over the last few years, a number of landmark studies have
demonstrated the feasibility and efficacy of using gene therapy
to redirect immune cells in a non-HLA-restricted fashion against
antigens of choice. The most striking example is provided by
chimeric antigen receptor (CAR) T cells, which are capable
of binding to the surface antigen of choice without the
need for TCR-HLA interactions, thus representing a promising
therapeutic option for patients relapsing with HLA loss or HLA
downregulation. Moreover, CAR potent synthetic co-stimulatory
domains may bypass the effect of the immune-suppressive signals
expressed by tumor cells or microenvironment (101, 102).

CAR T cells targeting CD19 are, to date, the best studied
and have demonstrated significant activity in chemotherapy
refractory CLL, B-cell lymphomas and B-ALL in the autologous
setting (103–108). There is also growing evidence of the efficacy
of donor-origin CD19 CAR T cells in patients relapsing after
allo-HCT (102, 108–111) or even haplo-HCT (112, 113). In
this scenario, the infusion of allogeneic CAR T cells could
carry the theoretical risk of GvHD; however, incidence of this
fearsome complication in early trials was quite low, and an
elegant study in mouse models showed that the CAR-driven
and TCR-driven signal actually adds up, accelerating exhaustion
and limiting alloreactions (101). Still, a number of studies
are focusing on the development of improved strategies to
further enhance CAR T efficacy and persistence without risking
to induce GvHD, such as by transducing recipient-derived
donor T cells (113), by using genome editing approaches to
knock out the endogenous TCR (101, 114), or by modifying
with the CAR different immune cells, less prone to induce
GvHD (85, 115, 116).

Redirecting or Boosting the Donor-Derived
Immune System
Bispecific Antibodies
Based on a principle similar to the one that guided the
development of CAR T cells, bispecific antibodies can also enable
redirection of immune cells toward malignant cells, forcing the
formation of an immunological synapsis through the binding
of an antigen expressed on effectors (such as CD3 on T cells
or CD16 on NK cells), with one expressed by the tumor
target (such as CD19 for lymphoid malignancies or CD33 for
myeloid leukemias) (117, 118). This results in the release of
cytotoxic granules in close proximity to target cells, with the
ultimate step of apoptosis induction and elimination, also fueled
by inflammatory cytokines production and antigen spreading
mechanisms (119). This strategy could be another useful way
to circumvent HLA-restriction of TCR, with the potential added
value of being readily available off the shelf and taking advantage
of cells that are already circulating in the patient and tolerized
against his healthy tissues. However, other immune-evasion
mechanisms (related to the induction of inhibitory checkpoint
molecules and the production of immunosuppressive cytokines
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or metabolites), have been shown to rapidly emerge upon
treatment with bispecifics, suggesting that full exploitation of
the anti-tumoral activity of these promising molecules could
pass by enhancing costimulatory pathways or blocking immune
checkpoints (120–125).

Epigenetic Therapies
The two commercially available hypomethylating agents
(HMAs), azacytidine (Aza) and decitabine (DAC), are
frequently used for post-HCT relapse treatment in AML or
myelodysplastic syndromes (MDS). HMAs indirectly inhibit
DNA methyltransferases significantly altering DNA methylation
patterns with consequent induction of cell cycle arrest, DNA
damage accumulation, apoptosis, and differentiation (126–132).
More recently, immune-related effects of hypomethylating
agents have also been described. In particular, Aza stimulates
antitumor immunity inducing the upregulation on leukemic
cells of leukemia-associated and minor-histocompatibility
antigens, including PRAME, MAGE-A, NY-ESO1, and HA-1
(129, 130, 133–136). Aza can also lead to increased HLA class-I
and II expression and modulate tumor-immunogenicity through
the upregulation on leukemic cell surface of costimulatory
molecules, such as CD80, CD86, ULBP, and MIC-A (137).
Among the reported effects, HMAs can induce the expression
of important players involved in anti-viral responses, including
IFN-γ and cytokines. Interestingly, Aza can also promote
upregulation of endogenous retroviral elements on tumor cells,
inducing a “viral mimicry” response that ultimately results in
the induction of anti-tumor immunity (138–140). However, Aza
can also act as a double-edged sword, since it can upregulate
PD-1, PD-L1/L2, and CTLA-4 inhibitory pathways and induce
the expansion of regulatory T cells (131), potentially hampering
the intensity and duration of cytotoxic T cell responses and
facilitating the tolerization and exhaustion of tumor-specific T
cells (141, 142).

Due to their reported immune-related effects, HMAs have
been frequently employed in combination with DLI. To
date, we have data on more than 600 patients undergoing
salvage regimens including Aza and DLI, reporting very
variable results in terms of clinical outcome (143–148). Because
of the heterogeneous results obtained so far and lack of
consent on treatment schedules, two retrospective surveys have
analyzed the correlates of efficacy of Aza+DLI combinations
in more homogeneous cohorts, one facilitated by the German
Cooperative Transplant Study Group (145) and the other by
the EBMT (146). These studies reported that patients that
benefitted the most from Aza+DLI combinatorial approach were
those who presented low disease burden at the time of relapse
(molecular relapse or <20% blasts in bone marrow) and those
with a longer interval from allo-HCT to relapse. These variables
can be adopted to predict treatment response through a score
assignment (AZA relapse prognostic score: ARPS), even if an
independent validation cohort is still lacking (146).

Histone acetylation is another epigenetic mechanism of
immune regulation, balanced between the activity of histone
acetyl-transferases (HATs) and histone deacetylases (HDACs).
HDAC inhibitors, such as vorinostat and panobinostat, have been

associated with the upregulation of major-histocompatibility
and co-stimulatory molecules on AML cell surface through the
induction of an open and readable structure of chromatin (149,
150). To date, two prospective phase I/II trials of post-HCT
therapy with panobinostat for AML/MDS patients, alone or in
combination with DAC and DLI, have been reported (151, 152).

Immune Checkpoint Blockade
Immune checkpoint inhibition through the administration of
monoclonal antibodies that target the PD-1/PD-L1 and CTLA-
4/B7 axes is emerging as an attractive strategy to enhance
alloreactive T cell function and rewire the immunosuppressive
milieu in which disease relapse often occurs (153–155). Clinical
trials exploring the efficacy of immune checkpoint inhibitors
after allo-HCT have shown some promise using the anti-
CTLA4 antibody ipilimumab (156, 157) and more modest
results using PD-1 inhibitors in diseases other than Hodgkin’s
lymphoma (158–161). Moreover, post-transplantation treatment
with checkpoint inhibitors appears to be associated to a
significant risk of severe and treatment-refractory GvHD and
immune-related events (162).

However, as the balance of stimulatory and inhibitory
signals determines the magnitude of immune responses against
tumor cells, combiningHMAs and immune-checkpoint blockade
therapies may represent an interesting approach to release the
“break” signal received by tumor-reactive immune cells (163–
165). A phase II trial exploring the combination of the anti-
PD1 monoclonal antibody Nivolumab and Aza in relapsed AML
reported an overall response rate of 33% (166), and several
ongoing trials are assessing the efficacy of HMAs and immune
checkpoint inhibitor combinations, some of them recruiting
also post-transplantation relapsed patients (NCT02890329,
NCT02845297, NCT02996474, and NCT02397720).

Cytokine Therapies
The use of exogenous cytokines to boost or restore T cell-
and NK cell-impaired effector functions have been object of
intense investigation in cancer therapy and especially in the
field of hematological malignancies. Interleukin 2 (IL2), IFN-
α, and IL-15 are the best studied. IL-2 has been shown
to stimulate the anti-tumor effect of lymphocytes, polarizing
helper T cell responses toward type 1 and exerting both
immune-enhancing and immune-suppressive activities (167–
169). However, application of IL-2 monotherapy against AML
has yielded very limited clinical benefit, both for the induction
of regulatory T cells that impaired antileukemic activity and
for the rapid drop in effector functions due to T cells terminal
differentiation and exhaustion (170–173). IFN-α, however, exerts
pleiotropic functions, since it has a direct antileukemic effect
and also possesses immune-stimulatory properties, leading to
dendritic cells stimulation, enhancement of NK-cell cytotoxicity,
and sensitization of T cells to other inflammatory cytokines,
such as IL-2 (174–177). Despite these theoretical premises, IFN-α
failed to demonstrate significant activity as single agent in post-
transplantation relapse (178–181). As previously described, IL-15
is a potent immunostimulatory cytokine, that potentiates both T
and NK cell immune responses, promoting the generation and
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maintenance of high-avidity and long-lived CD8+ memory T
cells. IL-15 also prevents activation-induced T cell death and does
not induce the expansion of immunosuppressive regulatory T
cells (72, 182–186). A phase I trial testing the IL-15 super-agonist
complex ALT-803 in patients relapsing after allo-HCT showed
a very promising response rate (19% of evaluable patients),
correlated to the expansion of both NK and T cells (187).
Recently, novel approaches to transfer high concentration of
cytokines to the tumor site and reduce their systemic effects are
emerging, including gene therapy “Trojan Horse” strategies (188)
and the use of lipid nanoparticles to convey to the tumor site
mRNAs encoding cytokines (189).

Immune-Related Effects of Targeted
Therapies
The growing armamentarium of targeted therapies is providing
new evidence that, beside their direct effects, some of them can
also promote antitumor immunity. A recent work testing the
effect of the tyrosine-kinase inhibitor sorafenib in a mouse model
of leukemia showed that the treatment increased the production
of IL-15 by leukemic cells bearing FLT3-ITD. This resulted in
enhanced CD8+ T cell effector function (via their increased
metabolic capacity) and leukemia eradication. Mechanistically,
sorafenib induced transcription of IL-15, acting by inhibition of
the transcription factor ATF435 that in turn suppresses the IL-15
activator interferon regulatory factor 7 (IRF7) (74).

Another example of tyrosine-kinase inhibitor exerting “off-
target” immune mechanisms is represented by imatinib, which
is indicated in Philadelphia-positive (Ph+) leukemias, namely
chronic myeloid leukemia (CML) and Ph+ acute lymphoblastic
leukemia (ALL). Allogeneic HCT remains the only curative
option for Ph+ ALL and advanced-phase CML, and there is
general consensus about imatinib administration following HCT
(190, 191). In addition to targeting Bcr/Abl1 and KIT oncogene
products, imatinib modulates the proliferation, polarization,
and functionality of different subsets of myeloid and lymphoid
cells (192–195). This modulation can exert either inhibitory
or stimulating immune effects. Among the inhibitory effects
are the inhibition of dendritic cells expansion, resulting in
less efficient priming of cytotoxic T cells (196–199), the
polarization toward a M2-like anti-inflammatory phenotype
of tumor-associated macrophages (200, 201), the reduction
of effector-cytokine production by CD4+ T cells in response
to TCR-signaling (202, 203), and the reduction of IgM-
producing memory B-cell frequency (204–206). On the other
hand, imatinib also has stimulating effects such as decreased
expression of 2,3-IDO and consequent apoptosis in regulatory
T cells (207, 208); reduction of myeloid-derived suppressor
cells, thus restoring a T cell cytotoxic response (209–211);
reduced secretion of VEGF with subsequent antiangiogenic
effect (212, 213); polarization toward a higher Th1/Th2
ratio (214–216); and preferential expression of activating NK
receptors (217).

CONCLUSIONS AND PERSPECTIVES

The landscape of allo-HCT, and haplo-HCT in particular,
is rapidly changing, with multiple platforms able to achieve
remarkable long-term outcome results. The reduced risk of
treatment-related toxicities and mortality has also opened the
possibility to implement innovative pharmacological or cellular
therapies in the post-transplantation follow-up, transforming
the perception of allo-HCT from that of a final consolidation
therapy to a “platform” to build on. In this new scenario, it
will be of utmost relevance to also associate to the analysis
of clinical endpoints a detailed study on how changing the
recipe of allo-HCT influences its immunobiology. For instance,
understanding the relative contribution of each immune cell
subset transferred as part of the graft in the induction of GvHD
and protection against relapse will be fundamental to guide
further improvements in “tailoring” graft composition and post-
transplantation cell therapies, as convincingly suggested by a
number of recent studies (218–220). It is now evident that the
success or failure of transplantation is linked to our ability
to take full advantage of the many features endowed in the
immune system and to combine them with targeted therapies
to hit as many tumor targets as possible, reducing the chances
of selection of escape variants. Generation of new quantitative
systems to map tumor immune targets, characterization of
the tumor immune microenvironment by multi-omics single-
cell technologies, and generation of more refined humanized
mouse model to mirror allo-HCT all appear to be promising
avenues in advancing knowledge on allo-HCT immunobiology
and, ultimately, in generating new rationales to further improve
clinical outcome.
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