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ARTICLE INFO ABSTRACT
Keywords: Background: COVID-19 rapidly spread around the world, putting health systems under unprecedented pressure
Health information system and continuous adaptations. Well-established health information systems (HIS) are crucial in providing data to

Systems interoperability
Morbidity
COVID-19

allow evidence-based policymaking and public health interventions in the pandemic response. This study aimed
to compare morbidity information between two databases for COVID-19 management in Portugal and identify
potential complementarities.

Methods: This is an observational study using records from both COVID-19 cases surveillance (National Epide-
miological Surveillance System; SINAVE) and related deaths (National e-Death Certificates Information System;
SICO) systems, which were matched on sex, age, municipality of residence and date of death. After the linkage,
morbidity reported in SINAVE and identified in SICO, through the application of Charlson and Elixhauser co-
morbidity indexes algorithms, were compared to evaluate agreement level.

Results: Overall, 2285 matched cases were analyzed, including 53.9% males with a median age of 84 years.
According to the method of data reporting assessment, the presence of any morbidity ranged between 26.3% and
62.5%. The reporting of ten morbidities could be compared between the information reported in SINAVE and
SICO databases. The proportion of simultaneous reporting in both databases ranged between 5.7% for diabetes
and 0.0% for human immunodeficiency virus infection or coagulopathy. Minimal or no agreement was found
when assessing the similarity of the morbidity reporting in both databases, with neoplasms showing the highest
level of agreement (0.352, 95% IC: 0.277-0.428; p < 0.001).

Conclusion: Different information about reported morbidity could be found in two HIS used to monitor COVID-19
cases and related deaths, as data are independently collected. These results show that the interoperability of SICO
and SINAVE databases would potentially improve available HIS and improve available information to decision-
making and address COVID-19 pandemic management.
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1. Introduction

COVID-19 emerged in late 2019 as one of the greatest threats to
human health over the last centuries [1]. Due to the severity and rapid
dissemination of this disease across the globe, the World Health Orga-
nization (WHO) declared COVID-19 a pandemic state on March 11th,
2020 [2]. Since then, several public health measures have been adopted
to “flatten the curve” of incidence and minimise the impacts of this
infection [3].

Given the urgency of the phenomenon and the need for timely
available data, health information systems (HIS) play an essential role in
providing information to health authorities [4]. The discussion around
the ability of health care systems to take advantage of exchange infor-
mation and interoperability between HIS is not new [5]. Among the
benefits elicited so far is the potential to generate financial savings
within total health expenditures [6] and public health through improved
patient care [7,8].

Although health information exchange within HIS should be pro-
moted beyond the COVID-19 crisis [4], the relevance of a robust and
interoperable HIS for public health decision-making [9] has been
highlighted during this pandemic [4,10]. Throughout this health crisis,
measures such as the surveillance of infections, contact tracing and the
characterisation of deaths have been essential to monitor the overall
epidemic impact and generate evidence to inform policymaking in
adjusting or implementing other public health interventions.

The most straightforward approaches include taking advantage of
available routine HIS, COVID-19-related reporting platforms, or existing
surveillance systems [11]. However, the pandemic has highlighted some
of the insufficiencies of health surveillance systems for COVID-19
monitoring. Consequently, adjustments were necessary to provide a
timely and articulated response from the entire health system. In
Portugal, for instance, human resources were strengthened with the
allocation of more health professionals and contact tracing trained
military personnel [12] and a specific HIS was created for doing contact
tracing (e.g. platform Trace COVID-19) [13].

Nevertheless, when different platforms are created to collect similar
health information independently, separated data are generated, which
can constitute an obstacle to its efficient use and partly compromise a
rapid, strong, and accurate response [14]. The benefits of a sound HIS
have previously been described, such as their importance for the
governance and management of a health system in achieving better
outcomes [15,16].

Several strategies aiming to improve HIS have been studied,
considering the potential of emerging technologies and automation used
during data collection and analysis. One of them is the interoperability
of different HIS, allowing them to communicate in a coordinated
manner, and enhance available health information, particularly during a
pandemic [17].

This study aimed to compare and identify the potential comple-
mentarity of the available information between two databases regarding
the morbidities recorded within the surveillance of COVID-19 cases and
related deaths in Portugal.

2. Material and methods

We conducted a registry-based observational study to analyse
COVID-19-related morbidity in 2020 from two databases used in
Portugal to collect information on COVID-19 infections and associated
deaths. This study is reported following the STROBE statement [18] and
RECORD extension [19].

2.1. Study population and data sources
All records, either in the National e-Death Certificates Information

System [Sistema de Informagao do Certificados de Obito] (SICO) database
or in the National Epidemiological Surveillance System [Sistema
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Nacional de Vigilancia Epidemioldgica] (SINAVE) database, of all deceased
people from COVID-19 during 2020 in Portugal were considered. These
two databases include data from the most relevant HIS in Portugal. First,
a subset of SICO was used to obtain all COVID-19-related deaths
certificated in Portugal between March 16" and December 31%, 2020.
SICO is a national and web-based information system on mortality
managed by the Portuguese Directorate-General of Health (DGS), which
provided the SICO dataset used in this study. The SICO database includes
information on causes of death and related comorbidities, inputted by
medical doctors who certify deaths, then coded by a team of trained
coders allocated explicitly to this task. Thus, the presence of a “COVID-
19” code - International Statistical Classification of Diseases and Related
Health Problems, 10™ Revision (ICD-10) [20]: U07.1 or U07.2 - as the
underlying cause of death was considered to identify COVID-19 related
fatalities. Second, the SINAVE database was used to obtain information
about the clinical characteristics of the COVID-19 cases. The SINAVE
system allows the electronic notification and epidemiological surveys of
diseases which require mandatory reporting in Portugal, managed by
Shared Services of the Ministry of Health (SPMS), which is the national
health information technology authority, and DGS, which provided the
dataset for this study. Consequently, the SINAVE database has been used
in Portugal to register the surveillance data of COVID-19 cases. In
addition, the SINAVE records of deceased people during 2020, with a
COVID-19-related cause of death, were considered for this study. As a
specialized team codes the open-ended field information in SICO,
morbidity data in this database is considered to be more accurate and
reliable than in the SINAVE.

2.2. Data linkage and records inclusion

A new database was created by matching records related to the same
death in SICO or SINAVE databases. As each record was de-identified in
the databases, four variables available in both databases were consid-
ered to link the same cases. Thus, the linkage of cases from each data-
base was conducted based on age, sex, municipality of residency, and
date of death. If the conjugation of those four variables occurred in more
than one case, either in SICO or SINAVE, those cases were excluded.
Then, information from each database was linked and included in a new
database including the records from SICO and SINAVE matched on those
four variables mentioned above.

In the SICO database, morbidity information is first reported through
an open-ended field and subsequently coded using ICD-10. Although
some inconsistencies between the open-ended field and ICD-10 coding
fields were observed throughout the dataset, in some weeks, the SICO
dataset presented several cases with information about morbidity in the
open-ended field but no ICD-10 code in coded morbidity fields. There-
fore, the authors considered using a criterion to minimize bias derived
from cases dying within weeks where a substantial proportion of cases
with an incomplete coding process was observed. Consequently, the
completeness of the coding process for each week was assessed by
identifying cases whose open-ended field information was available but
was not coded according to ICD-10 to coded morbidity fields. A team
consensus established that an incomplete coding process occurred dur-
ing a given week if more than 5% of cases dying that week had open-
ended field morbidity information but any ICD-10 code in respective
fields. Thus, the analysis only included deceased people within weeks
without an incomplete coding process.

2.3. Variables

Age (recoded into four age groups) and sex were used to describe
sample characteristics. Following the International Organization for
Standardization week date system (ISO 8601), the date of death was
recoded into week number of the year (from 1 to 53).

Morbidities coded in the SICO database according to the ICD-10 [20]
were used to calculate Elixhauser [21] (ECI) and Charlson Comorbidity
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SICO

Raw data
(n=6701)

Number of cases with at
least one duplicated (n = 64)

Number of cases with unique ID
(n =6570)
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SINAVE

Raw data
(n = 419892)

l

Original dataset, deads
(n=6715)

Number of cases with at
least one duplicated (n = 74)

Number of cases with unique ID
(n =6564)

Exact match based on sex, age, municipality
of residence and date of death

Number of exact matches
(n =4049)

Number of cases dying in weeks with
>5% of incomplete coding (n = 1764)

Number of matched cases dying in weeks
with <5% of incomplete coding
(n =2285)

Fig. 1. Inclusion flow chart of records from SINAVE and SICO databases considered in the analysis (n = 2285) SICO, National e-Death Certificates Information System;

SINAVE, National Epidemiological Surveillance System.

indexes [22] (CCI), using their ICD-10-adapted algorithms. Therefore,
the occurrence of morbidities was described according to four methods:
1) the comorbidities directly reported in the SINAVE database by those
who filled in the notification, which states whether the individual had or
did not have comorbidities; 2) the recodification of the occurrence or not
of reported morbidities in SINAVE database; 3) the identification of
comorbidities in the SICO database according to the algorithm of CCI, or

4) the identification of comorbidities in the SICO database according to
the algorithm of ECIL

The SINAVE system allows for recording the occurrence of 13
comorbidities, namely: neoplasia, diabetes mellitus, human immuno-
deficiency virus (HIV), neurologic or neuromuscular disease, asthma,
chronic pulmonary disease, hepatic disease, chronic hematologic dis-
ease, chronic renal disease, chronic neurologic deficiency, acute renal

Table 1
Number of individuals with reported comorbidities according to each method of obtaining this result.
Total Male Female p- 0-69 70 -79 80 -89 greater than 90 p-
n (%) n (%) n (%) value years years years years value
n (%) n (%) n (%) n (%)
SINAVE Original morbidity No 79 (3.5%) 46 (3.7%) 33(3.1%) 0.812 15 (5.5%) 16 (3.4%) 33 (3.4%) 15 (2.6%) 0.460
reporting Yes 779 439 340 101 175 323 179 (31.1%)
(34.1%) (35.7%) (32.3%) (37.3%) (37.3%) (33.3%)
Subtotal 858 485 373 116 191 356 194 (33.7%)
(37.5%) (39.4%) (35.4%) (42.8%) (40.7%) (36.7%)
With no 1427 746 681 155 278 613 381 (66.3%)
data (62.5%) (60.6%) (64.6%) (57.2%) (59.3%) (63.3%)
SINAVE Recoded morbidity No 1163 609 554 0.078 123 239 500 301 (52.3%) 0.060
reporting (50.9%) (49.5%) (52.6%) (45.4%) (51.0%) (51.6%)
Yes 600 341 259 83 140 241 136 (23.7%)
(26.3%) (27.7%) (24.6%) (30.6%) (29.9%) (24.9%)
Subtotal 1763 950 813 206 379 741 437 (76.0%)
(77.2%) (77.2%) (77.1%) (76.0%) (80.8%) (76.5%)
With no 522 281 241 65 90 (19.2%) 228 138 (24.0%)
data (22.8%) (22.8%) (22.9%) (24.0%) (23.5%)
SICO Charlson Comorbidities No 914 498 416 0.638 113 181 380 239 (41.6%) 0.671
index (40.0%) (40.5%) (39.5%) (41.7%) (38.6%) (39.2%)
Yes 1371 733 638 158 288 589 336 (58.4%)
(60.0%) (59.5%) (60.5%) (58.3%) (61.4%) (60.8%)
SICO Elixhauser No 857 461 396 0.965 98 163 357 238 (41.4%) 0.132
Comorbidities index (37.5%) (37.4%) (37.6%) (36.2%) (34.8%) (36.8%)
Yes 1428 770 658 173 306 612 337 (58.6%)
(62.5%) (62.6%) (62.4%) (63.8%) (65.2%) (63.2%)

Footnotes: Fisher and Chi-Square tests were used to evaluate the association between each method of reporting of any morbidity and sex or age group. One record had

missing data for age.
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Table 2

Number of reported comorbidities according to each method of quantification.
Number of identified morbidities SINAVE Charlson Elixhauser

n (%) n (%) n (%)

0 1163 (50.9%) 914 (40.0%) 857 (37.5%)
1 312 (13.7%) 713 (31.2%) 479 (21.0%)
2 185 (8.1%) 465 (20.4%) 464 (20.3%)
3 77 (3.4%) 155 (6.8%) 286 (12.5%)
4 19 (0.8%) 29 (1.3%) 134 (5.9%)
5 6 (0.3%) 8 (0.4%) 47 (2.1%)
6 1 (0.04%) 1 (0.04%) 12 (0.5%)
7 - - 6 (0.3%)

failure, congestive heart failure and coagulopathy. A variable that
indicated whether a case had or did not have comorbidities, filled in by
the person who notified that given case, was also available. Two new
variables were recoded through the information reported on the 13 re-
ported comorbidities in SINAVE. One variable informs if any of the 13
comorbidities in SINAVE were reported, while the other enumerates
how many were reported. Chronic renal disease and chronic renal fail-
ure, both morbidities recorded in SINAVE, were recoded into the same
variable.

Thus, comorbidities reporting in both databases for the same case
were compared. When possible, comorbidities identified using ECI and
CCI in SICO were matched with those reported in SINAVE. The selection
of what ECI and CCI morbidities from SICO would be compared with
each comorbidity reported in SINAVE, within those mentioned above,
was made after a consensus arising from the research team, which
included two physicians, a nurse and other health professionals.
Matches between comorbidities in both databases are presented in Ap-
pendix A - Table A.1.

2.4. Statistical analysis

Descriptive statistical methods were performed. Accordingly, abso-
lute and relative frequencies were calculated for categorical variables.
Fisher exact and Chi-Square tests were performed to evaluate the asso-
ciations between categorical variables. Cohen’s kappa test was used to
determine the level of agreement between databases. For all tests per-
formed, the level of statistical significance was set at 0.05. Statistical
analysis was conducted using IBM SPSS Statistics for Windows (version
26.0, 2019, Armonk, NY: IBM Corp).

3. Results

From a total of 6701 death records in SICO and 419892 SARS-CoV-2
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infections identified in SINAVE during 2020, of which 6715 died, the
linkage approach for both databases found 4049 entries as exact
matches on four variables (age, sex, municipality, and date of death).
Therefore, it represents a proportion of 60.4% and 60.3% (considering
only deceased patients) of matched records among the original samples,
respectively. Then, after excluding cases dying within weeks where
incomplete coding was verified, 2285 matches were analysed: 53.9%
males and a median age of 84 years (IQR: 76-90). Fig. 1 shows the flow
chart showing enrolment of included records from SINAVE and SICO
databases.

According to each available method of reporting, the distribution of
comorbidities occurrence (or absence) across gender and age groups is
presented in Table 1. The presence of any reported morbidity for a given
case varied between 26.3%, when the presentation of any morbidity was
recoded through the information reported in specific morbidities vari-
ables of SINAVE, and 62.5%, when the presence of morbidities was
identified using the ECI in SICO database. The reporting of any
morbidity per case was similar and independent for both sex and age
groups. However, the percentage of morbidities reporting was tenden-
tially lower for people dying at age 90 years or more, as this group had
the lower proportion of morbidity reported according to three out of
four methods presented in Table 1. Also noteworthy is the proportion of
missing values in reporting any morbidity in the SINAVE database
(62.5%). However, the percentage of missing values in the recoded
variable of the presentation of morbidities was lower (22.8%).

The number of reported morbidities in SINAVE or identified mor-
bidities according to the CCI in the SICO system ranged between zero
and six. Additionally, the ECI algorithm identified six cases with seven
comorbidities, as presented in Table 2.

The agreement between reported morbidities number in SINAVE and
each of the CCI and ECI is described in Table 3. The number of cases
without any reported or identified morbidity in SINAVE and simulta-
neously in CCI or ECI was 492 and 438, respectively, corresponding to
27.9% and 24.8% of the total sample. Within the cases for which it was
possible to match information on morbidities between both databases, a
total of 662 (37.5%) and 577 (32.7%) cases had the same number of
comorbidities reported in SINAVE and identified in SICO with either CCI
or ECI, respectively. When a given number of comorbidities higher than
zero were identified in SICO and reported in SINAVE, the higher per-
centage of concordance was observed with one morbidity reported in
both databases, in 6.4% of the sample using CCI and in 4.4% using ECI.
Those proportions of cases with one morbidity reported in SINAVE
corresponded to about one-fifth of cases, also with one morbidity,
identified using CCI (19.9%) or ECI (20.6%). These results revealed a
lack of agreement among the number of comorbidities reported for each
case between databases.

Table 3
Differences in the number of comorbidities reported in the SINAVE database and SICO database.
Number of comorbidities SINAVE Kappa
0 1 2 3 4 5 6
SICO Charlson index 0 492 (70.5%) 118 (16.9%) 50 (7.2%) 25 (3.6%) 8 (1.1%) 5 (0.7%) 0 (0.0%) 0.051 (95% CI:0.024 — 0.078)
1 359 (63.8%) 112 (19.9%) 64 (11.4%) 21 (3.7%) 6 (1.1%) 1 (0.2%) 0 (0.0%) p < 0.001
2 225 (64.5%) 63 (18.1%) 45 (12.9%) 16 (4.6%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
3 70 (56.9%) 16 (13.0%) 21 (17.1%) 12 (9.8%) 3(2.4%) 0 (0.0%) 1 (0.8%)
4 13 (54.2%) 3 (12.5%) 5 (20.8%) 2 (8.3%) 1 (4.2%) 0 (0.0%) 0 (0.0%)
5 3 (60.0%) 0 (0.0%) 0 (0.0%) 1 (20.0%) 1 (20.0%) 0 (0.0%) 0 (0.0%)
6 1 (100.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
SICO Elixhauser index 0 438 (68.7%) 111 (17.4%) 49 (7.7%) 27 (4.2%) 8 (1.3%) 5 (0.8%) 0 (0.0%) 0.032 (95% CI: 0.007 — 0.057)
1 239 (63.1%) 78 (20.6%) 45 (11.9%) 12 (3.2%) 4 (1.1%) 1 (0.3%) 0 (0.0%) p = 0.009
2 244 (66.3%) 63 (17.1%) 46 (12.5%) 13 (3.5%) 2 (0.5%) 0 (0.0%) 0 (0.0%)
3 143 (64.1%) 40 (17.9%) 25 (11.2%) 13 (5.8%) 2 (0.9%) 0 (0.0%) 0 (0.0%)
4 62 (62.0%) 15 (15.0%) 13 (13.0%) 8 (8.0%) 2 (2.0%) 0 (0.0%) 0 (0.0%)
5 28 (70.0%) 3 (7.5%) 4 (10.0%) 3 (7.5%) 1 (2.5%) 0 (0.0%) 1 (2.5%)
6 6 (66.7%) 1(11.1%) 2 (22.2%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
7 3 (50.0%) 1 (16.7%) 1 (16.7%) 1 (16.7%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

Footnotes: CI, confidence interval. Since morbidities data were missing in SINAVE for 522 cases, these results refer to 1763 cases.
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Table 5
Concordance of comorbidities reporting between SINAVE and SICO databases.

Table 4
Occurrence of comorbidities reporting in each database.
Morbidity SINAVE SICO
n (%) n (%)
Neoplasy No 1636 (92.8%) 2076
(90.9%)
Yes 127 (7.2%) 209 (9.1%)
Diabetes No 1519 (86.2%) 1864
(81.6%)
Yes 244 (13.8%) 421 (18.4%)
HIV No 1754 (99.5%) 2281
(99.8%)
Yes 9 (0.5%) 4 (0.2%)
Neurologic or neuromuscular disease No 1650 (93.6%) 1765
(77.2%)
Yes 113 (6.4%) 520 (22.8%)
Chronic pulmonary disease No 1631 (92.5%) 2117
(92.6%)
Yes 132 (7.5%) 168 (7.4%)
Hepatic disease No 1739 (98.6%) 2255
(98.7%)
Yes 24 (1.4%) 30 (1.3%)
Chronic renal disease or acute renal No 1603 (90.9%) 1992
failure (87.2%)
Yes 160 (9.1%) 293 (12.8%)
Congestive heart failure No 1744 (98.9%) 1945
(85.1%)
Yes 19 (1.1%) 340 (14.9%)
Coagulopathy No 1763 2268
(100.0%) (99.3%)
Yes 0 (0.0%) 17 (0.7%)

Footnotes: information on SINAVE morbidity was missing for 522 cases. Per-
centages are presented only respecting to valid cases.

After a consensus between the research team, ten morbidities could
be compared between SINAVE database reporting and the classification
according to the CCI or ECI in the SICO database (Table A.1 in the Ap-
pendix A). The cases percentages with any of compared morbidity in
each database are detailed in Table 4. The morbidity with the higher
percentage of reporting in the SINAVE database was diabetes, whose
information was reported for 244 cases (13.8%). In comparison,
neurologic or neuromuscular disease registered the highest percentage
of diseases identified with CCI or ECI in the SICO database (n = 520
cases; 22.8%). In addition, neurologic or neuromuscular diseases
registered the highest difference (16.4%) between the proportion of
reporting in each database, followed by congestive heart failure
reporting (13.8%). Otherwise, the other differences between the mor-
bidities reported in SINAVE and SICO databases were lower than 5%.

Table 5 shows the number of cases for which any comorbidity was
reported simultaneously in both systems. The agreement percentage of
morbidities reported in both SINAVE and SICO databases ranged be-
tween 0.0% for HIV and coagulopathy and 5.7% of the total sample for
diabetes. When any specific comorbidity was reported in any database,
the agreement percentage between this non-reporting in SICO and
SINAVE ranged between 73.2% for neurologic or neuromuscular disease
and 99.2% for coagulopathy. The disagreement percentages on the
reporting of morbidities in both SINAVE and SICO databases ranged
between 0.7% for HIV and 24.3% for neurologic and neuromuscular
diseases, respectively.

Cohen’s kappa was estimated to evaluate the level of similarity of
reporting in both databases for each morbidity. The highest agreement
level was observed for neoplasms (0.352, 95% IC:0.277-0.428; p <
0.001), followed by hepatic disease (0.282, 95% 1C:0.113-0.451; p <
0.001) and either chronic renal disease or acute renal failure (0.268,
95% I1C:0.204-0.333; p < 0.001), although the overall levels of agree-
ment were rather low.

4. Discussion

This study investigated the similarity in morbidity reporting between

Reported on SICO

No Yes Cohen’s kappa
n (% n (%
total) total)

Reported Neoplasms No 1534 102 0.352 (95% IC:
on (87.0%) (5.8%) 0.277-0.428),
SINAVE Yes 69 58 p < 0.001

(3.9%) (3.3%)
Diabetes No 1300 219 0.235 (95% IC:
(73.7%) (12.4%) 0.179-0.292),
Yes 144 100 p < 0.001
(8.2%) (5.7%)
HIV No 1750 4 (0.2%)
(99.3%)
Yes 9(0.5%) 0 (0.0%)
Neurologic or No 1291 359 0.082 (95% IC:
neuromuscular (73.2%) (20.4%) 0.039-0.126),
disease Yes 68 45 p < 0.001
(3.9%) (2.6%)
Chronic No 1533 98 0.238 (95% IC:
pulmonary (87.0%) (5.6%) 0.163-0.313),
disease Yes 92 40 p < 0.001
(5.2%) (2.3%)
Hepatic disease No 1722 17 0.282 (95% IC:
(97.7%) (1.0%) 0.113-0.451),
Yes 17 7 (0.4%) p < 0.001
(1.0%)
Chronic renal No 1439 164 0.268 (95% IC:
disease or acute (81.6%) (9.3%) 0.204-0.333),
renal failure Yes 92 68 p < 0.001
(5.2%) (3.9%)
Congestive No 1494 250 0.038 (95% IC:
heart failure (84.7%) (14.2%) 0.004-0.073),
Yes 11 8 (0.5%) p < 0.001
(0.6%)
Coagulopathy No 1749 14 -
(99.2%) (0.8%)

Yes 0(0.0%) 0 (0.0%)

Footnotes: * observed concordance is smaller than mean-chance concordance.
For Cohen’s kappa interpretation, the levels reported by McHugh (2012) were
used [23].

two databases used in Portugal for COVID-19 cases surveillance and
deaths certification, using a set of four variables to link the information
of the same case provided in each of these databases. The results showed
minimal or no agreement between the information about each morbidity
reported in both databases for each case. However, considering that a
significant proportion of cases have morbidities reported either in
SINAVE or SICO databases that were not reported in both, the results
also revealed a potential to use the health information in both databases
to complement each other in describing cases morbidity in individual
cases.

The COVID-19 pandemic has challenged the health systems and the
effectiveness of surveillance. Therefore, it was necessary to perform
some adjustments in Portugal to provide a timely and articulated
response from the entire health system. This work was motivated by the
dynamic imposed by the COVID-19 pandemic, where ad-hoc systems
had to be created to delve into collecting morbidity data for epidemio-
logical surveillance [13]. In addition, human resources responsible for
surveillance were strengthened with the allocation of more health pro-
fessionals and contact tracing trained military personnel [12]. This
articulation and adaptation had to be fast to appropriately respond to
pandemic health needs and provide public health decision-makers with
accurate information.

According to each morbidity reporting and identification method,
any morbidity reported for a given case varied between 26.3% and
62.5%. This range can be explained by the differences in the number of
morbidities reported, 13 in the SINAVE database, and 17 or 31, i.e., the
number of different medical conditions that the CCI and ECI algorithms
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Fig. 2. Workflow of data from SARS-CoV-2 infections and conceptual model integrated information systems.

Footnotes: The red dashed arrows represent the actual information flow, continuous grey arrows the actual that is also considered the ideal flow and the blue dashed
arrows the ideal proposed flow. SICO, National e-Death Certificates Information System; SINAVE, National Epidemiological Surveillance System. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)

respectively comprise. However, different values for the proportion of
morbidity of each SINAVE case were observed when considering either
the original variable (where doctors report cases’ associated morbidity)
or the recoded variable that quantified the presence of any of the 13
reported morbidities variables. For instance, cases were reported as not
having morbidities, but some of the 13 morbidity variables were filled
in. The opposite was also observed, as doctors who filled in the database
reported any morbidity for some cases but did not fill in any of the
specific morbidity variables. In this case, it may be because the
morbidity could not be reported among the 13 available options. This
difference uncovers a potential issue of reporting incompleteness, as the
absence of morbidity was reported for cases where specific morbidities
were simultaneously reported. Indeed, incompleteness of reporting has
been frequently found when assessing the data quality of health infor-
mation databases before the COVID-19 pandemic [24] and associated
with the surveillance of COVID-19 cases in Portugal [25] or in other
countries [26,27]. It is widely known that high-quality data is the basis
for decision making guidance, especially during a crisis such as a
pandemic [28]. However, the priority of public health doctors is to track
and isolate their contacts, and, in this way, the surveillance data can be
collected in haste. Another aspect concerns data input into the various

systems carried out by multiple sources: physicians, laboratories, or
other health professionals working for the public health team during the
pandemic. In this context, numerous factors can affect the quality of
these data, and numerous unintentional errors can occur, potentially
leading to an imprecise conclusion.

Even though the description of the morbidity in individual cases was
not within the scope of this study, the results are still in line with those
observed in other studies that evaluated the clinical characteristics of
deceased people. No differences in the presence of any morbidity across
sex or age groups were observed [29].

The CCI and the ECI were chosen to measure pre-existing death-
related comorbidities in the SICO database. Those indexes have been
described as valuable tools to identify comorbidity from administrative
health data [30], especially when ICD codes are available [21,22].

Despite the algorithm differences in CCI and ECI, it was possible to
compare the information of both databases regarding ten of the 13
morbidities reported in the SINAVE database. Though this study did not
aim to validate the accuracy of the reporting of morbidities through the
SINAVE, the analysis allowed us to assess the agreement in identification
and reporting agreement of morbidities in both databases. Indeed, the
comparison between morbidities reported in SINAVE and identified in
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the SICO database showed that 37.5% and 32.7% of the total sample had
the same number of morbidities identified or reported in both databases
(respectively). However, minimal or no agreement was found when
comparing the reported morbidity in both databases. Therefore, the
analysed data did not confirm whether these differences in morbidities
were due to the data quality, which the authors considered an unlikely
hypothesis.

These results suggest differing information regarding the same
morbidities in SINAVE and SICO systems, which would complement
each other. Some differences can still be expected because different
health professionals fill in each database at different disease stages and
for distinct purposes. Nevertheless, the results suggest that, for any
reason, different health professionals seem to identify and report distinct
comorbidities for a given case at different moments, i.e., at the moment
of COVID-19 case notification in SINAVE or when certifying a COVID-19
death. This lack of agreement between databases also occurs for chronic
diseases that would likely be present in both moments SINAVE and SICO
were filled in. Thus, the results suggest that exchanging health infor-
mation reported in both databases could enhance the available data for
surveillance purposes and epidemiologic characterisation of COVID-19
cases. For instance, dataset linkage strategies for COVID-19 epidemio-
logic research have been applied in Scotland [31] and Sweden for
national-level studies [32] to better describe, analyse and model the
pandemic evolution. It is expected that the health information exchange
between databases describing distinct stages of the disease can allow a
longitudinal medical record with information about each case [5] and
better knowledge on the impact and importance of their risk factors,
comorbidities and their severity [32]. The COVID-19 pandemic has
elicited the need of improving the HIS as a preparedness strategy for
future pandemics [4]. In addition, this information, together with data
on the COVID-19 outcomes, are valuable to support decisions on how to
allocate resources, allowing to anticipate hospitalization or intensive
care beds occupation and its length, needed treatments, or other long-
term outcomes [32].

Still, the need for greater interoperability of different HIS in Portugal
through creating a data warehouse was previously identified and is
viewed as strategic towards the efficiency of the National Health Service
[33]. Health information integration is expected to improve the identi-
fication of health problems, population health planning, the policy-
making process, or healthcare performance monitoring [33]. This study
results show that a more efficient interconnected use of existing infor-
mation systems can improve data availability and readiness to deal with
outstanding health situations. In addition, the results are COVID-19
related but apply to any other disease of interest. Notwithstanding
that a strong HIS could sustain evidence-based decisions concerning the
direct impacts of COVID-19, i.e., morbidity and mortality, it can be
valuable also in describing and supporting strategies to mitigate indirect
impacts of the pandemic [34], suggesting how the benefits can go
further the COVID-19 response.

In Portugal, the Business Intelligence tool BI SINAVE was created as a
more advanced and robust system for processing data [35]. This tool
allows the cross-referencing of the information in the databases: SINAVE
Lab, SINAVE Med, Trace-COVID and the National Registry of Users
(RNU) [Registo Nacional de Utentes], maximising the information from
these various sources during pandemic response [35].

Fig. 2 demonstrates the information pathway from an individual
with suspected or confirmed SARS-CoV-2 infection and its connection
with the different information systems. Suspected SARS-CoV-2 in-
fections in the Portuguese health systems are notified and followed by a
laboratory test. A COVID-19 case is notified either by laboratories
through SINAVE Lab or physicians through SINAVE Med. Additionally,
for clinical management of individuals and contact tracing, Trace-
COVID is used. Trace-COVID was developed in the pandemic context
and is used by multidisciplinary teams explicitly created to act in the
pandemic response to maintain epidemiological surveillance [36]. In
practice, the systems are not fully integrated, which causes duplicate or
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different entries of information regarding the same COVID-19 cases.
Moreover, data collection and validation are carried out independently,
which somewhat divides the analysis of the databases and the national
data reporting. Therefore, Fig. 2 also represents a conceptual framework
for better integration and enhanced health data, with blue dashed ar-
rows representing recommended health information exchange between
the distinct health HISs (please, see Fig. 2 footnotes).

Despite not being represented in Fig. 2, other available HIS could still
add information and improve this approach. For instance, recent
research used electronic medical records, i.e., diagnosis codes associated
with hospitalizations, emergency, and outpatient visits documented
within the two years before a SARS-CoV-2 infection, to provide prompt
morbidity data for each COVID-19 patient [37]. This approach could
still be possible in Portugal using ICD-10 diagnosis codes from the In-
formation System for Hospital Morbidity, which gathers each patient
morbidity data from all public hospitals in Portugal. In addition, it could
also allow saving time throughout several stages of disease progression
or during the death certification coding process.

Indeed, a fully linked information system can be the key to providing
more agile and precise information to answer health emergency issues
more appropriately. A connected system that allows data collection,
storage, management, assurance of quality, aggregation, analysis, and
continuous data updating are the essential features of an operational HIS
[38]. Countries’ healthcare systems are in different levels of interoper-
ability between their HIS and can have specific requirements in terms of
data policy. Therefore, assessing needs concerning their health data
exchange architecture would provide the background for designing
strategies for improving HIS interoperability. After perceiving the po-
tential for improved morbidity information with both HIS herein
analyzed complementing each other, it could be the next step. However,
morbidity data sharing throughout the HIS recurring to a data ware-
house, as presented in Fig. 2, could be a strategy to be adopted.

Notwithstanding the benefits conferred by the interoperability of
different HIS, other concerns can arise regarding personal data protec-
tion. Several strategies can minimize data protection risks, such as
regulation, centralization of the linkage and anonymization processes at
source, separating new data from personal datasets [39]. For instance,
there have been established worldwide regulations for personal data
protection, such as General Data Protection Regulation in the European
Union [40] or the Health Insurance Portability and Accountability Act in
the United States [41].

Limitations of this study warrant discussion. First, the linkage be-
tween the databases was based on a set of variables. Therefore, it could
not be completely deterministic, as this method cannot uniquely link the
information of each case. However, using four variables, the fact that
only exact matches were considered and the exclusion of duplicated
matches maximised the accuracy of this process. Moreover, the linkage
methodology used in this study was innovative and enabled the identi-
fication of potential complementarity between linked databases,
contributing to achieving the proposed objective. Second, the de-
pendency of data quality on the data entry process could compromise
other, specific, and more detailed analyses. However, the potential
incompleteness of databases that we found can still be a crucial alert that
enhances the need to use data linkage to improve available data and
improve evidence-based (COVID-19) surveillance or decision-making
processes. Last, due to the criterion used to select cases for the anal-
ysis and avoid bias from incomplete coding of morbidity information,
the included sample comprised 2285 cases between 4049 matched re-
cords. This more narrowed approach of not considering those patients
dying in weeks with more than 5% of cases with the incomplete coding
process led to the exclusion of a significant number of cases. However, it
intended to address the hypothesis that the volume of work within
weeks with higher mortality could affect the codification of other cases.
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Table A.1
Comparison pairs between morbidities in SINAVE and morbidities identified in
SICO through Charlson and Elixhauser comorbidities indexes.

SINAVE SICO
Charlson and Elixhauser Comorbidity
indexes

Neoplasia Cancer, for cancer (any malignancy)

Metastatic solid tumour
Metastatic cancer

Solid tumor, without metastasis
Lymphoma

Diabetes without complications
Diabetes with complications
Diabetes, uncomplicated
Diabetes, complicated

HIV AIDS/HIV

AIDS/HIV

Other neurological disorders

Diabetes mellitus

Neurologic or neuromuscular disease
Hemiplegia or paraplegia
Paralysis
Dementia

Asthma NA

Chronic pulmonary disease Chronic pulmonary disease

Chronic obstructive pulmonary disease

Mild liver disease

Moderate or severe liver disease

Liver disease

Chronic hematologic diseases NA

Chronic renal disease or acute renal Renal disease

failure Renal failure

Congestive heart failure Congestive heart failure

Congestive heart failure

Coagulopathy

Hepatic disease

Coagulopathy

NA, not available. Chronic neurologic disease was considered as included in
“Neurologic or neuromuscular disease” category. Chronic renal disease and
acute renal failure were two separated categories but were here included
together.

5. Conclusion

The COVID-19 pandemic led to reorganizations in HIS to collect data
that could provide prompt information to support policy decisions.
However, the results of this study show that when data is independently
collected, different health information can be found across information
systems leading to low accuracy in the morbidity description of each
case, due to the range observed in the agreement between the reporting
of each morbidity. Therefore, the integration of the two databases would
potentially increase their complementarity. However, further research is
needed to confirm this hypothesis and if this integration would enhance
the interoperability of HIS and the information output, making it more
consistent and effective and increasing public health preparedness, as
expected. Moreover, the existing communication pathways of different
HIS can still be improved, potentially improving the COVID-19 crisis
management decision-making, benefiting community sectors, such as
the public in general, health professionals, public health researchers,
and policymakers.

Summary points

What was already known on the topic

Health information system interoperability can enhance data
regarding patients’ morbidity.

Accurate morbidity data allow better decisions and evidence-based
public health interventions.

What this study added to our knowledge

Two health information systems were matched on sex, age, resi-
dence, and date of death.

Morbidity either in COVID-19 cases or related deaths information
systems was compared.

The minimal agreement found suggests a potential for improvement
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through data integration.
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