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A B S T R A C T   

Background: COVID-19 rapidly spread around the world, putting health systems under unprecedented pressure 
and continuous adaptations. Well-established health information systems (HIS) are crucial in providing data to 
allow evidence-based policymaking and public health interventions in the pandemic response. This study aimed 
to compare morbidity information between two databases for COVID-19 management in Portugal and identify 
potential complementarities. 
Methods: This is an observational study using records from both COVID-19 cases surveillance (National Epide-
miological Surveillance System; SINAVE) and related deaths (National e-Death Certificates Information System; 
SICO) systems, which were matched on sex, age, municipality of residence and date of death. After the linkage, 
morbidity reported in SINAVE and identified in SICO, through the application of Charlson and Elixhauser co-
morbidity indexes algorithms, were compared to evaluate agreement level. 
Results: Overall, 2285 matched cases were analyzed, including 53.9% males with a median age of 84 years. 
According to the method of data reporting assessment, the presence of any morbidity ranged between 26.3% and 
62.5%. The reporting of ten morbidities could be compared between the information reported in SINAVE and 
SICO databases. The proportion of simultaneous reporting in both databases ranged between 5.7% for diabetes 
and 0.0% for human immunodeficiency virus infection or coagulopathy. Minimal or no agreement was found 
when assessing the similarity of the morbidity reporting in both databases, with neoplasms showing the highest 
level of agreement (0.352, 95% IC: 0.277–0.428; p < 0.001). 
Conclusion: Different information about reported morbidity could be found in two HIS used to monitor COVID-19 
cases and related deaths, as data are independently collected. These results show that the interoperability of SICO 
and SINAVE databases would potentially improve available HIS and improve available information to decision- 
making and address COVID-19 pandemic management.  
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1. Introduction 

COVID-19 emerged in late 2019 as one of the greatest threats to 
human health over the last centuries [1]. Due to the severity and rapid 
dissemination of this disease across the globe, the World Health Orga-
nization (WHO) declared COVID-19 a pandemic state on March 11th, 
2020 [2]. Since then, several public health measures have been adopted 
to “flatten the curve” of incidence and minimise the impacts of this 
infection [3]. 

Given the urgency of the phenomenon and the need for timely 
available data, health information systems (HIS) play an essential role in 
providing information to health authorities [4]. The discussion around 
the ability of health care systems to take advantage of exchange infor-
mation and interoperability between HIS is not new [5]. Among the 
benefits elicited so far is the potential to generate financial savings 
within total health expenditures [6] and public health through improved 
patient care [7,8]. 

Although health information exchange within HIS should be pro-
moted beyond the COVID-19 crisis [4], the relevance of a robust and 
interoperable HIS for public health decision-making [9] has been 
highlighted during this pandemic [4,10]. Throughout this health crisis, 
measures such as the surveillance of infections, contact tracing and the 
characterisation of deaths have been essential to monitor the overall 
epidemic impact and generate evidence to inform policymaking in 
adjusting or implementing other public health interventions. 

The most straightforward approaches include taking advantage of 
available routine HIS, COVID-19-related reporting platforms, or existing 
surveillance systems [11]. However, the pandemic has highlighted some 
of the insufficiencies of health surveillance systems for COVID-19 
monitoring. Consequently, adjustments were necessary to provide a 
timely and articulated response from the entire health system. In 
Portugal, for instance, human resources were strengthened with the 
allocation of more health professionals and contact tracing trained 
military personnel [12] and a specific HIS was created for doing contact 
tracing (e.g. platform Trace COVID-19) [13]. 

Nevertheless, when different platforms are created to collect similar 
health information independently, separated data are generated, which 
can constitute an obstacle to its efficient use and partly compromise a 
rapid, strong, and accurate response [14]. The benefits of a sound HIS 
have previously been described, such as their importance for the 
governance and management of a health system in achieving better 
outcomes [15,16]. 

Several strategies aiming to improve HIS have been studied, 
considering the potential of emerging technologies and automation used 
during data collection and analysis. One of them is the interoperability 
of different HIS, allowing them to communicate in a coordinated 
manner, and enhance available health information, particularly during a 
pandemic [17]. 

This study aimed to compare and identify the potential comple-
mentarity of the available information between two databases regarding 
the morbidities recorded within the surveillance of COVID-19 cases and 
related deaths in Portugal. 

2. Material and methods 

We conducted a registry-based observational study to analyse 
COVID-19-related morbidity in 2020 from two databases used in 
Portugal to collect information on COVID-19 infections and associated 
deaths. This study is reported following the STROBE statement [18] and 
RECORD extension [19]. 

2.1. Study population and data sources 

All records, either in the National e-Death Certificates Information 
System [Sistema de Informação do Certificados de Óbito] (SICO) database 
or in the National Epidemiological Surveillance System [Sistema 

Nacional de Vigilância Epidemiológica] (SINAVE) database, of all deceased 
people from COVID-19 during 2020 in Portugal were considered. These 
two databases include data from the most relevant HIS in Portugal. First, 
a subset of SICO was used to obtain all COVID-19-related deaths 
certificated in Portugal between March 16th and December 31st, 2020. 
SICO is a national and web-based information system on mortality 
managed by the Portuguese Directorate-General of Health (DGS), which 
provided the SICO dataset used in this study. The SICO database includes 
information on causes of death and related comorbidities, inputted by 
medical doctors who certify deaths, then coded by a team of trained 
coders allocated explicitly to this task. Thus, the presence of a “COVID- 
19” code - International Statistical Classification of Diseases and Related 
Health Problems, 10th Revision (ICD-10) [20]: U07.1 or U07.2 - as the 
underlying cause of death was considered to identify COVID-19 related 
fatalities. Second, the SINAVE database was used to obtain information 
about the clinical characteristics of the COVID-19 cases. The SINAVE 
system allows the electronic notification and epidemiological surveys of 
diseases which require mandatory reporting in Portugal, managed by 
Shared Services of the Ministry of Health (SPMS), which is the national 
health information technology authority, and DGS, which provided the 
dataset for this study. Consequently, the SINAVE database has been used 
in Portugal to register the surveillance data of COVID-19 cases. In 
addition, the SINAVE records of deceased people during 2020, with a 
COVID-19-related cause of death, were considered for this study. As a 
specialized team codes the open-ended field information in SICO, 
morbidity data in this database is considered to be more accurate and 
reliable than in the SINAVE. 

2.2. Data linkage and records inclusion 

A new database was created by matching records related to the same 
death in SICO or SINAVE databases. As each record was de-identified in 
the databases, four variables available in both databases were consid-
ered to link the same cases. Thus, the linkage of cases from each data-
base was conducted based on age, sex, municipality of residency, and 
date of death. If the conjugation of those four variables occurred in more 
than one case, either in SICO or SINAVE, those cases were excluded. 
Then, information from each database was linked and included in a new 
database including the records from SICO and SINAVE matched on those 
four variables mentioned above. 

In the SICO database, morbidity information is first reported through 
an open-ended field and subsequently coded using ICD-10. Although 
some inconsistencies between the open-ended field and ICD-10 coding 
fields were observed throughout the dataset, in some weeks, the SICO 
dataset presented several cases with information about morbidity in the 
open-ended field but no ICD-10 code in coded morbidity fields. There-
fore, the authors considered using a criterion to minimize bias derived 
from cases dying within weeks where a substantial proportion of cases 
with an incomplete coding process was observed. Consequently, the 
completeness of the coding process for each week was assessed by 
identifying cases whose open-ended field information was available but 
was not coded according to ICD-10 to coded morbidity fields. A team 
consensus established that an incomplete coding process occurred dur-
ing a given week if more than 5% of cases dying that week had open- 
ended field morbidity information but any ICD-10 code in respective 
fields. Thus, the analysis only included deceased people within weeks 
without an incomplete coding process. 

2.3. Variables 

Age (recoded into four age groups) and sex were used to describe 
sample characteristics. Following the International Organization for 
Standardization week date system (ISO 8601), the date of death was 
recoded into week number of the year (from 1 to 53). 

Morbidities coded in the SICO database according to the ICD-10 [20] 
were used to calculate Elixhauser [21] (ECI) and Charlson Comorbidity 
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indexes [22] (CCI), using their ICD-10-adapted algorithms. Therefore, 
the occurrence of morbidities was described according to four methods: 
1) the comorbidities directly reported in the SINAVE database by those 
who filled in the notification, which states whether the individual had or 
did not have comorbidities; 2) the recodification of the occurrence or not 
of reported morbidities in SINAVE database; 3) the identification of 
comorbidities in the SICO database according to the algorithm of CCI, or 

4) the identification of comorbidities in the SICO database according to 
the algorithm of ECI. 

The SINAVE system allows for recording the occurrence of 13 
comorbidities, namely: neoplasia, diabetes mellitus, human immuno-
deficiency virus (HIV), neurologic or neuromuscular disease, asthma, 
chronic pulmonary disease, hepatic disease, chronic hematologic dis-
ease, chronic renal disease, chronic neurologic deficiency, acute renal 

Fig. 1. Inclusion flow chart of records from SINAVE and SICO databases considered in the analysis (n = 2285) SICO, National e-Death Certificates Information System; 
SINAVE, National Epidemiological Surveillance System. 

Table 1 
Number of individuals with reported comorbidities according to each method of obtaining this result.    

Total  
n (%) 

Male  
n (%) 

Female  
n (%) 

p- 
value 

0 – 69 
years  
n (%) 

70 – 79 
years  
n (%) 

80 – 89 
years  
n (%) 

greater than 90 
years  
n (%) 

p- 
value 

SINAVE Original morbidity 
reporting 

No 79 (3.5%) 46 (3.7%) 33 (3.1%) 0.812 15 (5.5%) 16 (3.4%) 33 (3.4%) 15 (2.6%) 0.460 
Yes 779 

(34.1%) 
439 
(35.7%) 

340 
(32.3%) 

101 
(37.3%) 

175 
(37.3%) 

323 
(33.3%) 

179 (31.1%) 

Subtotal 858 
(37.5%) 

485 
(39.4%) 

373 
(35.4%)  

116 
(42.8%) 

191 
(40.7%) 

356 
(36.7%) 

194 (33.7%)  

With no 
data 

1427 
(62.5%) 

746 
(60.6%) 

681 
(64.6%)  

155 
(57.2%) 

278 
(59.3%) 

613 
(63.3%) 

381 (66.3%)  

SINAVE Recoded morbidity 
reporting 

No 1163 
(50.9%) 

609 
(49.5%) 

554 
(52.6%) 

0.078 123 
(45.4%) 

239 
(51.0%) 

500 
(51.6%) 

301 (52.3%) 0.060 

Yes 600 
(26.3%) 

341 
(27.7%) 

259 
(24.6%) 

83 
(30.6%) 

140 
(29.9%) 

241 
(24.9%) 

136 (23.7%) 

Subtotal 1763 
(77.2%) 

950 
(77.2%) 

813 
(77.1%)  

206 
(76.0%) 

379 
(80.8%) 

741 
(76.5%) 

437 (76.0%)  

With no 
data 

522 
(22.8%) 

281 
(22.8%) 

241 
(22.9%)  

65 
(24.0%) 

90 (19.2%) 228 
(23.5%) 

138 (24.0%)  

SICO Charlson Comorbidities 
index 

No 914 
(40.0%) 

498 
(40.5%) 

416 
(39.5%) 

0.638 113 
(41.7%) 

181 
(38.6%) 

380 
(39.2%) 

239 (41.6%) 0.671 

Yes 1371 
(60.0%) 

733 
(59.5%) 

638 
(60.5%) 

158 
(58.3%) 

288 
(61.4%) 

589 
(60.8%) 

336 (58.4%) 

SICO Elixhauser 
Comorbidities index 

No 857 
(37.5%) 

461 
(37.4%) 

396 
(37.6%) 

0.965 98 
(36.2%) 

163 
(34.8%) 

357 
(36.8%) 

238 (41.4%) 0.132 

Yes 1428 
(62.5%) 

770 
(62.6%) 

658 
(62.4%) 

173 
(63.8%) 

306 
(65.2%) 

612 
(63.2%) 

337 (58.6%) 

Footnotes: Fisher and Chi-Square tests were used to evaluate the association between each method of reporting of any morbidity and sex or age group. One record had 
missing data for age. 
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failure, congestive heart failure and coagulopathy. A variable that 
indicated whether a case had or did not have comorbidities, filled in by 
the person who notified that given case, was also available. Two new 
variables were recoded through the information reported on the 13 re-
ported comorbidities in SINAVE. One variable informs if any of the 13 
comorbidities in SINAVE were reported, while the other enumerates 
how many were reported. Chronic renal disease and chronic renal fail-
ure, both morbidities recorded in SINAVE, were recoded into the same 
variable. 

Thus, comorbidities reporting in both databases for the same case 
were compared. When possible, comorbidities identified using ECI and 
CCI in SICO were matched with those reported in SINAVE. The selection 
of what ECI and CCI morbidities from SICO would be compared with 
each comorbidity reported in SINAVE, within those mentioned above, 
was made after a consensus arising from the research team, which 
included two physicians, a nurse and other health professionals. 
Matches between comorbidities in both databases are presented in Ap-
pendix A - Table A.1. 

2.4. Statistical analysis 

Descriptive statistical methods were performed. Accordingly, abso-
lute and relative frequencies were calculated for categorical variables. 
Fisher exact and Chi-Square tests were performed to evaluate the asso-
ciations between categorical variables. Cohen’s kappa test was used to 
determine the level of agreement between databases. For all tests per-
formed, the level of statistical significance was set at 0.05. Statistical 
analysis was conducted using IBM SPSS Statistics for Windows (version 
26.0, 2019, Armonk, NY: IBM Corp). 

3. Results 

From a total of 6701 death records in SICO and 419892 SARS-CoV-2 

infections identified in SINAVE during 2020, of which 6715 died, the 
linkage approach for both databases found 4049 entries as exact 
matches on four variables (age, sex, municipality, and date of death). 
Therefore, it represents a proportion of 60.4% and 60.3% (considering 
only deceased patients) of matched records among the original samples, 
respectively. Then, after excluding cases dying within weeks where 
incomplete coding was verified, 2285 matches were analysed: 53.9% 
males and a median age of 84 years (IQR: 76–90). Fig. 1 shows the flow 
chart showing enrolment of included records from SINAVE and SICO 
databases. 

According to each available method of reporting, the distribution of 
comorbidities occurrence (or absence) across gender and age groups is 
presented in Table 1. The presence of any reported morbidity for a given 
case varied between 26.3%, when the presentation of any morbidity was 
recoded through the information reported in specific morbidities vari-
ables of SINAVE, and 62.5%, when the presence of morbidities was 
identified using the ECI in SICO database. The reporting of any 
morbidity per case was similar and independent for both sex and age 
groups. However, the percentage of morbidities reporting was tenden-
tially lower for people dying at age 90 years or more, as this group had 
the lower proportion of morbidity reported according to three out of 
four methods presented in Table 1. Also noteworthy is the proportion of 
missing values in reporting any morbidity in the SINAVE database 
(62.5%). However, the percentage of missing values in the recoded 
variable of the presentation of morbidities was lower (22.8%). 

The number of reported morbidities in SINAVE or identified mor-
bidities according to the CCI in the SICO system ranged between zero 
and six. Additionally, the ECI algorithm identified six cases with seven 
comorbidities, as presented in Table 2. 

The agreement between reported morbidities number in SINAVE and 
each of the CCI and ECI is described in Table 3. The number of cases 
without any reported or identified morbidity in SINAVE and simulta-
neously in CCI or ECI was 492 and 438, respectively, corresponding to 
27.9% and 24.8% of the total sample. Within the cases for which it was 
possible to match information on morbidities between both databases, a 
total of 662 (37.5%) and 577 (32.7%) cases had the same number of 
comorbidities reported in SINAVE and identified in SICO with either CCI 
or ECI, respectively. When a given number of comorbidities higher than 
zero were identified in SICO and reported in SINAVE, the higher per-
centage of concordance was observed with one morbidity reported in 
both databases, in 6.4% of the sample using CCI and in 4.4% using ECI. 
Those proportions of cases with one morbidity reported in SINAVE 
corresponded to about one-fifth of cases, also with one morbidity, 
identified using CCI (19.9%) or ECI (20.6%). These results revealed a 
lack of agreement among the number of comorbidities reported for each 
case between databases. 

Table 2 
Number of reported comorbidities according to each method of quantification.  

Number of identified morbidities SINAVE  
n (%) 

Charlson  
n (%) 

Elixhauser  
n (%) 

0 1163 (50.9%) 914 (40.0%) 857 (37.5%) 
1 312 (13.7%) 713 (31.2%) 479 (21.0%) 
2 185 (8.1%) 465 (20.4%) 464 (20.3%) 
3 77 (3.4%) 155 (6.8%) 286 (12.5%) 
4 19 (0.8%) 29 (1.3%) 134 (5.9%) 
5 6 (0.3%) 8 (0.4%) 47 (2.1%) 
6 1 (0.04%) 1 (0.04%) 12 (0.5%) 
7 – – 6 (0.3%)  

Table 3 
Differences in the number of comorbidities reported in the SINAVE database and SICO database.  

Number of comorbidities   SINAVE     Kappa 

0 1 2 3 4 5 6 

SICO Charlson index 0 492 (70.5%) 118 (16.9%) 50 (7.2%) 25 (3.6%) 8 (1.1%) 5 (0.7%) 0 (0.0%) 0.051 (95% CI:0.024 – 0.078) 
p < 0.001 1 359 (63.8%) 112 (19.9%) 64 (11.4%) 21 (3.7%) 6 (1.1%) 1 (0.2%) 0 (0.0%) 

2 225 (64.5%) 63 (18.1%) 45 (12.9%) 16 (4.6%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 
3 70 (56.9%) 16 (13.0%) 21 (17.1%) 12 (9.8%) 3 (2.4%) 0 (0.0%) 1 (0.8%) 
4 13 (54.2%) 3 (12.5%) 5 (20.8%) 2 (8.3%) 1 (4.2%) 0 (0.0%) 0 (0.0%) 
5 3 (60.0%) 0 (0.0%) 0 (0.0%) 1 (20.0%) 1 (20.0%) 0 (0.0%) 0 (0.0%) 
6 1 (100.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 

SICO Elixhauser index 0 438 (68.7%) 111 (17.4%) 49 (7.7%) 27 (4.2%) 8 (1.3%) 5 (0.8%) 0 (0.0%) 0.032 (95% CI: 0.007 – 0.057) 
p = 0.009 1 239 (63.1%) 78 (20.6%) 45 (11.9%) 12 (3.2%) 4 (1.1%) 1 (0.3%) 0 (0.0%) 

2 244 (66.3%) 63 (17.1%) 46 (12.5%) 13 (3.5%) 2 (0.5%) 0 (0.0%) 0 (0.0%) 
3 143 (64.1%) 40 (17.9%) 25 (11.2%) 13 (5.8%) 2 (0.9%) 0 (0.0%) 0 (0.0%) 
4 62 (62.0%) 15 (15.0%) 13 (13.0%) 8 (8.0%) 2 (2.0%) 0 (0.0%) 0 (0.0%) 
5 28 (70.0%) 3 (7.5%) 4 (10.0%) 3 (7.5%) 1 (2.5%) 0 (0.0%) 1 (2.5%) 
6 6 (66.7%) 1 (11.1%) 2 (22.2%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 
7 3 (50.0%) 1 (16.7%) 1 (16.7%) 1 (16.7%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 

Footnotes: CI, confidence interval. Since morbidities data were missing in SINAVE for 522 cases, these results refer to 1763 cases. 
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After a consensus between the research team, ten morbidities could 
be compared between SINAVE database reporting and the classification 
according to the CCI or ECI in the SICO database (Table A.1 in the Ap-
pendix A). The cases percentages with any of compared morbidity in 
each database are detailed in Table 4. The morbidity with the higher 
percentage of reporting in the SINAVE database was diabetes, whose 
information was reported for 244 cases (13.8%). In comparison, 
neurologic or neuromuscular disease registered the highest percentage 
of diseases identified with CCI or ECI in the SICO database (n = 520 
cases; 22.8%). In addition, neurologic or neuromuscular diseases 
registered the highest difference (16.4%) between the proportion of 
reporting in each database, followed by congestive heart failure 
reporting (13.8%). Otherwise, the other differences between the mor-
bidities reported in SINAVE and SICO databases were lower than 5%. 

Table 5 shows the number of cases for which any comorbidity was 
reported simultaneously in both systems. The agreement percentage of 
morbidities reported in both SINAVE and SICO databases ranged be-
tween 0.0% for HIV and coagulopathy and 5.7% of the total sample for 
diabetes. When any specific comorbidity was reported in any database, 
the agreement percentage between this non-reporting in SICO and 
SINAVE ranged between 73.2% for neurologic or neuromuscular disease 
and 99.2% for coagulopathy. The disagreement percentages on the 
reporting of morbidities in both SINAVE and SICO databases ranged 
between 0.7% for HIV and 24.3% for neurologic and neuromuscular 
diseases, respectively. 

Cohen’s kappa was estimated to evaluate the level of similarity of 
reporting in both databases for each morbidity. The highest agreement 
level was observed for neoplasms (0.352, 95% IC:0.277–0.428; p <
0.001), followed by hepatic disease (0.282, 95% IC:0.113–0.451; p <
0.001) and either chronic renal disease or acute renal failure (0.268, 
95% IC:0.204–0.333; p < 0.001), although the overall levels of agree-
ment were rather low. 

4. Discussion 

This study investigated the similarity in morbidity reporting between 

two databases used in Portugal for COVID-19 cases surveillance and 
deaths certification, using a set of four variables to link the information 
of the same case provided in each of these databases. The results showed 
minimal or no agreement between the information about each morbidity 
reported in both databases for each case. However, considering that a 
significant proportion of cases have morbidities reported either in 
SINAVE or SICO databases that were not reported in both, the results 
also revealed a potential to use the health information in both databases 
to complement each other in describing cases morbidity in individual 
cases. 

The COVID-19 pandemic has challenged the health systems and the 
effectiveness of surveillance. Therefore, it was necessary to perform 
some adjustments in Portugal to provide a timely and articulated 
response from the entire health system. This work was motivated by the 
dynamic imposed by the COVID-19 pandemic, where ad-hoc systems 
had to be created to delve into collecting morbidity data for epidemio-
logical surveillance [13]. In addition, human resources responsible for 
surveillance were strengthened with the allocation of more health pro-
fessionals and contact tracing trained military personnel [12]. This 
articulation and adaptation had to be fast to appropriately respond to 
pandemic health needs and provide public health decision-makers with 
accurate information. 

According to each morbidity reporting and identification method, 
any morbidity reported for a given case varied between 26.3% and 
62.5%. This range can be explained by the differences in the number of 
morbidities reported, 13 in the SINAVE database, and 17 or 31, i.e., the 
number of different medical conditions that the CCI and ECI algorithms 

Table 4 
Occurrence of comorbidities reporting in each database.  

Morbidity  SINAVE  
n (%) 

SICO  
n (%) 

Neoplasy No 1636 (92.8%) 2076 
(90.9%) 

Yes 127 (7.2%) 209 (9.1%) 
Diabetes No 1519 (86.2%) 1864 

(81.6%) 
Yes 244 (13.8%) 421 (18.4%) 

HIV No 1754 (99.5%) 2281 
(99.8%) 

Yes 9 (0.5%) 4 (0.2%) 
Neurologic or neuromuscular disease No 1650 (93.6%) 1765 

(77.2%) 
Yes 113 (6.4%) 520 (22.8%) 

Chronic pulmonary disease No 1631 (92.5%) 2117 
(92.6%) 

Yes 132 (7.5%) 168 (7.4%) 
Hepatic disease No 1739 (98.6%) 2255 

(98.7%) 
Yes 24 (1.4%) 30 (1.3%) 

Chronic renal disease or acute renal 
failure 

No 1603 (90.9%) 1992 
(87.2%) 

Yes 160 (9.1%) 293 (12.8%) 
Congestive heart failure No 1744 (98.9%) 1945 

(85.1%) 
Yes 19 (1.1%) 340 (14.9%) 

Coagulopathy No 1763 
(100.0%) 

2268 
(99.3%) 

Yes 0 (0.0%) 17 (0.7%) 

Footnotes: information on SINAVE morbidity was missing for 522 cases. Per-
centages are presented only respecting to valid cases. 

Table 5 
Concordance of comorbidities reporting between SINAVE and SICO databases.     

Reported on SICO     

No  
n (% 
total) 

Yes  
n (% 
total) 

Cohen’s kappa 

Reported 
on 
SINAVE 

Neoplasms No 1534 
(87.0%) 

102 
(5.8%) 

0.352 (95% IC: 
0.277–0.428), 
p < 0.001 Yes 69 

(3.9%) 
58 
(3.3%) 

Diabetes No 1300 
(73.7%) 

219 
(12.4%) 

0.235 (95% IC: 
0.179–0.292), 
p < 0.001 Yes 144 

(8.2%) 
100 
(5.7%) 

HIV No 1750 
(99.3%) 

4 (0.2%) * 

Yes 9 (0.5%) 0 (0.0%) 
Neurologic or 
neuromuscular 
disease 

No 1291 
(73.2%) 

359 
(20.4%) 

0.082 (95% IC: 
0.039–0.126), 
p < 0.001 Yes 68 

(3.9%) 
45 
(2.6%) 

Chronic 
pulmonary 
disease 

No 1533 
(87.0%) 

98 
(5.6%) 

0.238 (95% IC: 
0.163–0.313), 
p < 0.001 Yes 92 

(5.2%) 
40 
(2.3%) 

Hepatic disease No 1722 
(97.7%) 

17 
(1.0%) 

0.282 (95% IC: 
0.113–0.451), 
p < 0.001 Yes 17 

(1.0%) 
7 (0.4%) 

Chronic renal 
disease or acute 
renal failure 

No 1439 
(81.6%) 

164 
(9.3%) 

0.268 (95% IC: 
0.204–0.333), 
p < 0.001 Yes 92 

(5.2%) 
68 
(3.9%) 

Congestive 
heart failure 

No 1494 
(84.7%) 

250 
(14.2%) 

0.038 (95% IC: 
0.004–0.073), 
p < 0.001 Yes 11 

(0.6%) 
8 (0.5%) 

Coagulopathy No 1749 
(99.2%) 

14 
(0.8%) 

– 

Yes 0 (0.0%) 0 (0.0%) 

Footnotes: * observed concordance is smaller than mean-chance concordance. 
For Cohen’s kappa interpretation, the levels reported by McHugh (2012) were 
used [23]. 
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respectively comprise. However, different values for the proportion of 
morbidity of each SINAVE case were observed when considering either 
the original variable (where doctors report cases’ associated morbidity) 
or the recoded variable that quantified the presence of any of the 13 
reported morbidities variables. For instance, cases were reported as not 
having morbidities, but some of the 13 morbidity variables were filled 
in. The opposite was also observed, as doctors who filled in the database 
reported any morbidity for some cases but did not fill in any of the 
specific morbidity variables. In this case, it may be because the 
morbidity could not be reported among the 13 available options. This 
difference uncovers a potential issue of reporting incompleteness, as the 
absence of morbidity was reported for cases where specific morbidities 
were simultaneously reported. Indeed, incompleteness of reporting has 
been frequently found when assessing the data quality of health infor-
mation databases before the COVID-19 pandemic [24] and associated 
with the surveillance of COVID-19 cases in Portugal [25] or in other 
countries [26,27]. It is widely known that high-quality data is the basis 
for decision making guidance, especially during a crisis such as a 
pandemic [28]. However, the priority of public health doctors is to track 
and isolate their contacts, and, in this way, the surveillance data can be 
collected in haste. Another aspect concerns data input into the various 

systems carried out by multiple sources: physicians, laboratories, or 
other health professionals working for the public health team during the 
pandemic. In this context, numerous factors can affect the quality of 
these data, and numerous unintentional errors can occur, potentially 
leading to an imprecise conclusion. 

Even though the description of the morbidity in individual cases was 
not within the scope of this study, the results are still in line with those 
observed in other studies that evaluated the clinical characteristics of 
deceased people. No differences in the presence of any morbidity across 
sex or age groups were observed [29]. 

The CCI and the ECI were chosen to measure pre-existing death- 
related comorbidities in the SICO database. Those indexes have been 
described as valuable tools to identify comorbidity from administrative 
health data [30], especially when ICD codes are available [21,22]. 

Despite the algorithm differences in CCI and ECI, it was possible to 
compare the information of both databases regarding ten of the 13 
morbidities reported in the SINAVE database. Though this study did not 
aim to validate the accuracy of the reporting of morbidities through the 
SINAVE, the analysis allowed us to assess the agreement in identification 
and reporting agreement of morbidities in both databases. Indeed, the 
comparison between morbidities reported in SINAVE and identified in 

Fig. 2. Workflow of data from SARS-CoV-2 infections and conceptual model integrated information systems. 
Footnotes: The red dashed arrows represent the actual information flow, continuous grey arrows the actual that is also considered the ideal flow and the blue dashed 
arrows the ideal proposed flow. SICO, National e-Death Certificates Information System; SINAVE, National Epidemiological Surveillance System. (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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the SICO database showed that 37.5% and 32.7% of the total sample had 
the same number of morbidities identified or reported in both databases 
(respectively). However, minimal or no agreement was found when 
comparing the reported morbidity in both databases. Therefore, the 
analysed data did not confirm whether these differences in morbidities 
were due to the data quality, which the authors considered an unlikely 
hypothesis. 

These results suggest differing information regarding the same 
morbidities in SINAVE and SICO systems, which would complement 
each other. Some differences can still be expected because different 
health professionals fill in each database at different disease stages and 
for distinct purposes. Nevertheless, the results suggest that, for any 
reason, different health professionals seem to identify and report distinct 
comorbidities for a given case at different moments, i.e., at the moment 
of COVID-19 case notification in SINAVE or when certifying a COVID-19 
death. This lack of agreement between databases also occurs for chronic 
diseases that would likely be present in both moments SINAVE and SICO 
were filled in. Thus, the results suggest that exchanging health infor-
mation reported in both databases could enhance the available data for 
surveillance purposes and epidemiologic characterisation of COVID-19 
cases. For instance, dataset linkage strategies for COVID-19 epidemio-
logic research have been applied in Scotland [31] and Sweden for 
national-level studies [32] to better describe, analyse and model the 
pandemic evolution. It is expected that the health information exchange 
between databases describing distinct stages of the disease can allow a 
longitudinal medical record with information about each case [5] and 
better knowledge on the impact and importance of their risk factors, 
comorbidities and their severity [32]. The COVID-19 pandemic has 
elicited the need of improving the HIS as a preparedness strategy for 
future pandemics [4]. In addition, this information, together with data 
on the COVID-19 outcomes, are valuable to support decisions on how to 
allocate resources, allowing to anticipate hospitalization or intensive 
care beds occupation and its length, needed treatments, or other long- 
term outcomes [32]. 

Still, the need for greater interoperability of different HIS in Portugal 
through creating a data warehouse was previously identified and is 
viewed as strategic towards the efficiency of the National Health Service 
[33]. Health information integration is expected to improve the identi-
fication of health problems, population health planning, the policy-
making process, or healthcare performance monitoring [33]. This study 
results show that a more efficient interconnected use of existing infor-
mation systems can improve data availability and readiness to deal with 
outstanding health situations. In addition, the results are COVID-19 
related but apply to any other disease of interest. Notwithstanding 
that a strong HIS could sustain evidence-based decisions concerning the 
direct impacts of COVID-19, i.e., morbidity and mortality, it can be 
valuable also in describing and supporting strategies to mitigate indirect 
impacts of the pandemic [34], suggesting how the benefits can go 
further the COVID-19 response. 

In Portugal, the Business Intelligence tool BI SINAVE was created as a 
more advanced and robust system for processing data [35]. This tool 
allows the cross-referencing of the information in the databases: SINAVE 
Lab, SINAVE Med, Trace-COVID and the National Registry of Users  
(RNU) [Registo Nacional de Utentes], maximising the information from 
these various sources during pandemic response [35]. 

Fig. 2 demonstrates the information pathway from an individual 
with suspected or confirmed SARS-CoV-2 infection and its connection 
with the different information systems. Suspected SARS-CoV-2 in-
fections in the Portuguese health systems are notified and followed by a 
laboratory test. A COVID-19 case is notified either by laboratories 
through SINAVE Lab or physicians through SINAVE Med. Additionally, 
for clinical management of individuals and contact tracing, Trace- 
COVID is used. Trace-COVID was developed in the pandemic context 
and is used by multidisciplinary teams explicitly created to act in the 
pandemic response to maintain epidemiological surveillance [36]. In 
practice, the systems are not fully integrated, which causes duplicate or 

different entries of information regarding the same COVID-19 cases. 
Moreover, data collection and validation are carried out independently, 
which somewhat divides the analysis of the databases and the national 
data reporting. Therefore, Fig. 2 also represents a conceptual framework 
for better integration and enhanced health data, with blue dashed ar-
rows representing recommended health information exchange between 
the distinct health HISs (please, see Fig. 2 footnotes). 

Despite not being represented in Fig. 2, other available HIS could still 
add information and improve this approach. For instance, recent 
research used electronic medical records, i.e., diagnosis codes associated 
with hospitalizations, emergency, and outpatient visits documented 
within the two years before a SARS-CoV-2 infection, to provide prompt 
morbidity data for each COVID-19 patient [37]. This approach could 
still be possible in Portugal using ICD-10 diagnosis codes from the In-
formation System for Hospital Morbidity, which gathers each patient 
morbidity data from all public hospitals in Portugal. In addition, it could 
also allow saving time throughout several stages of disease progression 
or during the death certification coding process. 

Indeed, a fully linked information system can be the key to providing 
more agile and precise information to answer health emergency issues 
more appropriately. A connected system that allows data collection, 
storage, management, assurance of quality, aggregation, analysis, and 
continuous data updating are the essential features of an operational HIS 
[38]. Countries’ healthcare systems are in different levels of interoper-
ability between their HIS and can have specific requirements in terms of 
data policy. Therefore, assessing needs concerning their health data 
exchange architecture would provide the background for designing 
strategies for improving HIS interoperability. After perceiving the po-
tential for improved morbidity information with both HIS herein 
analyzed complementing each other, it could be the next step. However, 
morbidity data sharing throughout the HIS recurring to a data ware-
house, as presented in Fig. 2, could be a strategy to be adopted. 

Notwithstanding the benefits conferred by the interoperability of 
different HIS, other concerns can arise regarding personal data protec-
tion. Several strategies can minimize data protection risks, such as 
regulation, centralization of the linkage and anonymization processes at 
source, separating new data from personal datasets [39]. For instance, 
there have been established worldwide regulations for personal data 
protection, such as General Data Protection Regulation in the European 
Union [40] or the Health Insurance Portability and Accountability Act in 
the United States [41]. 

Limitations of this study warrant discussion. First, the linkage be-
tween the databases was based on a set of variables. Therefore, it could 
not be completely deterministic, as this method cannot uniquely link the 
information of each case. However, using four variables, the fact that 
only exact matches were considered and the exclusion of duplicated 
matches maximised the accuracy of this process. Moreover, the linkage 
methodology used in this study was innovative and enabled the identi-
fication of potential complementarity between linked databases, 
contributing to achieving the proposed objective. Second, the de-
pendency of data quality on the data entry process could compromise 
other, specific, and more detailed analyses. However, the potential 
incompleteness of databases that we found can still be a crucial alert that 
enhances the need to use data linkage to improve available data and 
improve evidence-based (COVID-19) surveillance or decision-making 
processes. Last, due to the criterion used to select cases for the anal-
ysis and avoid bias from incomplete coding of morbidity information, 
the included sample comprised 2285 cases between 4049 matched re-
cords. This more narrowed approach of not considering those patients 
dying in weeks with more than 5% of cases with the incomplete coding 
process led to the exclusion of a significant number of cases. However, it 
intended to address the hypothesis that the volume of work within 
weeks with higher mortality could affect the codification of other cases. 
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5. Conclusion 

The COVID-19 pandemic led to reorganizations in HIS to collect data 
that could provide prompt information to support policy decisions. 
However, the results of this study show that when data is independently 
collected, different health information can be found across information 
systems leading to low accuracy in the morbidity description of each 
case, due to the range observed in the agreement between the reporting 
of each morbidity. Therefore, the integration of the two databases would 
potentially increase their complementarity. However, further research is 
needed to confirm this hypothesis and if this integration would enhance 
the interoperability of HIS and the information output, making it more 
consistent and effective and increasing public health preparedness, as 
expected. Moreover, the existing communication pathways of different 
HIS can still be improved, potentially improving the COVID-19 crisis 
management decision-making, benefiting community sectors, such as 
the public in general, health professionals, public health researchers, 
and policymakers. 

Summary points 

What was already known on the topic 
Health information system interoperability can enhance data 

regarding patients’ morbidity. 
Accurate morbidity data allow better decisions and evidence-based 

public health interventions. 
What this study added to our knowledge 
Two health information systems were matched on sex, age, resi-

dence, and date of death. 
Morbidity either in COVID-19 cases or related deaths information 

systems was compared. 
The minimal agreement found suggests a potential for improvement 

through data integration. 
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