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Abstract: Viruses and their hosts have coevolved for a long time. This coevolution places both the
pathogen and the human immune system under selective pressure; on the one hand, the immune
system has evolved to combat viruses and virally infected cells, while viruses have developed
sophisticated mechanisms to escape recognition and destruction by the immune system. SARS-
CoV-2, the pathogen that is causing the current COVID-19 pandemic, has shown a remarkable
ability to escape antibody neutralization, putting vaccine efficacy at risk. One of the virus’s immune
evasion strategies is mitochondrial sabotage: by causing reactive oxygen species (ROS) production,
mitochondrial physiology is impaired, and the interferon antiviral response is suppressed. Seminal
studies have identified an intra-cytoplasmatic pathway for viral infection, which occurs through
the construction of tunneling nanotubes (TNTs), hence enhancing infection and avoiding immune
surveillance. Another method of evading immune monitoring is the disruption of the antigen
presentation. In this scenario, SARS-CoV-2 infection reduces MHC-I molecule expression: SARS-CoV-
2’s open reading frames (ORF 6 and ORF 8) produce viral proteins that specifically downregulate
MHC-I molecules. All of these strategies are also exploited by other viruses to elude immune detection
and should be studied in depth to improve the effectiveness of future antiviral treatments. Compared
to the Wuhan strain or the Delta variant, Omicron has developed mutations that have impaired
its ability to generate syncytia, thus reducing its pathogenicity. Conversely, other mutations have
allowed it to escape antibody neutralization and preventing cellular immune recognition, making it
the most contagious and evasive variant to date.

Keywords: SARS-CoV-2; COVID-19; cell entry; evasion mechanisms; cell-to-cell fusion; cell-in-cell
syncytia; nanotube; glycan capping; extracellular vesicles; exosomes

1. Introduction

Although at the beginning of the pandemic, the fatality in COVID-19 patients was
lower (2.15%) than those of its nearest cousins, SARS-CoV-1 (9.5%) and MERS-CoV (34.4%),
SARS-CoV-2 has a greater capacity for infecting people and can therefore cause greater
global morbidity and fatality [1]. Because of the growing concern about the surge of
new viral mutants that could disrupt governmental health interventions, decrease the
effectiveness of vaccines or natural immune protection as well as antiviral treatments,
public health monitoring organizations have undertaken an important initiative to utilize
viral genetic data to trace pandemic growth [2].

The World Health Organization (WHO) has grouped rising SARS-CoV-2 variants
into separate categories depending on their infectivity potential, with variants of concern
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(VOCs) requiring quick resolution, and various VOCs (Alpha, Beta, and Gamma) being
closely monitored [3]. The Delta and Omicron variants are the two currently present VOCs,
with Omicron exceeding Delta in terms of antibody resistance. Furthermore, recent work
has discovered that the Omicron spike protein outperforms the spike of the Delta variant in
terms of antibody evasion by up to 44 times, and has suggested that “most therapeutic anti-
bodies will be ineffective against the Omicron variant and that double immunization with
BNT162b2 might not adequately protect against severe disease induced by this variant” [4].
As a necessary repercussion, a wide genetic investigation and surveillance of SARS-CoV-2
were initiated to deal with the accelerated aggregation of virus genetic changes and to gain
a better understanding of the virus’s evolutionary adaptability in humans in an attempt to
produce better COVID-19 vaccines and therapeutic alternatives. [2].

Due to its proofreading exoribonuclease, the genetic code of SARS-CoV-2 was reported
to acquire changes in two nucleotides over the course of a month, which is somewhat
slower compared with other RNA viruses [5]. While the majority of accidental mutations
are either silent, causing no modifications at the biological level, or harmful, compromising
viral efficiency, others may provide a selection benefit; this results in their replication
in succeeding viral populations, which have favorable characteristics and are frequently
purified [2]. In circulating SARS-CoV-2 strains, aleatoric genomic changes were discovered,
notably in the spike and nucleocapsid genomes, which are the most changeable genes in
the viral genome [6]. Furthermore, confirmation of autonomous convergent alterations in
the SARS-CoV-2 genetic code reveals that the virus is under constant and growing selection
pressure at both the population and patient levels [2]. As global vaccination programs con-
tinue, an increasing percentage of inhabitants now have proper vaccine-induced immunity
to the dominant virus, and this expanding level of protection is undoubtedly putting the
virus under strong evolutionary pressure, leading to the emergence of variants capable of
antibody escape [2].

According to recent investigations, the immune escape mutants have appeared and
reappeared in chronic COVID-19 patients and immunocompromised individuals who are
unable to successfully battle infection, resulting in the major alterations in the SARS-CoV-2
spike, as well as the proteins ORF1ab, ORF8, and nsp1 [7,8]. In addition to immunization,
immunotherapies, including the antiviral Remdesivir and steroids, as well as convalescent
plasma treatments and neutralizing immunoglobulins from recovered patients and antiviral
monoclonal immunoglobulins, have been used to treat the COVID-19 disease [9,10].

Recent investigations have demonstrated that COVID-19 patients treated with con-
valescent plasma showed significant improvement in clinical symptoms, a reduction in
the level of viral antigens, and an increase in the blood oxygen saturation and lymphocyte
ratio [9], although the use of convalescent plasma also promotes the production of antibody
escape variants [11,12]. As a result, these therapies can induce beneficial mutations in this
virus. Because of fading or incomplete primary immunity, the use of inadequate antibodies
in treatment with plasma from recovered patients and re-infection may create a selec-
tion pressure for immunological escape mutations [2]. The main evolutionary adaptation
strategies of SARS-CoV-2 to avoid the immune system’s attack are described in this paper.

2. Strategies of Immune Evasion by SARS-CoV-2

There are at least seven reported strategies, which are utilized by SARS-CoV-2 for
immune evasion:

1. Spike camouflage employs glycan molecules (epitope masking).
2. Differential impairment of MHC-I-mediated antigen presentation by SARS-CoV-2 variants.
3. SARS-CoV-2-driven inhibition of the interferon synthesis.
4. SARS-CoV-2 induces incomplete mitophagy to avoid apoptosis of some infected cells

and to increase virus replication.
5. Cell–cell infection and immune evasion through cytoplasmic nanotubes.
6. Cell–cell infection and lymphocyte cell death through syncytia formation.
7. Immune evasion through exosome release.
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2.1. Spike Camouflage Employing Glycan Molecules (Epitope Masking)

The genetic code of the SARS-CoV-2 virus was shared with the world by the Chinese
CDC in January 2020 [13]. This triggered significant global efforts to develop an efficient
vaccine, and while diverse platforms were used, they all utilized the spike protein’s ge-
netic sequence, with the objective for the immunological system being to perceive the
SARS-CoV-2 spike as a foreign antigen, stimulating the synthesis of specific antibodies
against it, and therefore defending the organism from infection [14]. It is widely accepted
that antibodies will attach to the spike’s specific receptor-binding domain (RBD), preventing
the pathogen from infecting human cells [15].

Several viruses have adapted an epitope masking strategy by coating their enve-
lope glycoproteins with glycans produced by the host, thereby preventing (or minimiz-
ing) antibody recognition. Numerous viruses have demonstrated the relevance of the
N-associated glycosylation of envelope proteins for immunological escape, including
hepatitis C virus [16,17], HIV-1 [18–20], hepatitis B virus [21], herpes simplex virus [22],
and coronaviruses [23–26]. In addition to playing a crucial role in epitope camouflage,
which represents an efficient method of immune evasion [24,27,28], the glycan barrier also
enhances viral bonding, entrance, and membrane fusion [29].

Besides N-associated glycans, low levels of O-glycans in SARS-CoV-2 spike protein
have recently been discovered [24,27–29]. While the oligomannose glycan content of SARS-
CoV-2 (28%) is greater compared to normal host glycans [24], it is much lower when
compared with the HIV-1 Env, which has 60% oligomannose-type glycans [20,30]. This
shows that, in comparison with other viral glycoproteins (Figure 1), the SARS-CoV-2 spike
protein contains fewer glycans, and they create a weaker protective layer that may be
helpful for the attachment of the neutralizing antibodies [24].
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Figure 1. Glycan shields from different viruses. The number of glycans in SARS-CoV-2 is lower
compared with the other viruses. This image is reproduced from an open-access article distributed
under the terms of the Creative Commons CC BY license, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited. Source: [24].

It was pointed out that “SARS-CoV-2 infection is controlled by the opening of the
spike protein receptor-binding domain (RBD), which transitions from a glycan-shielded
‘down’ to an exposed ‘up’ state to bind the human ACE2 receptor and infect cells” [23].
According to these researchers, the RBD is almost fully covered by the glycans in the ‘down
state,’ offering a perfect camouflage. To allow ACE2 to attach to the receptor-binding motif
(RBM), the RBD must shift from a ‘down’ to an ‘up’ state, and therefore the associated
activation mechanism is required for cell entrance, but in addition, is also necessary for
antibody recognition and neutralization [23].



Biomedicines 2022, 10, 1339 4 of 24

In general, the viral RBD must switch from a ‘down’ to an ‘up’ state to attach to
ACE2. However, the RBD of Omicron has trouble shifting to the ‘up’ state due to structural
modifications caused by one of its numerous mutations, according to evidence recently
published [31]. As a result, Omicron necessitates more ACE2 receptors than other variants
to merge with host tissue. Considering cells from the lungs have considerably lower ACE2
numbers than cells in the nasopharynx, this could explain why Omicron does not readily
infect lung tissue [31].

According to a very recent investigation, it was found that the Omicron variant features
four novel spike mutations (S371L, N440K, G446S, and Q493R) that provide increased
antibody resilience, with the most notable discovery being that the S371L mutation impaired
monoclonal antibody neutralization in all four RBD classes [32]. Although the exact
mechanism of antibody resistance is uncertain, computational modeling has indicated
two options. First, changing Serine to Leucine in the RBD-down state obstructs the N343
glycan, perhaps modifying its structure and inhibiting class 3 antibodies that attach to this
area. Second, in the RBD-up state, S371L may change the structure of the S371-S373-S375
loop, which may disrupt the attachment of class 4 antibodies that bind to a segment of this
loop [32]. In a subsequent study, these researchers found a human monoclonal antibody
that was able to block all sarbecoviruses tested and showed high affinity and potency
in vitro and in vivo. The authors concluded that such an antibody is a suitable aspirant for
outbreak contingency planning [33].

Recent studies show that glycosylation is essential for virus infectiousness. The
spike protein of SARS-CoV-2 contains a unique furin cleavage region that promotes viral
transmissibility and syncytia production in the infected cells. Representatives of the GALNT
(N-acetyl-D-galactosamine (GalNAc) transferase) enzyme group regulate the addition of
O-glycans around the furin cleavage region, resulting in reduced efficiency of furin cleavage
and syncytia formation. Furthermore, it was discovered that the proline residue at position
681 is required for O-glycosylation. In vitro, mutation of this proline caused the GALNT1
glycosyltransferase function to be lost within the furin cleavage area [34]. P681 mutations in
the highly contagious Alpha and Delta versions of SARS-CoV-2 prevent O-glycan addition,
enhance furin cleavage, and boost the production of syncytia. Furthermore, GALNT group
components capable of glycosylating the spike protein have been discovered in the human
respiratory cells susceptible to SARS-CoV-2 infection. The presence/absence of O-glycans
may impact virus transmission/tropism by modifying the furin cleavage of the spike.
Therefore, these findings offer molecular insights that explain the relevance of the P681
mutations prevalent in Alpha and Delta variants [34].

Before the Delta variant, Alpha was the most contagious lineage of SARS-CoV-2. This
was conceivable since, in contrast to the Wuhan strain, the Alpha variant had a histidine
instead of proline at location 681 in the furin cleavage region in the spike protein at the
S1/S2 juncture (residues 681PRRAR685). Furin cleavage needs an alkaline milieu, so in the
Alpha variant, replacing proline (apolar) with histidine (positively charged) increased the
furin cleavage efficiency, resulting in higher activity of spike proteins capable of infecting
the cells. Furthermore, by substituting the proline residue, the Alpha variant eliminated the
glycosylation site detected in the Wuhan strain [35]. This is significant, since carbohydrates
obstruct the catalytic domain, preventing the protease from accessing it. The Delta variant
also features a change at position 681, but instead of histidine, an arginine replaces the
proline residue. Because it is an important amino acid, its mutation in the Delta variant
facilitates spike protein cleavage, boosting cell identification and invasion, and resulting in
higher infectiveness of this variant than that of the Alpha variant, thereby serving as one of
the major factors for the enhanced infectiousness of the Delta variant [35].

The Omicron variant maintains the identical P681H substitution as the Alpha variant
and contains a novel and exclusive glycosite, Threonine 376, discovered only in Omi-
cron. In a 3D structure, this site is situated near a proline 681 residue, which regulates
O-glycosylation [36]. A notorious increase in the usage of Core 2 type O-glycoforms was
observed in the Omicron variant in comparison with the wild-type virus or its Delta variant,
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which is consistent with the addition of O-glycans [36]. This finding is transcendental be-
cause it was previously reported that, in vitro, mutation of this proline 681 caused GALNT1
glycosyltransferase function to be lost, as they regulate the addition of O-glycans around
the furin cleavage region [34]. This suggests that the new Thr376 mutation, exclusive for
Omicron, restored the capacity to add O-glycans that shield the furin cleavage site. As a
consequence, a greater immune escape has been achieved by this variant, but with lesser
pathogenicity, as will be discussed later.

2.2. Differential Impairment of MHC-I-Mediated Antigen Presentation by SARS-CoV-2 Variants

The clinical spectrum of COVID-19 appears to be distinct from that of SARS. Based
on the epidemiological and clinical evidence, in comparison with SARS-CoV-1, SARS-
CoV-2 infection has a prolonged incubation period (ranging from 0 to 24 days, with an
average of 6.4), and pre-symptomatic individuals can transmit the virus to others [37,38].
Asymptomatic infections have been commonly recorded, putting community preventative
mechanisms in jeopardy [37]. A significant proportion of recovered patients continue
releasing viral elements in the upper respiratory system and digestive tract, necessitating a
substantially longer hospitalization time [39–42]. Some COVID-19 patients showed signifi-
cant viral RNA levels following hospital discharge [42]. Given the lack of synchronization
between viral levels and clinical symptom progression, SARS-CoV-2 might have replicated
widely in infected cells without being noticed by the antiviral response [43]. CTLs (cyto-
toxic T lymphocytes) are important players in virus infection suppression because they
directly kill cells that have been infected with the virus [44]. CTLs emit various damaging
compounds (perforins, granzyme, and FasL), and when the T cell receptor located in CD8+

T cells receives the specific message displayed by the MHC and peptide combination, it
produces cytokines, such as interferon, TNF-α, and IL-2 [44]. As a consequence, the cell
that enables virus multiplication is executed, thereby stopping virus propagation [45].

Viruses that cause long-term infections, such as HIV-1 and the Kaposi Sarcoma associ-
ated Herpes virus (KSHV), might elude immune surveillance by interfering with antigen
presentation, which is necessary for immune activation, by decreasing the production
of major histocompatibility complex I (MHC-I) molecules bound to the cellular mem-
brane [46–48], as demonstrated in laboratory settings and living organisms [49]. Although
these viruses have acquired the capacity to elude immune detection by interfering with
antigen presentation, their underlying processes differ [49].

SARS-CoV-2’s open reading frame 8 (ORF8) produces a polypeptide that interacts
with MHC-I molecules and causes their diminished expression [49]. Infected cells with
the Wuhan strain and with the Delta variant have a reduced vulnerability to cytotoxic
T lymphocyte destruction because MHC-I molecules are specifically selected for their
degradation within lysosomes (autophagy) in cells that express the ORF8 protein. Another
study found that the ORF6 protein from SARS-CoV-2 disrupts the stimulation of MHC-I
genetic expression [50]. The virus suppresses the production of MHC type I in epithelial
cells following virus infection, according to gene expression analyses in COVID-19 sufferers.
Because MHC-I is essential for antiviral immunity, this mechanism has been identified as a
potential instrument for virus immunological escape. These findings suggest that during
SARS-CoV-2 infection, defective stimulation of MHC class I genetic expression in airways
and epithelial cells from the intestines impairs cellular immunity mediated by CD8 T cells,
increasing the likelihood of viral load intensification and extended disease [50].

The effect of Omicron genetic changes on the cellular immunological response pro-
duced by vaccination was recently investigated, both for CD4+ and CD8+ T cells by immune
sequencing and epitope mapping [51]. It was observed that genetic changes in the Omi-
cron variant were not selected to evade cellular immunity, and may not abrogate antigen
presentation, as they only affect 21% of the class I-mediated cellular immunological re-
sponse elicited by SARS-CoV-2 vaccines and 33% of the class II type. Because the genetic
changes are clustered in the spike gene and are relatively scarce in the remaining genes, the
impact of the Omicron variant is minimal (less than 5%) on the T cell responses directed
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to regions different from the spike caused by natural disease [51]. Results from this study
suggested that the Omicron variant does not induce MHC-I destruction mediated by the
ORF8 protein, and therefore it might not impair antigen presentation, as was the case for the
Wuhan strain [49]. Even though current variants avoid the majority of the vaccine-induced
neutralization, the currently offered SARS-CoV-2 vaccines have been shown to be effective.
This could be because such vaccines elicit a stronger T cell reaction than predicted, which
has helped vaccine recipients avoid severe (or even symptomatic) disease, supporting the
hypothesis that the genetic changes in Omicron have only a small impact on the T cell
immune response [51].

2.3. SARS-CoV-2-Driven Inhibition of Interferon Synthesis

One of the earliest mechanisms of protection against viral infection is the natural
interferon (IFN) response [52,53]. Coronaviruses evade the host immune response by
using different mechanisms, which include inhibition of IFN communication, antagonizing
IFN synthesis, and boosting IFN tolerance [54–56]. Specifically, the SARS-CoV-2 infection
produces an inadequate and postponed IFN-I response that has been considered the main
contributor to disease severity [56–64].

In fact, it was discovered that several proteins of this pathogen can inhibit the IFN
defensive response [65], resulting in altered IFN-I generation and impaired signal transduc-
tion [57,61,66–68]. The antiviral type I interferon response is repressed by the SARS-CoV-2
nucleocapsid protein by making direct contact with the mitochondrial antiviral-signaling
protein (MAVS) [69–71]. Retinoic acid-inducible gene I (RIG-I-like receptors), which pri-
marily identifies viral RNA, initiates signal transduction through MAVS, which serves as a
central connector. Then, both post-transcriptional and post-translational processes regulate
MAVS expression and activity, with ubiquitination and phosphorylation playing the most
critical roles in modifying MAVS function [69–71]. A study found that RIG-I and MAVS
interaction was blocked by the viral ORF9b protein from SARS-CoV-2, while the viral
ORF7a protein disturbed the TBK1 protein, resulting in reduced IRF-3 phosphorylation,
which is essential for type I IFN production [72].

Upon entering human lung cells, SARS-CoV-2 generated significantly more viruses but
markedly lower IFN synthesis and inflammatory cytokines than SARS-CoV-1, explaining
COVID-19’s asymptomatic transmission and delayed onset of sickness [73]. Furthermore,
SARS-CoV-2 evades immunological recognition in alveolar macrophages by inhibiting
endogenous IFN production, indicating that the immune system is not properly alerted
during the early stages of the disease, allowing the pathogen to proliferate so that significant
lung tissue destruction occurs [74]. The failure of alveolar macrophages to recognize the
virus may be related to the disease’s reduced symptom phase, as the initial stage of
COVID-19 disease is characterized by a scarcity of symptoms, permitting the development
of viremia in infected persons, and potentially creating enormous difficulties with viral
dissemination in the general public [74].

According to the previous studies, very low concentrations of IFN-β protein were
reported in a considerable percentage of COVID-19 blood samples [75]. This validated
previous investigation revealed lower amounts of IFN-α in hospitalized COVID-19 pa-
tients versus controls [63] and in severely ill COVID-19 individuals versus mild-moderate
COVID-19 patients [62,64]. Research that assessed the existence of autoantibodies targeting
type I IFNs in COVID-19 patients revealed the relevance of category I IFN-mediated immu-
nity [60]. Remarkably, auto antibodies against IFN-α, IFN-ω, or both were found in 101
of 987 (10.2 percent) patients with mortal symptoms [60]. These auto antibodies, on the
other hand, were discovered in only 4 of the 1227 (0.33 percent) people in the wider public,
and in 0 of the 663 individuals without symptoms or moderate SARS-CoV-2 infection.
These antibodies neutralized high amounts of category I IFNs, inhibiting SARS-CoV-2
infection in vitro [60]. Auto antibodies were detected in serum samples taken from certain
patients prior to SARS-CoV-2 exposure. Individuals with such auto antibodies had very
low concentrations of serum IFN-α throughout the acute phase of illness [60]. Importantly,
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neither the patients who had auto antibodies to category I Interferon nor alterations in
genes implicated in the category I IFN cascade had previously suffered a dangerous virus
disease prior to COVID-19. These findings show that category I IFNs could have a more
essential contribution in defending the host from SARS-CoV-2 infection than against similar
viral infections [60,76].

An insightful hypothesis has been offered on how postponed but enhanced type I IFN
response leads to COVID-19’s grave progression by causing hyper-inflammation. Given
the potential for IFN responses to worsen hyper-inflammation, utilizing category I or III
IFNs as a therapy for COVID-19 patients should be carefully considered, particularly for
individuals with advanced disease phases [77].

2.4. SARS-CoV-2 Induces Incomplete Mitophagy to Avoid Apoptosis of Some Infected Cells and to
Increase Virus Replication

For viral survival and replication, virus-driven reconfiguration of cellular metabolism
is a crucial tactic [78]. Many viruses, including SARS-CoV-2, have developed complex ways
to manipulate numerous host functions for their benefit, such as modifying the cellular
metabolism and altering the immune response [78–82]. Apoptosis is an essential element
of cell reactivity to injury, which performs several important functions in homeostasis and
development [83]. Following a viral infection, many cells may undergo programmed cell
death, which might interfere with the creation and release of the offspring virus. Therefore,
it was not unexpected to find that some viruses have evolved various strategies to prevent
cell host apoptosis and increase their replication [83]. However, apoptosis induction has
also been reported. Thus, both induction and inhibition of apoptosis can be activated
by SARS-CoV-2 and might depend on the infected cells. For example, contemporary
research found that a subset of infected T cells exhibited mitochondrial dysfunction and
apoptosis, which could explain the leukopenia observed in severe COVID-19 cases [84].
On the contrary, a significant anti-apoptotic pathway controlled by SARS-CoV-2 is the
nuclear factor kappa B (NF-κB) pathway. Apoptosis inhibitors are increased when NF-κB
is induced. This approach is essential for viral infection, survival, and inflammation [85].

The mitochondria play several important roles in the cell’s life and death [86,87]. In
response to viral infection, the function and structure of mitochondria change, impacting the
efficacy of the immune response [88,89]. Pattern recognition receptors (PRRs), such as RIG1-
like receptors (RLR), identify viruses as a key component of the antibody immunological
response [70]. This identification activates interferon and pro-inflammatory cytokines with
intrinsic antiviral function or specialized immune cells via signaling cascades with strong
mitochondrial involvement [70].

RLRs also “trigger the mitochondrial antivirus signaling complex (MAVS), an external
mitochondrial membrane protein group implicated in antivirus defense, by promoting
the transcription of category 1 interferon” [90]. Viruses, as obligatory parasites, depend
on cellular-molecular infrastructure and bioenergy production [91]. Viruses also regulate
cellular functions and metabolic pathways in an attempt to utilize them for multiplication
while simultaneously escaping the immunological response of the host cell. As a result of
their importance in antiviral immune response, mitochondria are a prime target for viral
regulation [92,93].

SARS-CoV-2 hijacks and manipulates mitochondrial function in infected cells to sup-
press antiviral response and host immunity [94,95]. According to certain in vitro find-
ings [96], SARS-CoV-2 attaches to sections of the mitochondrion membrane TOM70 (mito-
chondrion import receptor subunit 70) protein and thus affects the cell’s class I interferon
response. MAVS-regulated innate antiviral communication necessitates oxidative phospho-
rylation as well, as evidenced by cells with oxidative phosphorylation defects that generate
fewer effective antiviral host defenses and induce interferon and cytokine release [97].
Another study discovered that the SARS-CoV-2 nucleocapsid protein blocks the antiviral
class I interferon response by engaging in direct interaction with the MAVS protein [70].
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Autophagy triggered during viral infections can either enhance or inhibit virus pro-
liferation depending on the kind of virus and the related host cell [98,99]. Autophagy
is inhibited by some viruses, including human cytomegalovirus, coxsackievirus B3, and
herpes simplex virus type 1 [100–102]. Other viruses, such as the hepatitis B virus, the
human immunodeficiency virus, the dengue virus, and the influenza virus, however, pro-
mote their replication and maturation by increasing autophagy [103–106]. The interplay of
several coronaviruses (CoV) infections with autophagy has lately gained a lot of interest.
Different investigations have raised two significant concerns: whether and how CoV infec-
tion affects autophagy, and whether or not autophagy is involved in CoV replication [99].
In this regard, research revealed that the SARS-CoV-2 membrane protein (M) triggered
mitophagy, which decreased the class I IFN response, and that preventing mitophagy with
particular inhibitors (3-MA and Wortmannin) suppressed viral replication [107]. Reduced
oxidative phosphorylation is known to promote mitochondrial ROS (mtROS) generation in
LPS-activated macrophages [108]. The SARS-CoV-2 ORF3a protein causes mitochondrial
damage and mtROS liberation to enhance hypoxia-inducible factor 1 (HIF1-α) production,
which enhances SARS-CoV-2 infection and cytokine release [109]. Furthermore, SARS-CoV-
2-mediated activation of the HIF1-α pathway also induces a variety of downstream effects,
including modification of the host cellular metabolism, inhibition of interferon synthesis,
increased viral replication and inflammation [110–115].

However, if mitochondria are destroyed, the cell will not be able to perform other vital
functions, such as the generation of energy through glycolysis or oxidative phosphorylation,
so the term “mitophagy” is not correct. Therefore, the SARS-CoV-2 could impair only
those selective mitochondrial pathways, which are related to the immune response, such
as the inhibition of interferon synthesis. Recent work demonstrated that SARS-CoV-2
infection results in an incomplete autophagy response with an impaired capability to
build double-membrane autophagosome vesicles, which are essential for successful SARS-
CoV-2 replication [116]. Such incomplete autophagy was characterized by an increased
autophagosome production, but blockage of autophagosome maturation to avoid lysosomal
degradation [116].

In addition to the massive amounts of lipids, proteins, and RNA required to build
hundreds of virions [117], it has been shown that oxygen utilization in latently infected
cells is reduced, showing that oxidative phosphorylation is considerably decreased [118].
Glycolysis induction is essential for the latently infected cells to survive since blockage
of this mechanism results in apoptosis. As a result, the switch to glycolysis produced
by viruses may be important for virus survival, as well as nucleic acid duplication, virus
production, and ejection [118]. A group of researchers discovered that an increased glu-
cose concentration significantly promoted viral proliferation and inflammatory cytokine
production, demonstrating the essential role of glycolysis in infected monocytes [119]. The
SARS-CoV-2 replication requires glycolysis (the Warburg effect, a modified form of cellular
metabolism commonly found in cancer cells, where instead of the oxidative phosphory-
lation, aerobic glycolysis originating from the upregulation of several major glycolytic
enzymes is used to efficiently produce ATP), and SARS-CoV-2-induced mitochondrial ROS
generation activates HIF1-α, which then potentiates the expression of glycolytic genes and
IL-1b [119].

Furthermore, it was discovered that SARS-CoV-2-infected monocytes cause T cell
malfunction and the death of epithelial cells in the lungs. These findings can explain why
the uncontrolled serum glucose levels in diabetes patients are a determinant factor in com-
plicated COVID-19 cases [119]. Interestingly, when only pyruvate is supplied to monocytes,
SARS-CoV-2 replication is stopped, as this substrate supports the tricarboxylic acid (TCA)
cycle and oxidative metabolism. Administrations of antioxidants, such as mitoquinol
(MitoQ) or N-acetyl cysteine (NAC), were also shown to suppress virus multiplication
in SARS-CoV-2-infected monocytes [119]. According to these studies, those antioxidants
also blocked TNF-α, IL-6, INF-α, INF -β, and INF -λ, as well as HIF-α-target gene up-
regulation [119]. Inhibition of the HIF1-α pathway may be an effective strategy for the
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treatment of some patients who are suffering from acute respiratory distress. Interestingly,
dexamethasone has been demonstrated to inhibit HIF1-α activity [120]. It is likely that, by
blocking HIF1-α-induced glycolysis, dexamethasone inhibits SARS-CoV-2 replication.

2.5. Cell–Cell Infection and Immune Evasion through Tunneling Nanotubes

After newly generated viruses are discharged from the cell, the ACE2 attachment
process is used to disseminate the infection, and emerging viruses merge their membrane
with the cell membrane of the objective cell and then deliver their RNA inside the cyto-
plasm [121]. The new viral reproduction “sabotages” several intracellular vesicle machinery
components. Often, the recently reproduced viruses are identified within bigger vacuolar
ensembles and not as independent individual virus particles in the cytoplasm [122].

In this situation, antibody and cellular protection, in addition to a variety of other
immune mechanisms, can disrupt the extracytoplasmic infection route. For instance,
the immune system can degrade the virus and thus prevent the illness [123]. Several
SARS-CoV-2 infection control techniques (such as immunization) depend on the host’s
immunological defensive strategy against extra cytoplasmic virions [124]. Even when a
considerable proportion of the population in numerous countries has been immunized,
new symptomatic illnesses (breakthrough infections) in persons who were adequately
inoculated have been documented, raising concerns regarding the creation of escape
mutants [125]. Immunization reduces the seriousness of the illness, although SARS-CoV-2
can re-infect vaccinated individuals, resulting in dangerous sickness and even death [126].
Furthermore, the virus entrance pathways into permissive cells are unclear, and the way
the pathogen spreads and multiplies in a subject with a powerful immunological response
is still unknown [121].

The latest research has demonstrated that this virus produces infection to other cells
using tunneling nanotubes (TNTs), which are nanometer- to micrometer-diameter cylin-
drical formations that connect adjacent or remote cells and promote cytoplasm commu-
nication between connected cells (Figure 2), enabling biomolecules to be shared and/or
transported intra-cytoplasmically [121,127]. TNTs are defined as transitory formations
that emerge and dissolve in a few minutes [128]. Viruses [129–131], prions [132] and
other neurodegeneration-related prion-like proteins [133–135], such as tau [135,136], α-
synuclein [137–139] and amyloid-β [140], as well as fungi [141] and mycoplasma [142] have
all been found to help spread corresponding diseases using nanotubes.

In a related way to transport by the axons, TNT thickness increases when a large object
is transported inside it. The cylindrical structure of some of these components has been
successfully evidenced by scanning helium-ion microscopy (HeIM), demonstrating that
TNTs can transport vesicles or viruses [121]. The role of TNT in a SARS-CoV-2 infection
was explored in two recent papers [129,143]. TNT-mediated intracellular propagation has
been suggested as a mechanism to hide viruses from T lymphocyte immune vigilance and
antibody suppression in the extracellular fluid. TNTs can also reduce virus-cell connections,
which might activate host defense mechanisms and antiviral responses. TNTs are used by
several viruses, including influenza, HIV, and herpes simplex virus (HSV), to transfer their
genetic material to new cells, permitting them to bypass host immune surveillance and
pharmaceutical targeting [121].

SARS-CoV-2 may be added to the group of viruses that are able the spread and produce
infection across host cells through TNTs, based on the findings from HeIM images [121]. As
demonstrated by a recent study, SARS-CoV-2 infects non-permissive neurons by penetrating
inside TNT (Figure 3) and traveling throughout this formation [127]. The entrance of SARS-
CoV-2 to the infected cell is regulated mostly by the ACE2 receptor [38,144–149].
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Figure 3. (A) SARS-CoV-2 can move from receptive infected Vero E6 cells to non-receptive SH-SY5Y
mCherry cells thanks to TNTs. To detect the virus, co-cultures were fixed at 24 h (A left top) and 48 h
(A right top) and stained with anti-N antibody. (E) SARS-CoV-2 was tagged using anti-nucleocapsid,
anti-spike, and anti-N & anti-spike immunostaining. TNTs are indicated by yellow arrows among
infected VeroE6 cells, whereas SARS-CoV-2 virions inside TNTs are indicated by white and green
arrows. This image is reproduced from an open-access article distributed under the terms of the
Creative Commons CC BY license, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited. Source: [127].
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Despite being abundantly produced in the vascular endothelium of the alveoli [150], it
was discovered at very low amounts in brain cells [151]. In human-derived neuronal cells
(SH-SY5Y), other investigations did not detect the presence of the ACE2 receptor [127]. The
primary objective of these researchers was to evaluate the characteristics and configuration
of virions carried by TNTs, and also to study the processes that enable TNT-mediated
virus transfer to non-receptive cells, for instance, as if contagious particles utilized TNTs as
cellular connections to travel on the external surface of, or as conduits to be transported
through the interior of the tube [127].

The virus is attached to the cellular membrane of TNTs generated among receptive
cells, and vacuolar structures similar to viruses can be detected inside TNTs (Figure 3)
produced among receptive cells and non-receptive cells, according to cryo-electron scan-
ning [127,152]. These results hint at a possible novel strategy for SARS-CoV-2 propagation,
one that can enable the virus to invade non-receptive cells while intensifying infection in
receptive cells, allowing the virus to spread more widely throughout the host [121,127,152].

2.6. Cell–Cell Infection and Lymphocyte Cell Death through Syncytia Formation

Encapsulated viruses propagate in cellular cultures and tissues mainly through two
mechanisms: cell-free particles and cell–cell close interaction [153–157]. Tight cell–cell inter-
actions allow successful virus propagation to neighbor cells [156] and can establish synaptic
connections, where there is a high viral load [154]. Surprisingly, cell–cell propagation
exceeds the efficiency of cell-free propagation [158], and HIV and other viruses have been
proven to utilize it in vivo [154,155,159]. For example, while the SARS-CoV-2 spike is better
than the SARS-CoV-1 spike in inducing cell-to-cell propagation, the SARS-CoV-1 spike
is superior at regulating cell-free propagation. Notably, this research also revealed that
cell-to-cell transmission of SARS-CoV-2 can take place even when ACE2 is not present [152].

SARS-CoV-2 cell–cell propagation cannot be blocked by neutralizing antibodies in
the serum from recovered COVID-19 victims, contrasting to cell-free infection [152,160].
The Beta variant of this virus is highly resilient to the vaccine serum blockade in cell-
free propagation, but the Alpha version is more resilient to blockage by serum from
vaccinated people in cell-to-cell propagation [152]. Cell–cell fusion can be caused by viral
diseases, such as HIV, respiratory syncytial virus, and herpes simplex virus (HSV) [161].
SARS-CoV-2 infection is linked to syncytia production [162–164], which was found in
histopathological lung tissues from people who died from COVID-19 [162]. Findings from
a new study showed that SARS-CoV-2-infected Vero E6 cells can generate groups of many
fused cells (syncytia) 24 h following infection. It is important to emphasize here that, in
the uninfected cells, this type of fusion does not occur [121]. It has been proposed that
virus-mediated cell fusion can increase viral genome transmission to nearby cells [163] via
sharing cytoplasm [152].

SARS-CoV-2-induced syncytia generation has been linked to lymphopenia in the
pulmonary tissue of individuals with critical COVID-19. Syncytia may select lymphocytes
to be internalized by endocytosis and cause their death, resulting in lymphopenia [162,164].
Internalization, also known as entosis, is a non-apoptotic cell death process, in which
swallowed cells are destroyed by lysosomal enzymes [165]. Lymphopenia is a distinguished
signature of people with severe COVID-19, according to several reports, and it is linked to
poor clinical outcomes. In corresponding cases, both CD4+ and CD8+ T cell numbers are
decreased [166–170]. In very complicated COVID-19 cases, decreased B cell numbers are
also reported [171]. Interestingly, there were fewer memory and regulatory T cells (Tregs)
(CD25+) in the CD4+ T cell section, while the number of naïve T cells (CD45RA+) was
elevated [172].

Further research demonstrated that people with COVID-19 had fewer airway Tregs
than healthy controls, supporting the idea that Tregs depletion in the lungs directly relates
to the severity of the condition. In complicated cases, the number of Tregs (which maintain
immune equilibrium by inhibiting activation and inflammatory responses) was extremely
low [173]. Tregs cells have previously been shown to reduce the cytokine storm caused by



Biomedicines 2022, 10, 1339 12 of 24

respiratory viruses, as well as virus-induced pneumonia and acute lung injury [174,175].
Because CD8 T cells help in the elimination of viruses from the lungs, they may potentially
play an essential role in such pathologies [176]. Regulatory T cells can organize the initial
enrollment of CD8 T cells towards the lungs and air passages, but they can similarly
reduce their cellular response intensity and potential to release TNF-α, thereby reducing
pathogenicity [177]. Likely, a decrease in Tregs numbers (owing to syncytia formation)
weakens the immune system’s capacity to inhibit the excessive response, resulting in the
cytokine storm [177].

As the cleavage of the S1/S2 is important for SARS-CoV-2-mediated syncytia genera-
tion and infection of lung cells [178], such characteristics can explain why Delta infection
produces more syncytia, and its spike is more fusogenic due to effective cleavage of S1
and S2 [179,180]. Importantly, in contrast to the Delta variant, Omicron does not promote
syncytia formation, according to recent studies [181–185]. Other contemporary research
has demonstrated that Omicron replication is significantly reduced in human lung cancer
cell lines (Calu3) and colorectal adenocarcinoma cells (Caco2). When compared to the
wild-type strain and the Delta (B.1.617.2) variant, Omicron proliferation is significantly
reduced in both the upper and lower respiratory system of infected transgenic mice ex-
pressing human ACE2 receptor (K18-hACE2), culminating in markedly reduced lung
damage. In comparison to wild-type SARS-CoV-2 and the Alpha (B.1.1.7), Beta (1.351), and
Delta variants, Omicron infection results in the smallest weight loss and the lowest fatality
percentage [186].

These pieces of evidence, together with epidemiological data, show that infection with
the Omicron variant causes less severe disease in humans [187]. This is also in line with
the clinical course being less grave, as a decreased replication rate of Omicron was also
described in lung epithelial cells as recently reported [188,189]. In vitro studies suggested
that the Omicron variant cannot spread easily by cell fusion when compared to other
variants, and adds to the evidence that the virus itself may produce a milder disease in
animal models [189]. This is relevant because it restricts the virus replication to the higher
breathing tissues, where cell-free propagation (that is independent of transmembrane
serine protease 2 (TMPRESS2) supports infection and makes the virus migration to the
lungs less probable, where cell merging is more important for viral propagation, and
disease impact is more severe [181,186]. According to recent studies, Omicron infection
causes reduced pulmonary illness in hamsters and mice that express the human ACE2
receptor [181,184,188–190].

2.7. Immune Evasion through Exosome Release

Exosomes are extracellular nanovesicles that form from intraluminal vesicles during
endocytosis and are released from the cell surface. They are selectively equipped with a
range of biological components, such as RNAs, proteins, and lipids. Originally, they were
considered a way for the cell to dispose of unnecessary materials [191]. However, exosomes
have been discovered to serve as carriers of biologically active molecules and perform
several essential functions in a range of biological processes, including immune control
and cellular communication [191]. In the case of disease, exosomes can contain viruses,
virus proteins, and viral genetic material. Furthermore, exosome packaging has been
shown to shield viruses from antibody inactivation and also permitted virus integration
within the cells that do not contain viral receptors and would normally be immune to the
pathogens [192]. For example, HIV-1 employs exosome surface properties to promote quick
delivery of progeny virus and to hide the virus from immunological monitoring. Hence,
HIV-1 can speed up the infection and spread by surrounding itself with exosomes [193].

Herpes simplex virus 1 [194], hepatitis E virus [195], hepatitis C virus [196], hepatitis
B virus [197], and enterovirus 71 [198,199] all interact with exosomes and similarly evade
antibody inactivation. Previous research has revealed that infected cells can discharge
viral molecules that behave as fake targets for the immunological system. Hepatitis B
virus (HBV) emits sub-viral particles, which are non-contagious elements containing the
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HBV virus merging glycoprotein, HBsAg, and exceed contagious virions by a factor of
2000:1 [200,201]. As a result, neutralizing antibodies (nAbs) attach to the more abundant
sub-viral particles instead of attacking the infectious virus, allowing the virus to escape
neutralization and infect cells [200].

By observing exceptionally slim segments of SARS-CoV-2 infected cells from the
respiratory epithelium with electron microscopy, researchers discovered the existence
of cytoplasmic membrane-bound vacuoles transporting particles similar to viruses [170].
Numerous vacuoles harboring many minute particles similar to viruses were identified in a
cell from the glomerulus, and a nearby cell from the tubular epithelium [202]. Trojan vesicles
have been proven to enter the extracellular fluid as a complete piece in high-resolution
transmission electron micrographs exhibiting one or two viral particles within a very tiny
vacuole of 200–250 nm in diameter [203]. Exosomes behaving as Trojan horses may explain
the resurgence of virus RNA in individuals sick with COVID-19 [204]. Exosomes play a
role in SARS-CoV-2 infection [205–207], and they could be used as indicators of illness
seriousness [208]. RNA from this virus was found in the exosomal contents of the serum of
COVID-19 patients but not in the serum of healthy participants, showing that this pathogen
can spread through endocytosis [209].

Exosomes generated by virus-infected cells can negatively influence the immune
response, and, according to most researchers, they affect it to benefit the increased viral
proliferation [192]. Exosomes from hepatitis B virus-infected cells, for example, lowered
the number of invading mononuclear cells in mice, implying that exosomes from infected
cells can dampen the antibody immune response [210]. Viruses can also elude the immune
system by altering the composition of exosomes. The HIV-1 protein Nef, for example,
has been demonstrated to have low CD4 levels in exosomes produced by HIV-infected
CD4+ T cells and to diminish the potential of the exosomes from CD4+ T cells to suppress
HIV infection [211]. Exosome membranes also serve an important function in protecting
viral cargo from destruction by host enzymes, as well as having other “smart” prop-
erties, such as high biocompatibility, capacity to surmount biological barriers, and low
immunogenicity [212,213].

One of the viral defenses against antibodies could be the lowered efficacy of neutraliz-
ing antibodies (nAbs) during infection. Due to the relevance of neutralizing immunoglobu-
lins for preventing illnesses, viruses developed highly complicated and clever strategies
to nullify innate immunity [214]. Exosomes harboring the SARS-CoV-2 spike react with
the secretory immunological system, impairing the efficacy of serum nAbs in inhibiting
viral infection in serum from convalescent patients. These exosomes can be used as fake
targets, extending the viral arsenal of exosome-based techniques for avoiding host immune
response [214].

3. Conclusions

The fight between viruses and their hosts has an old history, and while the immune
system has evolved to defend from these pathogens, viruses have acquired clever evasion
mechanisms to avoid being detected and destroyed by the immune system [215]. SARS-
CoV-2 has demonstrated a remarkable ability to evade antibody neutralization [34,216–218],
jeopardizing vaccination efficacy [216,219,220]. Several evasion mechanisms are used by
SARS-CoV-2 to avoid recognition by the immune system (Figure 4).
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to avoid immune surveillance and attack by the immune system.

Sabotage of the mitochondria is one of the immune evasion mechanisms utilized by
viruses where, by triggering the generation of the reactive oxygen species (ROS), mito-
chondrial physiology is impaired, and the interferon antiviral response is inhibited [109].
Seminal studies have revealed an intra-cytoplasmic route of infection in SARS-CoV-2,
which takes place through the creation of tunneling nanotubes, hence increasing infection
and bypassing extracellular recognition [121,127,152,160]. Syncytia-mediated lymphocyte
death is another way for this virus to avoid immunological response. In addition to serving
as a mechanism for viral infection, syncytia creation gives rise to lymphopenia in the lungs:
SARS-CoV-2 infection causes the genesis of syncytia, thus possibly exacerbating the lym-
phopenia reported in severe cases of COVID-19 [162,164]. Disrupting antigen presentation
is another technique to avoid immune surveillance. In this case, SARS-CoV-2 infection
causes decreased production of MHC-I molecules: the virus proteins encoded by SARS-
CoV-2’s open reading frames 6 and 8 directly interact with MHC-I molecules and cause
their down-regulation [49,50]. SARS-CoV-2-infected cells are highly resilient to destruction
by cytotoxic T lymphocytes due to the fact that MHC-I molecules are specifically targeted
for destruction within lysosomes [49]. This immune evasion strategy causes an impaired
antiviral T cell response, which may result in worsening symptoms and a longer recovery
time [168]. Finally, encapsulating viruses inside exosomes has been found to protect them
from antibody neutralization while also enabling them to integrate into cells that would
otherwise be immune to them [192]. Exosomes harboring SARS-CoV-2 spike react with
immunoglobulins and impair the efficacy of serum nAbs in suppressing viral infection in
convalescent patient serum [214]. Another exosome-based technique in the virus armament
for avoiding an immune attack is exosomes carrying viral envelope glycoproteins and
serving as fake targets [214].

To summarize, the evidence suggests that SARS-CoV-2 employs the various immune
evasion mechanisms described in this work, not only to avoid neutralizing antibodies and
immune monitoring but also to impair interferon production and alter cellular immunity,
which may explain why patients do not develop long-term protection against this elusive
pathogen. Data analyzed in this work also shows that, compared to the Wuhan strain or the
Delta variant, Omicron has developed mutations that have impaired its ability to generate
syncytia, thus reducing its pathogenicity. Conversely, other mutations have allowed it to
escape antibody neutralization and preventing cellular immune recognition, making it the
most contagious and evasive variant to date.
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COVID-19 coronavirus disease 2019
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SARS-CoV-2 severe acute respiratory syndrome coronavirus 2
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Tregs regulatory T cells
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