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Abstract: In this work we present a fundamental analysis based on small-angle scattering, linear
rheology and differential scanning calorimetry (DSC) experiments of the role of different hydrogen
bonding (H-bonding) types on the structure and dynamics of chain-end modified poly(ethylene
glycol) (PEG) in bulk. As such bifunctional PEG with a molar mass below the entanglement mass
Me is symmetrically end-functionalized with three different hydrogen bonding (H-bonding) groups:
thymine-1-acetic acid (thy), diamino-triazine (dat) and 2-ureido-4[1H]-pyrimidinone (upy). A linear
block copolymer structure and a Newtonian-like dynamics is observed for PEG-thy/dat while results
for PEG-upy structure and dynamics reveal a sphere and a network-like behavior, respectively.
These observations are concomitant with an increase of the Flory–Huggins interaction parameter
from PEG-thy/dat to PEG-upy that is used to quantify the difference between the H-bonding types.
The upy association into spherical clusters is established by the Percus–Yevick approximation that
models the inter-particle structure factor for PEG-upy. Moreover, the viscosity study reveals for
PEG-upy a shear thickening behavior interpreted in terms of the free path model and related to
the time for PEG-upy to dissociate from the upy clusters, seen as virtual crosslinks of the formed
network. Moreover, a second relaxation time of different nature is also obtained from the complex
shear modulus measurements of PEG-upy by the inverse of the angular frequency where G′ and
G′’ crosses from the network-like to glass-like transition relaxation time, which is related to the
segmental friction of PEG-upy polymeric network strands. In fact, not only do PEG-thy/dat and
PEG-upy have different viscoelastic properties, but the relaxation times found for PEG-upy are much
slower than the ones for PEG-thy/dat. However, the activation energy related to the association
dynamics is very similar for both PEG-thy/dat and PEG-upy. Concerning the segmental dynamics,
the glass transition temperature obtained from both rheological and calorimetric analysis is similar
and increases for PEG-upy while for PEG-thy/dat is almost independent of association behavior. Our
results show how supramolecular PEG properties vary by modifying the H-bonding association type
and changing the molecular Flory–Huggins interaction parameter, which can be further explored for
possible applications.

Keywords: supramolecular polymer; thymine-1-acetic acid; diamino-triazine; 2-ureido-4[1H]-pyrimi
dinone; homocomplementary; heterocomplementary; Flory–Huggins interaction parameter;
functionalization; hydrogen bonding
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1. Introduction

Non-covalent interactions and self-assembly are responsible for the organization of
many biological systems [1–4]. Often, more than one type of non-covalent interaction
plays a paramount role. A very well-known example is DNA, where hydrogen bonding
(H-bonding) between the base pairs (thymine, adenine, guanine, cytosine) as well as π-π
stacking and hydrophobic interactions give DNA its famous double helix structure [5–8].
Other examples are lipid bilayers and folding of proteins into helices or ß-sheet stabilized
by non-covalent interactions, especially hydrogen bonds (H-bonds). Therefore, studying
hydrogen bonding interactions allows a better understanding of many biological phenom-
ena, such as the link between structure and function of proteins. In recent years, the highly
directional physical interactions based on H-bonds have been applied in a fundamen-
tally different way to form supramolecular polymers, as a means to mimic the biological
self-assembly and organization [9–21]. Indeed, in these materials, modification of low
molar mass polymers with functional groups that associate via H-bonding interactions
give rise to a rich variety of self-organizing structures on the mesoscale with a multiplicity
of macroscopic properties [22–33]. In particular, the nature of the H-bond interactions
will largely influence the structure and dynamics of the supramolecular self-assembled
structures. Their properties can therefore be widely tailored by these parameters [3,34–36].
In this context, a fundamental understanding of H-bond interactions and their influencing
parameters is necessary to control the structure and dynamics of the resulting supramolec-
ular polymers. One of the simplest examples of associating supramolecular polymers is
expected with bifunctional polymers. Typical building blocks are linear polymer chains
carrying end functionalized binding groups with hydrogen bonding motifs.

Due to its specific features, such as its water solubility or biocompatibility, PEG
is an interesting polymer for various industrial and biomedical applications. While
some of us [13,18] have previously investigated similar bifunctional PEG polymers end-
functionalized with heterocomplementary associating thy and dat in the bulk, almost
no fundamental studies exist on simple bifunctional PEG polymers end-functionalized
with homocomplementary associating upy in the bulk [37,38]. On the one hand, though
being one of the most important and extensively studied H-bonding group [39–45], since
the first reports from the group of Meijer et al. [38,46], the focus is mostly on water solu-
tion due to the formation of supramolecular hydrogels that show promising properties
for application in regenerative medicine because of their ability to adapt to the natural
environment these materials are brought into [16,47–49]. Indeed, in solution PEG-upy
based supramolecular hydrogels change from polymer micelles to increasingly ordered
structures, like fibrils depending both on the concentration and on the functionality type of
the PEG polymer [3,50–54]. On the other hand, comparably detailed studies on supramolec-
ular PEG-upy melt association are scarce. Additionally, here primarily the mechanical
properties are investigated since the focus of these investigations have been also on the ap-
plications, especially supramolecular self-healing materials [9,50,55,56]. For PEG-thy/dat,
it is known [13,18], that linear association and simple Rouse dynamics prevail based on
small-angle neutron scattering (SANS), pulsed field gradient nuclear magnetic resonance
(PFG NMR) and viscosity measurements. Moreover, a direct microscopic quantitative
determination of the bond breaking relaxation time, τb is obtained using neutron spin echo
(NSE) spectroscopy [18]. While these results reveal many details about the dynamics of
PEG-thy/dat, there is rather limited discussion on the role of the segmental dynamics,
either studied by rheology and calorimetry in this polymer.

Therefore, in this work we aim to compare on a fundamental level the influence of
different homocomplementary and heterocomplementary H-bonding association types,
on the structure and dynamics of Poly(Ethylene glycol) (PEG) based supramolecular poly-
mers. Homocomplementary hydrogen bonding denotes the association of two identical
end-groups, whereas in the heterocomplementary case, two different end-groups bind
together. The heterocomplementary H-bonding association consists of thymine-1-acetic
acid (thy) and diamino-triazine (dat) forming triple H-bonds and the homocomplementary
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association involves 2-ureido-4[1H]-pyrimidinone (upy) forming quadruple bonds. In
this context, we present a combined study of small angle scattering (SAS), linear rheology
and differential scanning calorimetry (DSC), to unravel the differences on the microscopic
structure, and consequently on the underlying rheological macroscopical mechanisms,
segmental dynamics and glass transition regimes of bifunctional PEG end-functionalized
with different H-bonding thy/dat and upy association types. By comparing the differ-
ent association types, we present a consistent interpretation of the data and discuss the
parameters that play a key role on the different structural and dynamical behavior of
these supramolecular PEG. Ultimately this knowledge can influence the choice of the
end-functional end-groups for future applications using PEG polymers.

2. Materials and Methods
2.1. Samples

Bifunctional PEG-thy, PEG-dat and PEG-upy are synthesized according to procedures
in the literature [13,46]. The specific synthetic details of the polymer blocks and their
characterization are presented in the Supporting Information. Table 1 repeats, in short, the
results. For all polymers 1H nuclear magnetic resonance (NMR) was used to determine the
number average molar mass (Mn) and the functionalization degree ( f ) and size exclusion
chromatography (SEC) was used to determine the polydispersity index (PDI). Equimolar
mixtures (50:50) of bifunctional PEG-thy and PEG-dat compounds are prepared by solution
blending in chloroform and dried under high vacuum conditions for two days.

Table 1. Characteristics of the supramolecular polymer blocks and the reference PEG polymer block:
Mn is the molar mass of one unit * (g·mol−1), N is the number of repeating monomer units in the
corresponding PEG polymer block, PDI is the polydispersity index and f is the functionalization
degree of the supramolecular polymer blocks.

PEG PEG-thy PEG-dat PEG-upy

Mn (1H NMR) 1820 2153 2039 2349
N 41 41 41 41

PDI (SEC) 1.01 1.08 1.02 n.d.
f (1H NMR) - 90% 93% 91%

* including the supramolecular end group.

2.2. Flory–Huggins Interaction Parameter χ

The Flory–Huggins interaction parameters of the supramolecular polymers can be
estimated from the individual solubility parameters for thy, dat, upy and PEG using the
Hildebrandt–Scott equation:

χi−j =
Vi

RT
(
δi − δj

)2 (1)

χi−j is the functional group–polymer interaction parameter, Vi is the molar volume of
the respective functional group, R is the gas constant, T is the absolute temperature, and δi
and δj are the solubility parameters for the functional group and the polymer, respectively.
The molar volume of the respective functional group, Vi, is calculated using the following
densities, dthy = 1.23 g/cm3, ddat = 1.5 g/cm3 and dupy = 1.70 g/cm3 at 298 K [21,34], and the
respective molar masses, Mthy = 126 g·mol−1, Mdat = 111 g·mol−1 and Mupy = 154 g·mol−1.
The values of the solubility parameters are mostly empirical estimates and only a limited
number of experimental values are available, therefore slightly different values for the
same molecule appear in the literature [23,57]. The solubility parameters values estimates
are δPEG = 22.0 (J1/2·cm−3/2), δthy = 27.5 (J1/2·cm−3/2), δdat = 28.0 (J1/2·cm−3/2) and
δupy = 33.0 (J1/2·cm−3/2) [23,58]. The Flory−Huggins parameters, χ, between PEG and
thy and dat, can be estimated at T = 298 K in good accuracy using Equation (1) from the
empirical solubility parameters to be ~1.25 and ~1.42, respectively. These values can be
considerate almost negligible in comparison to the Flory–Huggins interaction parameters
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for PEG and upy estimated also using Equation (1) to be ~4.42. The higher the interaction
parameter, the lower is the compatibility between the polymer and functional end-groups.

2.3. Nuclear Magnetic Resonance (NMR)
1H-NMR spectroscopy of the studied polymers is performed using a Bruker DPX 300

(300.13 MHz) at ambient temperature. As an internal standard, the solvent signal is used.
The chemical shift is assigned in ppm.

2.4. Size Exclusion Chromatography (SEC)

SEC is performed with Tetrahydrofuran (THF) as the eluent on a SEC system from hs
GmbH, Germany, with the following components: a pump (intelligent pump Al-12, Flow),
a degasser (Gastorr AG-32, Flow), an autosampler (S5250, Sykam, Eresing, Germany), an
RI detector (RI2012–A, Schambeck, Bad Honnef, Germany), a UV detector (S3245 UV/Vis-
detector, Sykam, Eresing, Germany) and a column system (pre-column with 100 Å pore size
and three columns of 10,000 Å, 1000 Å and 100 Å, respectively) from MZ Analysentechnik;
Germany with MZ-Gel SD plus as the stationary phase. Polystyrene standards (Polymer
Laboratories) in the molar mass range of Mn = 925 g·mol−1 − 1.98 × 106 g·mol−1 are used
for the calibration of the system.

2.5. Small Angle Scattering

Small angle neutron scattering (SANS) experiments are carried out at the SANS diffrac-
tometer KWS2@FRM2, Munich, Germany. Absolute scattering intensities are measured
over a scattering range from Q = 0.0047 Å−1 to 0.44 Å−1 using sample-to-detector distances
of 2 m, 4 m, and 8 m and corresponding collimation lengths. The conversion to absolute
scale intensities was done by means of the incoherent scattering of a 1 mm H2O sample
and a 1.5 mm Plexiglas foil, respectively. The experimental two-dimensional data were
corrected in standard way for background and empty cell scattering, detector sensitiv-
ity and radially averaged. Incoherent contributions were determined from the largest
Q-range accessed. The corresponding neutron scattering length densities (SLD) of the
components are calculated to be SLDPEG = 6.39× 10−7 A−2, SLDthy = 2.06× 10−6 A−2,
SLDdat = 2.73× 10−6 A−2, SLDthy/dat = 2.38× 10−6 A−2 and SLDupy = 2.45× 10−6 A−2.

Small angle X-ray scattering (SAXS) data are measured at the GALAXI diffractometer
based in the institute JCNS-2 at Forschungsszentrum Jülich [59]. The X-ray source utilizes
a liquid metal jet target of a GaInSn alloy as the anode to which 70 keV electrons are sent.
The resulting X-rays are monochromatized to allow only Ga K-α radiation of E = 9.243 keV
photon energy to pass to obtain a wavelength λ = 1.34 Å. Two 4-segment slits which are
separated by 4 m distance collimate the beam and confine the size to about 0.7 × 0.7 mm2.
A 3rd slit reduces the scattering from the edges of the 2nd one. A sample-to-detector
distance of 80 cm calibrated using Bragg reflections from silver behenate resulting in
a Q-range 0.05–0.7 Å−1 is used. Absolute intensities in (cm−1) were obtained by the
calibration with a secondary standard, consisting of a hexafluoro-ethylene-propylene
copolymer (Dupont). The measured polymers are sealed in borosilicate capillaries of 2 mm
nominal inner diameter and placed in the vacuum chamber at an experimental temperature
of 333 K. Standard corrections for cell scattering and detector efficiency is performed.
The corresponding X-ray scattering length densities of the components are calculated to
be SLDPEG = 1.36× 10−5 A−2, SLDthy = 9.36× 10−6 A−2, SLDdat = 9.34× 10−6 A−2,
SLDthy/dat = 9.35× 10−6 A−2 and SLDupy = 9.29× 10−6 A−2.

2.6. Rheology

Rheological measurements are performed using an AR-G2 rheometer (TA Instruments,
New Castle, DE, USA) with a plate-plate geometry (20 mm) in which approx. 0.5 g of sam-
ple is used. The gap between the plates is 1 mm. Strain sweep experiments are performed
at a frequency of 1 Hz in the strain regime 0.001 < γ < 0.5. Frequency sweep experiments
in the range of 0.1–100 Hz were carried out in the linear viscoelastic regime. From these
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measurements, the frequency dependent storage modulus G′, and loss modulus G′′ of
the supramolecular polymers is determined. Steady shear viscosities of the supramolec-
ular polymers are measured in the shear rate range 0.01 s−1 with a temperature stability
within 0.05 K.

2.7. Differential Scanning Calorimetry

Differential scanning calorimetry (DSC) measurements are performed in standard
sealed aluminum containers between 193 K and 373 K at a heating rate of 10 K·min−1

using a heat-flux calorimeter DSC-1 (Mettler Toledo) with an empty aluminum container
as reference. The data of the second heating run are used for analysis.

3. Results and Discussion

Supramolecular polymers based on H-bonding end-groups exhibit different mor-
phologies that will consequently have a different impact on the dynamical properties of
these respective systems. Here, we want to understand the role of two different end-
functionalized H-bonding association types on the structural and dynamic phenomena of
bifunctional PEG polymer. Equimolar (50:50) mixture of PEG-thy/dat form heterocomple-
mentary associations and PEG-upy form homocomplementary associations between the
H-bonding groups. By comparing these different association types and presenting a consis-
tent interpretation of the data we learn which of the parameters influencing the hydrogen
bond associations play the key role on the different structural and dynamical behavior
of supramolecular PEG. In the following the structure by small angle scattering and the
dynamics by rheology and DSC of both PEG-thy/dat and PEG-upy are presented individu-
ally, followed by a comparison between the structure and dynamics of both supramolecular
polymers. Here, the most distinct differences are put in evidence and discussed in terms
of the influencing parameters. Moreover, the most important characteristics of the bi-
functional PEG polymer block used as base for the supramolecular polymer synthesis
is summarized. In this way, the real influence of the different association types can be
better distinguished.

Scheme 1 illustrates the structure of both the equimolar bifunctional PEG-thy and PEG-
dat heterocomplementary association and the PEG-upy homocomplementary association.
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Scheme 1. Left: chemical structures of (a) PEG-thy, (b) PEG-dat and (c) PEG-upy supramolecular polymers;
Right: Hydrogen bonds involved in (d) thy/dat heterocomplementary association and in (e) upy homocomplementary
association end groups.

3.1. Reference System

The building blocks of our supramolecular polymers consist of PEG polymer with a
molar mass of around 2000 g·mol−1 (Table 1). In order to understand the influence of the
different two types of H-bonding groups end-functionalized on bifunctional supramolecu-
lar PEG, the structural and dynamical parameters of unfunctionalized PEG polymer in the
melt have to be known and are taken as a reference for this work.
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3.1.1. Structure

The structural parameters of PEG polymer have been previously determined by
a number of neutron scattering experimental data [60–63]. Therefore, and taking into
account the theoretical definitions for a random walk model in an ideal Gaussian polymer
chain in the melt, the radius of gyration, Rg and the end-to-end distance, Re have the
following relation:

Re =
√

6R2
g =

√
Nl2

st = b
√

NK (2)

where N is the number of repeating monomer units (see Table 1), lst is the statistical segment
length, b is the Kuhn length and NK is the number of Kuhn segments [63–65]. Since N is
known (value in Table 1 results from Mn = N·M0 with M0 = 44 g·mol−1 being the molar
mass of the PEG monomer) and lst (l2

st = 33.75 Å2) [60,63] and b (7.6 Å) are constants for
this polymer [60–63], only Rg = 15.2 Å and Re = 37.4 Å and NK = 24.2 are determined
for our PEG polymer as indicated in Equation (2) above [66,67]. These parameters are used
to check and confirm the theoretical model approaches employed to describe PEG-thy/dat
and PEG-upy structures by scattering experiments in the following sections.

3.1.2. Dynamics

It is known that for unentangled polymer chains with a molar mass below the en-
tanglement molar mass (Me,PEG ≈ 2000 g·mol−1) [62] as is our case (see Mn in Table 1),
one expects Rouse-like behavior that relates to the dynamics of Gaussian chains, which is
determined by the balance of viscous and entropic forces. In this context, such polymers
typically show a Newtonian behavior represented by a constant zero-shear viscosity η0, at
different shear rates when studied by rheology [67,68]. Therefore in the Rouse regime, both
the segmental relaxation time τs, as well as the expected Rouse time τR, can be extracted
using the zero-shear viscosity as shown by the following equations [13,60,69]:

τs =
12Mnη0

NAN2ρπ2kBT
(3)

τR = N2τs (4)

where ρ is the density of the polymer melt, NA the Avogadro number, kB the Boltzmann
constant and Mn and N are given in Table 1. At temperatures well above the glass transition
temperature Tg, the chain dynamics can be well described by the Rouse model, and in
this case, τs as given in Equation (3) is related to the Rouse time τR, defined above in
Equation (4) as the expected longest relaxation time for a chain with N repeating monomer
units [13,60,69].

The steady-shear viscosity for our PEG polymer block is measured as studied by
rheology in the temperature range from 333 K to 383 K, with 10 K as temperature interval
and is shown in Table 2 for all the measured temperatures. Accordingly, it is possible to
calculate the segmental relaxation time τs and Rouse time τR, at the same temperatures for
our PEG polymer block as from Equations (3) and (4), respectively that are also displayed in
Table 2. These results of the relaxation times are an important input for the discussion of the
segmental dynamics of the associated PEG supramolecular polymers and its temperature
dependence is plotted below in Figure 4. In fact, the τs values are very similar to the
segmental relaxation times taken from time of flight (ToF) experiment, a neutron scattering
technique for a PEG of similar molar mass [69].

Additional information on the segmental mobility can be obtained by DSC mea-
surements. Figure 1 displays the calorimetric curves for our PEG polymer block. The
thermogram shows two transitions: the glass transition (Tg) and melting temperatures
(Tm), with increasing temperature, respectively, though the location of Tg is not clear. The
value of Tg in the thermogram is affected by the degree of crystallinity of the PEG polymer,
and according to the literature, Tg for PEG polymer ranges from 207 K to 245 K, depending
on the degree of crystallinity [70]. Therefore, an estimation is done using the known empir-
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ical relationship Tm = 1.55 Tg [71]. The analysis reveals Tm = 332.2 K, which is within the
values presented in literature [71] and the estimated glass transition, based on the melting
temperature value taken from the analysis to Figure 1 is Tg = 214.3 K.

Table 2. Zero-shear viscosity η0 (averaged over different shear rates in the Newtonian region),
segmental relaxation time τs and Rouse time τR, at different temperatures for our PEG polymer block.

T (K) η0 [Pa·s] τs [ns] τR [ns]

333 0.151 ± 0.002 0.063 107
343 0.113 ± 0.002 0.046 78
353 0.080 ± 0.003 0.031 54
363 0.063 ± 0.004 0.024 41
373 0.046 ± 0.003 0.017 29
383 0.027 ± 0.005 0.010 17
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3.2. Heterocomplementary Association

For understanding the influence of the different association type on the structure and
dynamics of bifunctional PEG polymer, the study of bifunctional PEG modified at the ends
by functionalization with H-bonding thy/dat groups is essential. In this section, both the
morphology and mobility of supramolecular PEG-thy/dat in the melt is discussed and
revised in terms of the literature.

3.2.1. Structure

The morphology of the equimolar (50:50) mixture of bifunctional PEG-thy/dat is
investigated in the melt by SAXS. Figure 2 shows the SAXS results at T = 333 K and
T = 353 K for fully hydrogenated PEG-thy/dat, i.e., intensity I(Q) in absolute units (cm−1),
versus scattering vector Q. The contrast is given by the electron density difference of the
PEG polymer block vs. the H-bonding end groups. The PEG-thy/dat SAXS data are
corrected for background scattering by subtraction of the contribution of the PEG polymer
SAXS data. The as such corrected intensities indicate a clear correlation hole peak typical
for a block copolymer that is observed at intermediate Q at Q* roughly ~0.16 Å−1 [72]. This
corresponds approximately to a distance of 39 Å, which is approximately the end-to-end
distance Re of a Gaussian chain of our PEG polymer block (see above). The height of the
correlation peak is given by the number of correlated blocks, the scattering length densities,
and the Flory–Huggins parameters [64,73]. At high Q, the curve shows the same typical
Q−2 behavior of random walk chain statistics where the identity of the polymer block
structure is lost. The Q−2 behavior characterizes the polymer chain structure in a melt
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and therefore rules out any more compact or segregated morphologies. At the lowest Q,
a parasitic scattering contribution following a Q−4 power law is observed, but since no
information can be obtained regarding the morphology, it is not taken into account and it
is assigned to electron deficient voids or dust in the glass-sealed capillaries [74].
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The observation of a block copolymer-like scattering signal on supramolecular poly-
mers requires the use of random phase approximation (RPA) formalism for multicompo-
nent systems as has already been shown in literature [13,23]. In this work we consider
the binary system of a multiblock copolymer, as A block being the PEG polymer and B
block representing both associating end-groups into a single effective block, basing on
the identical solubility parameters. Thereby the system can be modelled as the general
multiblock copolymer as (AB)X copolymer with association degree X of diblock units,
representing the number of aggregated building blocks Nagg. This can be compared to the
weight-averaged polymerization degree 〈Nagg〉w in polycondensation theory [13]. We have
thus applied a full two-component RPA including all interactions χij with i, j = A, B. With
the number of monomers denoted as NA and NB (polymer and compound end-groups,
respectively), the volume fractions φA, and φB, specific monomeric volumes vA, and vB,
form factors PAA(Q), PBB(Q) and PAB(Q) and the interaction parameters χAB polymer−end
groups, the structure factor is now given as:

SRPA =
S0

AAS0
BB − S02

AB(
S0

AA + S0
BB + 2S0

AB
)
− 2 χAB√

νAνB

(
S0

AAS0
BB + S02

AB

) (5)

The dimensionless parameter a =
(
Q2l2

st
)
/6 such that R2

g = aN, where N is the
specified “block length” (equivalent to the number of repeating monomer units of the
polymer, in the case of PEG or NA and to five repeating PEG monomer units in the case of
NB) and reflecting the random-walk statistics of the building blocks, with lst the effective
statistical segment length of the Gaussian subchains resulting from the approximation of
including the end groups into the more flexible building blocks, is used to calculate the
form factors mentioned above. The individual blocks are taken as monodisperse. More
details on the RPA model can be found in the Supporting Information and in [13,23].

As can be seen from Figure 2 the scattering curves for both temperatures are very close
to each other and the correlation hole peak is slightly higher for T = 353 K in comparison
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with T = 333 K. In fact, this is not surprising as the peak depends not only on the Nagg but
also on the χ-parameter. The black lines in Figure 2 displays the resulting fit to the SAXS
data using the modified RPA model and the results are summarized in Table 3. Since the
data are in absolute units (cm−1) the theoretically computed scattering length densities
were fixed. In addition, the number of repeating monomer units of the polymer block as
well as for the compound end-groups was kept constant. This leaves only the Nagg, the
Flory−Huggins interaction parameters χAB and the effective statistical segment length
lst as refining parameters. The statistical segment length for PEG-thy/dat, lst = 7.0 Å,
is determined for both temperatures, being in fair agreement with what was previously
reported for similar systems using SANS [60,62]. The fit also yields a number of aggregates
Nagg ≈ 19 for T = 333 K and Nagg ≈ 16 for T = 353 K, either via thy/dat, thy/thy and/or
dat/dat. Again, as the PEG-thy/dat here analyzed is a fully hydrogenated sample, the
typical correlation peak of a block copolymer structure can only arise from the correlation
between the end-groups and the PEG polymer in consequence of the Flory−Huggins inter-
action parameters χAB, as written above. In fact, contrary to a preceding work on a similar
supramolecular polymer [13], here the interactions between the components are taken
into account and are judged on the basis of the estimations for the solubility parameters.
The interaction parameter between both blocks (H-bonding end-groups and PEG polymer
block) is about 1.49 and 1.57 for T = 333 K and T = 353 K, respectively, showing a small
temperature dependence, as expected. One has to bear in mind that the obtained values
incorporate the small difference of densities and contrasts due to the temperature increase,
which are held constant during the fit procedure to the data. Nevertheless, these values are
close enough within the error bars to be considered almost indistinguishable. Indeed, the
value of χAB at T = 333 K is very comparable with the estimated ones from the mean-field-
like solubility parameter approach above. Nonetheless, this value is considerably lower
compared to the one found for an analogue Poly(propylene oxide) system, which has a
less polar chain and thus less compatibility to the hydrogen-bonding groups [23]. In this
respect, the derived interactions, quantified by the Flory−Huggins parameters, χ, between
PEG and thy and dat, can be approximated in good accuracy to be irrelevant, as reported
in a previous investigation [13].

Table 3. Fit Parameters obtained using the generalized RPA model at T = 333 K to PEG-thy/dat
SAXS data [13].

T [K] Nagg lst [Å] χAB

333 ~19 7.03 ± 0.55 1.49 ± 0.10

353 ~16 7.00 ± 0.50 1.57 ± 0.32

As a first conclusion, the existence of heterocomplementary associated end groups
with low Flory−Huggins parameters results in polymer chain-like aggregates, which be-
have Gaussian-like and show random-walk behavior in agreement with former neutron
scattering experiments to a similar system [13,23]. Accordingly, the value of the num-
ber of aggregates for both T = 333 K and T = 353 K, shows a decrease with increasing
temperature as expected for H-bonding association weakening, and corresponds to an
associated chain with a molar mass well above the entanglement molar mass of PEG
(Me,PEG ≈ 2000 g·mol−1). However, it must be pointed out that the sensitivity of the peak
intensity to the degree of aggregation is limited and it becomes virtually insignificant for a
weight-averaged number of aggregates 〈Nagg〉w > 13–15 [13].

3.2.2. Dynamics

The knowledge of the impact of the structure on the dynamics of PEG-thy/dat is
necessary to understand the role of the H-bonding groups association on bifunctional PEG
polymer. As the dynamics of heterocomplementary thy/dat association type is amply
developed for PEG polymer [13,18], here we simply summarize the dynamic phenomena
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of PEG-thy/dat relevant for the understanding of the key differences between the two
different association types on the PEG dynamics.

The dynamics of PEG-thy/dat are studied by rheology, in particular, strain sweep
experiments and frequency sweep experiments in the temperature range between 333 K
and 393 K with an interval of 20 K. Figure 3a,b show representative results for PEG-
thy/dat for the shear viscosity at different shear rates and the complex shear modulus,
i.e., the storage (G′) and loss (G′′) moduli at different angular frequencies, respectively.
The measured viscosity is independent on the shear rate for all temperatures as shown
in Figure 3a. This is to be expected in the Newtonian regime [13,67,75]. Moreover, taking
into account the oscillatory shear measurements in Figure 3b, no crossover is visible, it is
evident that the slope of G” is around 1, and the viscous behavior dominates. Again, the
typical behavior of a Newtonian fluid is observed.
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Table 4 lists the measured zero-shear viscosity η0 averaged over different shear rates
obtained at the different studied temperatures. It is observed that the viscosity decreases
with increasing temperature. Moreover, the viscosity of PEG-thy/dat is always higher than
the viscosity of unfunctionalized PEG polymer (see Table 2). Table 4 also displays the ratio
between PEG-thy/dat and PEG polymer zero-shear viscosity, which is larger for lower
temperature indicating a systematic de-association with increasing temperature, because
otherwise these values would be constant. In this context, as the associated chains can be
also described by the Rouse theory, as previously demonstrated in [13] and [18], the ratio
between the viscosity values yield the weight-averaged number of aggregated building
blocks Naggw [13].

Table 4. Zero-shear viscosity η0, segmental relaxation time τS,td and Rouse time τR,td respectively
for PEG-thy/dat at different temperatures. The ratio between the PEG-thy/dat viscosity, η0 and
PEG polymer viscosity, η0, PEG values (presented in Table 2) yield the weight averaged number of
aggregated building blocks Naggw.

T [K] η0 [Pa·s] Naggw ≈ η0/η0,PEG
(Table 2)

τs,td [ns]

333 3.02 20.0 0.063
353 1.22 15.3 0.031
373 0.58 12.6 0.21
393 0.31 8.6 0.11
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As a consequence of the hydrogen bond interactions weakening, Nagg decreases
with temperature. The obtained weight-averaged number of aggregated building blocks
Naggw (~20 at T = 333 K and ~15 at T = 353 K) are in the agreement with previously
results for a similar system and with the SAXS results above [13]. According to the
Rouse model, the segmental relaxation time τs,td for PEG-thy/dat are determined using
also the measured zero-shear viscosities η0 in Table 4 with Equations (3) and (4) too.
However, in this case, due to the association between the PEG-thy/dat chains, one has
to consider that the number of repeating monomer units N of the PEG polymer building
block (see Table 1) has to be multiplied by the weight-averaged number of aggregated
building blocks Naggw to obtain the total number of monomers Ntd for the associated chain,
Ntd = N × Naggw. The same happens to obtain the associated polymer number average
molar mass Mn,td = Mn × Naggw, where the PEG number average molar mass Mn has to
be also multiplied by Naggw.

The results for τs,td are also displayed in Figure 4. It is clear that the segmental
relaxation time τs,td of the supramolecular associated system is the same as of the PEG
polymer block. This relaxation time is usually ascribed to Brownian motion of chain
segments, and since the supramolecular associated PEG is based on the PEG polymer block,
the similarity of these relaxation times is not surprising. In fact, this is also in agreement
to previously pulsed field gradient diffusion measurements [13] where it is shown that
indeed telechelic end-groups do not significantly affect the monomeric friction coefficient.
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obtained using the VFTH fit to the rheological segmental relaxation time data.

Figure 4a presents the temperature dependence of the segmental relaxation time for
both PEG polymer and PEG-thy/dat and the Rouse time for PEG polymer. Also in Figure 4,
the literature values [69] for the segmental relaxation time, for a PEG polymer with similar
molar mass as the one used in this work as well as the literature values for the bond breaking
times τb [18], of a similar PEG-thy/dat obtained by neutron spin-echo spectroscopy (NSE)
are represented for comparison purposes. The values of τb,NSE represent the characteristic
time scale of H-bond breaking in the PEG supramolecular compounds and interestingly
show retardation due to loss of internal chain stresses upon breaking. As can be observed
the experimental values for τs are in very good agreement with the respective literature
values [18,69].
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The data for the Rouse time τR for PEG is approximated to the Arrhenius law by
the equation [76]:

τ = τ0eEa/RT (6)

where τ0 is the relaxation time at infinite temperature that for the case of a molecule is
related to the time needed to move into some free space [77], R is the ideal gas constant
and Ea is the activation energy. According to the fit to the Rouse times for PEG polymer
data using Equation (6), Ea = 30.6 kJ·mol−1. By comparing the latter with previous results
for a similar number averaged molar mass PEG (Ea = 27.4 kJ·mol−1) [67], the values are
indeed close. The activation energy that is reported in literature [18] for the bond breaking
τb is Ea = 45 kJ·mol−1 for a PEG-thy/dat similar system. Seemingly a small activation is
necessary to break the bond [18].

Additional information on the segmental dynamics can be obtained by DSC mea-
surements. Figure 5 displays the calorimetric curve for PEG-thy/dat, where two phase
transitions are observed very similar to what is observed for PEG polymer in Figure 1, i.e.,
the glass transition Tg, and melting temperature Tm, with increasing temperature, though
again the position of Tg is not clear. The accuracy of the Tg value is relatively low, since the
glass transition region is very difficult to detect as a consequence of the high crystallinity
of the PEG-thy/dat. Therefore, an estimation is done as for unfunctionalized PEG polymer
block above using the known empirical relationship Tm = 1.55 Tg [71]. The analysis of the
thermogram reveal a Tm = 314.2 K. The estimated glass transition, based on the melting
temperature value taken from the analysis to Figure 5 is Tg = 202.7 K.
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Figure 5. DSC thermogram for PEG-thy/dat obtained at a heating rate of 10 K·min−1, showing
the glass transition (Tg) temperature interval and the melting temperatures (Tm) with increasing
temperature, respectively as indicated by the dashed lines.

It is well accepted that segmental dynamics is cooperative in nature. Normally the
temperature dependence of the relaxation time of the segmental relaxation in a logarithmic
plot of the relaxation time as a function of the reciprocal of temperature shows a departure
from linearity, i.e., it does not show a linear dependence and it is therefore approximated
by the Vogel-Fulcher-Tammann-Hess (VFTH) law [76]:

τ = τ0exp[B/(T − T0)], T0 < Tg (7)

where τ0 is seen as a microscopic quantity related to the time a molecule needs to move
into some free space [76], B is a constant and T0 is a temperature that usually is between
30 K and 70 K below Tg. In this context, the temperature dependence of the segmental
relaxation time for both PEG polymer and PEG-thy/dat is described using the VFTH
equation. The glass transition temperature Tg, for both PEG polymer and PEG-thy/dat
is obtained by doing an extrapolation to τ = 100 s with the parameters obtained from
the fit to the data of τs using Equation (3). The rheological Tg is then compared with
the calorimetric Tg in Figure 4b, for PEG polymer and PEG-thy/dat, respectively. The
glass transition values obtained are Tg = 206.6 K in comparison with 214.3 K and 202.7 K,
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respectively. The values are very close and in fair agreement with each other and with
the values of the Tg of PEG polymer in literature [70,71]. One has to bear in mind though
that the viscoelastic measurements are performed well above the glass region and that
PEG polymer and PEG-thy/dat are in semi-crystalline state below the melting temperature
Tm. This turns the observation of a glass transition signal on the thermogram rather
difficult. Indeed, both PEG polymer and PEG-thy/dat have crystallization degrees ≥40%
(see further Table 9). Under these circumstances, the difference found between the values
of the different techniques is still acceptable.

3.3. Homocomplementary Association

Besides the structure and dynamics of the heterocomplementary supramolecular
PEG-thy/dat polymer, the homocomplementary supramolecular PEG-upy in the bulk is
here in detail studied. As such the influence of different associative H-bonding functional
end-groups on bifunctional PEG polymer properties can be identified. In the following the
structure and dynamics of PEG-upy in the bulk is presented.

3.3.1. Structure

The structure of PEG-upy is studied in the melt by both SAXS and SANS. Figure 6
shows the obtained data for fully hydrogenated PEG-upy at T = 333 K and T = 348 K.
The contrast is given by the electron density difference or by the scattering length density
difference between the associate upy end groups and the hydrogenous PEG polymer
component, depending on the experiment source, either X-rays or neutrons, respectively.
The PEG-upy scattering data is corrected for background scattering by subtraction of the
contribution of the PEG polymer data at the same temperature. Qualitative observations
from the as such corrected small angle scattering pattern show that on one hand the
intermediate Q-range follows a power law, I(Q)∝ Q−P, with P ∼ 4 and on the other
hand an interaction peak can be spotted eventhough toward lower Q values the scattering
pattern is filled with high intensity. Both observations suggest that the morphology of
this system consists of interacting compact structures due to phase segregation. Indeed
the strong association between upy end-groups is largely favored as the rather high value
of χPEG/upy points out [20,78]. Therefore, these compact structures are composed by the
upy end-groups segregated in clusters separated by the PEG polymer chains, similarly
to what is observed in colloidal and micellar systems [27,79]. Normally these cluster-like
structures are approximated to hard spherical aggregates and are thus treated with the
Percus–Yevick model [64,80–82]. The model assumes a suspension of hard spheres with
repulsive interaction. The potential is infinite when two spheres touch each other. In the
lowest Q-range a strong decay of the intensity following approximately a Q−3 power law
is also evident; however, no relevant information can be obtained at this Q-range regarding
the morphology.

The scattering intensity per unit of volume of a spherically symmetric particles as in
the Percus–Yevick hard sphere model is well known and generally is written as [65,83]:

I(Q) = φ∆ρ2VF(Q, Rc)
2S(Q, Rd) (8)

where φ is the volume fraction of particles, ∆ρ2 the contrast factor between polymer and
upy groups forming the spherical particles and V the volume. P(Q, Rc) = F(Q, Rc)

2 is the
form factor and S(Q, Rd) the structure factor due to the contribution of the interactions
between particles. Basically, the scattering intensity of the disordered particles can be
attributed to the form factor of spheres with radius Rc (the spherical clusters) and the
structure factor of hard spheres (the Percus–Yevick correlation radius due to the interactions
between spherical clusters) with a radius of Rc. We assume that the spherical particles
are polydisperse. The detailed description of this model can be found in the Supporting
Information and also in [64,80,83].
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The black lines in Figure 6 correspond to the fit to the data using the Percus–Yevick
model. The fit parameters, including the volume fraction of spherical clusters (φ), the mean
sphere cluster radius (Rc) and the Percus–Yevick correlation radius of clusters, (Rd) are
summarized in Table 5. As displayed in Figure 6, a reasonable adjustment is obtained and,
besides a slight difference at low Q values, both SAXS and SANS data are very similar
for both measured temperatures. In fact, the values from Rd and Rc as 2Rd − 2Rc = 42

.
A

and 40
.
A for both SAXS and SANS data, respectively at T = 333 K and 40

.
A for both SAXS

and SAXS at T = 348 K correspond approximately to the end-to-end distance of the PEG
polymer (Re = 37.4 Å). Moreover, the volume fractions in PEG-upy are relatively low
and roughly agree with the molar fraction of upy groups in the supramolecular polymer
(Mn,upy/Mn,PEG−upy =0.066). This is in accordance with the fact that highly attractive
interactions decrease the critical volume concentration that depends sensitively on changes
in the interaction between the aggregates or polydispersity, which here is relatively low,
ranging from ~11% to ~30%. Actually, this parameter is difficult to characterize as depends
greatly on the high Q scattering, whose range is relatively limited, especially for the SAXS
data [84]. Added to this, the aggregation number, Nupy, defined as the number of end
groups per spherical cluster, is an important parameter to characterize the aggregates. From

the fit parameter Rc, Nupy can be calculated as Nupy = 4πR3
c ρNA

3Mn, PEG−upy
. Taking the density

of the supramolecular polymer melt ρPEG−upy = 1.2 g·cm−3 then Nupy is calculated to be
between 25 (SAXS) to 35 (SANS) at T = 333 K and 31 (SAXS) to 35 (SANS) at T = 348 K.
These results are reasonable, taking into account the high interaction parameter between
upy groups and PEG in accordance with literature [46]. Also concerning the temperature
dependence, it is only observed on the SAXS data and therefore the SANS data at T = 348 K
is not shown. Actually, the influence of temperature seems to be mostly seen by an increase
of the hard-sphere cluster volume fraction (Table 5). However, taking into account the
error bars of the parameters, this difference cannot be considered, in agreement to what is
obtained by SANS. In this context, an increase of temperature from T = 333 K to T = 348 K
has a very little effect on the PEG-upy structure.

It is demonstrated that PEG-upy forms disordered spherical cluster aggregates as
shown by the good agreement of the Percus–Yevick model to the data analysis.
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Table 5. The mean sphere cluster radius Rc, the Percus–Yevick correlation radius of clusters Rd

and the volume fraction of spherical clusters (φ), fit parameters obtained using the Percus–Yevick
approximation to the PEG-upy small angle scattering data at T = 333 K and T = 348 K.

T [K] Rc[Å] Rd [Å] φ

333
SAXS 26.7 ± 7.3 47.7 ± 20.8 0.025 ± 0.005

SANS 30.1 ± 5.1 50.1 ± 28.0 0.018 ± 0.001

348 SAXS 28.9 ± 13.3 49.0 ± 18.8 0.040 ± 0.01

3.3.2. Dynamics

The macroscopic dynamics of PEG-upy is studied by the characterization of the
viscoelastic properties measured by rheology in the temperature range from 333 K to
393 K with interval of 10 K. Figure 7a,b present the viscosity measurements and the
complex shear modulus, i.e., the storage (G′) and loss (G′′) moduli at different angular
frequencies, respectively.
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Under steady shear, PEG-upy exhibits a shear thickening behavior characterized by
an increase in effective viscosity when the shear rate increases past a certain critical value
as seen in Figure 7a. Although rarely observed in common polymer melts or solutions,
shear thickening effects have been observed in complex fluids including dense suspensions,
wormlike micelles, and associating polymer solutions [85–87]. The shear thickening seems
to be caused by shear-induced structural changes in all of these systems. Several theoret-
ical models have been proposed to describe the shear thickening behavior, especially in
associating polymer solutions [87]. Marrucci et al. [88] explored the possibility of shear
thickening as arising due to a non-Gaussian chain stretching effect. On the basis of the
Tanaka and Edward transient network model, they argued that under flow conditions
polymer chains may elongate considerably, well into the non-Gaussian regime, as a result
of chain stretching. In an extension, the free path model by Marrucci et al. further assumed
that when the chain end dissociates from a network junction, it can only partially relax its
extended conformation since it is soon recaptured by the network again. As a consequence,
the maximum in the viscosity occurs at a critical shear rate when the ratio of the detachment
frequency to the shear rate (which decreases monotonically with increasing shear rate)
has not dropped to its asymptotic lower bound, and yet the polymer chains are already
stretched close to their maximum extension. In the free path model, the critical shear rate
(shear rate at the maximum viscosity)

.
γmax is then estimated assuming that the elastically
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active chains reach full extension at the onset of shear thickening. The mean-square dis-
tance of the polymer chain is then proportional to the number of Kuhn segments, NK and
the critical shear rate is approximately:( .

γmax ) ≈ N1/2
K /τd (9)

where τd is the network relaxation time. The upy groups that aggregate as spherical
clusters are the chain junctions and act as the network crosslinks, eventually forcing the
chain extension in case of detachment. The relaxation time of the PEG-upy network τd is
determined using

.
γmax taken from Figure 7a. According to this picture, τd is correlated

with the detachment relaxation time of the PEG chains from the network junctions, i.e.,
from the upy clusters.

Moreover, from the oscillatory shear measurements in Figure 7b it is shown that
the storage modulus G′ dominates over the loss modulus G′′ almost over all the studied
frequency range. The slope of around 0.6 (G′′ ≈ ω0.6), is lower than 1 (G′′ ≈ ω), found
for Newtonian systems or polymer melts at flow and typical of network-like systems.
The elastic behavior dominates as G′ is relatively constant pointing up to a constant
plateau at around 104 Pa lower than the plateau module G0

N ∼ 1.45× 106 Pa for PEG
polymer [60]. According to simple rubber elasticity theory, the plateau modulus (G0

N) for a
supramolecular network is given by [89]:

G0
N = νe,REkBT =

fe NAkBT ρ

Mn,PEG−upy
(10)

where νe,RE is the number density of elastically active strands, kB is the Boltzmann con-
stant, T is the absolute temperature, ρ is the density of the supramolecular polymer melt
(1.2 g·cm−3), NA is Avogadro constant, Mn,PEG−upy is the polymer molar mass and fe is
the fraction of bridging or elastically effective molecules. Considering a perfect network
where all PEG polymer chains would adopt a bridging conformation between the upy
clusters and thus all would be elastically effective, fe = 1 and νe,RE ≈ 512 mol·m−3. In this
case, the estimated plateau module G0

N ∼ 1.45× 106 Pa for PEG polymer is retrieved [60].
While simple rubber elasticity theory overestimates G0

N of supramolecular PEG-upy, the
overestimation is not surprising. In fact, a lower value and an overestimation of the plateau
modulus is found in literature [89,90], for systems that also form cluster-like structures due
to H-bonding interactions [90]. Even though H-bonding can create crosslinks that built the
network it also introduces defects on the polymeric strands that is formed too due to loops
existence, lowering G0

N . Indeed, the possibility of PEG chains to form loops within the
same cluster instead of bridges to different clusters has to be considered and can explain
the lower fe (see further in the text). Besides that, probable contributions from PEG-upy
functionalized at only one chain end, which stem from incomplete reaction steps during
the functionalization of the polymeric product with subsequent different propensities,
inevitably contribute to a lower fraction of effective elastically molecules between the upy
crosslinks. In this context, the lower value of G0

N found for PEG-upy can be rationalized to
a bridging fraction fe close to 1%. Definitely the observation of a plateau modulus clearly
shows that the liquid-like viscoelastic properties of PEG at the studied molar mass have
changed into a network-like due to the presence of the upy groups, in accordance with
what is observed previously by small angle scattering.

Additionally, a crossover (G′′ = G′) between G′ and G” is visible at higher frequencies,
corresponding to the relaxation time (τc = 1

ωc
) related to the segmental friction of the

polymeric network strands, τc. It can be defined as the equilibration time or the longest
relaxation time of the chains trapped in the network due to the clusters that act as crosslinks.

Figure 8a plots the corresponding temperature dependence of both the network
detachment relaxation time τd as taken from the viscosity measurements analysis, and
the network longest relaxation time τc, as obtained from the crossover between storage
modulus G′ and loss modulus G′′.
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The data for the network relaxation time τd is described using the Arrhenius law [77].
According to the fit, Ea, τd = 43.3 kJ/mol and the prefactor for the chain breaking time
is 21 µs, which is well in the order of what would be expected for an attempt angular
frequency (2× 10−5 rad·s−1). The value of Ea, τd is also as expected within the typical bond
energies for H-bonding (10–65 kJ·mol−1) [30,38] known in literature. According to the free
path model, the activation energy of the association is related to the viscosity maximum
by ηmax ≈ νe,FPEaτd = (Ea/kBT)η0, where ηmax is the viscosity at

.
γmax, νe,FP is the molar

density of elastically active strands as defined in Equation (10) and η0 is the zero-shear
viscosity. According to the free path model assumptions, the zero-shear viscosity, η0 can be
calculated, as well as the molar density of elastically active strands νe, FP, since from the
analysis above, τd, Ea, τd are known and ηmax can be directly extracted from Figure 7a.

Table 6 summarizes the viscosity maximum ηmax, the plateau modulus G0
N , the molar

density of elastically active chains νe from both theories and the zero-shear viscosity η0
at the measured temperatures. The obtained zero-shear viscosity η0 values seem to agree
to the experimental data values at very low shear rates

.
γ (Figure 7a). The molar density

of elastically active strands νe,FP, is compared to νe,RE calculated using Equation (10), and
the values are quite compatible. The molar density of elastically active strands νe can
also be obtained by small angle scattering. According to the structural picture it can be
assumed that the molar density related to the Percus–Yevick correlation radius Rd, between
clusters is given by νe = 3(1−φ)

4πR3
dNA

, and the molar density of elastically active PEG strands

correspond to a value between 3.1 mol·m−3 (SANS) and 3.6 mol·m−3 (SAXS) at T = 333 K
and 3.1 mol·m−3 (SANS) and 3.2 mol·m−3 (SAXS) at T = 348 K. Undeniably, these values
are in very good agreement to the values calculated using the free path model assumptions
on the rheology data. Moreover, from Table 6 we can also get the Weissenberg number
Wi (shear rate multiplied with the relaxation time), at the shear rate at which the viscosity
reaches its maximum point (Wi =

.
γmaxτd). The Weissenberg number indicates the degree

of orientation generated by the deformation. The Weissenberg number for our system
is ≈ 5, corresponding to a very high orientation of the polymer chains, which is also in
conformity with the free path model.
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Table 6. Zero-shear viscosity, η0 the molar density of elastically active strands, νe,FP and υe,RE calculated using the
free path model and rubber elasticity assumptions respectively and the maximum viscosity at

.
γmax for PEG-upy at the

studied temperatures.

T [K] G0
N [Pa] ηmax [Pa·s] η0 [Pa·s] υe, RE [mol·m−3] υe, FP [mol·m−3]

333 9000 11310 723 ± 93 3.2 ± 0.4 2.9 ± 0.9
343 9570 5736 378 ± 130 3.3 ± 1. 6 1.5 ± 1. 6
353 8450 4525 307 ± 84 2.9 ± 1.3 1.6 ± 0. 6
363 7085 1973 138 ± 99 2.3 ± 0.9 1.4 ± 0.5
373 5693 809 58 ± 17 1.8 ± 1.0 0.8 ± 0.5
383 3508 668 49 ± 1 1.1 ± 0.3 1.1± 0. 6
393 1639 403 30 ± 10 0.5 ± 0.4 0.9 ± 0.4

All the above-mentioned arguments show the applicability of the free path model to
understand the dynamics of PEG-upy and the good compatibility to the structural analysis.

Finally, information on the segmental dynamics of the network strands is being dis-
cussed. The temperature dependence of the longest relaxation time τc, related to the
segmental friction of the polymeric network strands for PEG-upy as known by polymer
theory [91] is described using the VFTH equation as displayed in Figure 8b. The glass
transition temperature Tg, for PEG-upy is obtained by doing an extrapolation to τ = 100 s
with the parameters obtained from the fit to the data of τc using Equation (7). The glass
transition temperature Tg, of PEG-upy polymeric network strands can be also obtained by
DSC measurements. Figure 9 displays the calorimetric curve obtained for PEG-upy. As
observed before for PEG polymer and for PEG-thy/dat, here also two-phase transitions
are observed, i.e., the glass transition Tg, and melting temperature Tm, with increasing
temperatures, respectively. Though the value of the glass transition temperature here is
also influenced by the crystallinity degree, it gives a clear signal as depicted in Figure 9.
Indeed, the crystallization degree is lowest of all the three studied polymers of around 30%.
The analysis of the thermogram thus revealed Tg ≈ 234.2 K and Tm = 306.5 K and it is sum-
marized further in Table 9. The extrapolation of the temperature dependence of network
longest relaxation time τc for the low temperature dynamic regime gives a rheological
value of Tg = 245.6 K, which as expected, is closer to the results from the DSC (Tg ≈ 234.2 K)
than from the estimation, even though the Tg from viscoelastic measurements is well above
the glass region. Interestingly, an estimation done using the known empirical relationship
Tm = 1.55 Tg, correspond to Tg ≈ 197.7 K of the equivalent linear polymer [71]. This fact
seems to point that the network-like structure and the phase segregation interfere with
what is theoretically expected for the segmental dynamics of PEG-upy chains, taking only
the Tm and the lower crystallinity degree into account.
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3.4. Comparison

The understanding of the role of the different H-bonding association types on the
structure and dynamics of PEG polymer is essential for a fundamental view on the un-
derlying mechanisms triggering the different properties of supramolecular polymers, in
particular PEG based polymers. Therefore, a discussion of the key differences between
the heterocomplementary and homocomplementary associative type on PEG polymer
properties is essential.

3.4.1. Structure

SAS results have shown that PEG-thy/dat associates into linear structures, proofed
qualitatively by the Q−2 dependence at high Q and by the accurate description of the data
by the RPA model, while PEG-upy presents a more compact phase segregated structure,
consisting of a suspension of hard spheres with repulsive interaction, visible by the Q−4

dependence at intermediate Q-range and quantitatively by the good fit with Percus- Yevick
model to the SAS data. Scheme 2 summarizes the molecular picture obtained by small
angle scattering on both PEG-thy/dat (heterocomplementary association) and PEG-upy
(homocomplementary association) reported in the previous Sections 3.2 and 3.3.
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Scheme 2. Representative pictures of (a) PEG-thy/dat (the green and orange objects represent thy and dat, respectively)
and (b) the PEG-upy systems structure based on the small angle scattering results (the red objects are the spherical clusters
formed by the upy H- bonding end groups and the blue objects represent the stretched PEG polymer chains that give the
distance between the disordered upy spheres).

It is shown that while thy/dat end groups bind only to one another creating an
associating linear chain, upy H- bonding end groups are segregated in spherical clusters
containing several of these groups. Surrounding these groups, many PEG chains as loops
are observed but only one or two PEG chains are in fact, stretched to the end-to-end distance
to another spherical cluster defining the distance between the disordered upy spheres.
This picture is based on the parameters from the Percus–Yevick approximation fit to the
small scattering data for PEG-upy that match very well to the structural characteristics of
PEG polymer.

In this context, the obtained results can be interpreted in terms of the Flory–Huggins
parameter, and seemingly, the higher the Flory–Huggins parameter interaction, the higher
is the probability for phase segregation or compact structures, as well as the probability
to associate.

It is demonstrated that bifunctional PEG polymer end-functionalized with different
H-bonding association type groups have therefore different morphologies, quantified by
the different range of interaction parameters values.

3.4.2. Dynamics

Table 7 presents the parameters obtained using the VFTH equation (Equation (7)) fit to
the segmental relaxation time τs data for PEG and PEG-thy/dat, as well as the parameters
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obtained using the VFTH equation fit to the network longest relaxation time τc for PEG-upy.
Table 8 displays the parameters obtained using the Arrhenius equation (Equation (6)) fit to
Rouse time τR data for PEG as well as the Arrhenius equation (Equation (6)) fit parameters
to the network detachment relaxation time τd for PEG-upy. Table 8 also shows the fit
parameters to τb for supramolecular PEG-thy/dat taken from [18] using the same equation
(Equation (6)). Both Tables 7 and 8 summarize the results obtained by rheology as reported
individually in the previous Sections 3.2 and 3.3 above.

Table 7. Fitting parameters of the temperature dependence of the segmental relaxation time, τs for
PEG polymer and PEG-thy/dat and the longest relaxation time τc for PEG-upy using Equation (7).

τ0 [ns] B [K] T0 [K]

τs
PEG

1.63 × 10−4 882 180.7
PEG-thy/dat

τc PEG-upy 3.61 × 102 2415 121.3

Table 8. Fitting parameters of the temperature dependence of the Rouse time, τR for PEG and the
network detachment relaxation time, τd for PEG-upy using Equation (6). The fitting parameters for
τb,NSE for PEG-thy/dat taken from [18] is also shown.

Ea [kJ·mol−1] τ0 [ns]

τR PEG 30.2 1.92 × 10−3

τb,NSE PEG-thy/dat 45.0 2.41 × 10−4

τd PEG-upy 43.3 2.10 × 104

The relaxation time at infinite temperature, τ0 for the relaxation times for PEG-thy/dat
is relatively comparable to PEG polymer relaxation times at infinite temperature, ranging
from 10−4 to 10−3 ns. The same happens for the dissociation time, τb,NSE. This means that
at infinite temperature the relaxation time tend to be similar to the unfunctionalized PEG
polymer, which is the reference for this study. This is not the case for PEG-upy. Both the
network longest relaxation time, τc and the network dissociation relaxation time τd have
higher values for the fit parameter τ0 as compared to PEG polymer. These observations
can be understood in view of the strongly phase separated cluster network-like structure
of PEG-upy in comparison to long associated linear chain of PEG-thy/dat and linear
unfunctionalized PEG. Not only the characteristic time scale for the dissociation of a PEG-
upy chain from the clusters in these supramolecular compounds but also the dynamics in
general of PEG-upy is slower due to the network formation and phase segregation.

Another important point to discuss is the activation energy relative to the chain
dynamics, i.e., the Rouse time of PEG ( Ea = ∼ 30 kJ·mol−1) in comparison to τb,NSE for a

similar PEG-thy/dat supramolecular system
(

Ea = ∼ 45 kJ·mol−1
)

[18] and the network

detachment relaxation time, τc ( Ea = ∼ 43 kJ·mol−1) for PEG-upy. Here, we discuss the
activation energy of a virtual dissociation time energy for PEG-thy/dat and PEG-upy.
Interestingly, though an increase from PEG polymer is observed, as expected due to the H-
bonding end groups, the values of the activation energy for both PEG-thy/dat [18] and PEG-
upy are almost the same. Apparently a small activation is necessary to break the H-bond
when end-functionalized to PEG polymer as compared to other H-bonding supramolecular
polymers [27,32,92]. Assuming a good correspondence between the increments in free
energy and activation energy we may infer ∆Ea ' 10–20 kJ·mol−1 per H-bond [93]. This
seems to be in accordance to the typical energy barrier specifically imposed by the H-bonds
(10–65 kJ·mol−1) found in literature [30,38]. This fact suggests the good assignment of the
relaxation times. A higher value of the activation would seem to indicate that both the
H-bonding groups dynamics are involved but also the chain dynamics. Also, it seems
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to be consistent to the relatively small influence of temperature on the structure of both
PEG-thy/dat and PEG-upy.

Finally, the impact of the different H-bonding association type on segmental dynamics
of PEG polymer are compared and discussed. Until now much less is known in both
experiment and theory about changes of segmental dynamics in associating polymers,
except for the recent work in references [32,94,95].

Table 9 displays the values of the rheological glass transition Tg,rheo, the calorimetric
glass transition Tg,DSC, the melting temperature, Tm, the melting enthalpy, ∆Hm and the
crystallinity degree for PEG polymer, PEG-thy/dat and PEG-upy obtained from the previous
analysis in the sections above. The crystallinity degree is defined as the quotient between the
enthalpy at the melting point, ∆Hm, of PEG polymer, PEG-thy/dat and PEG-upy and the
melting enthalpy of PEG polymer with 100% crystallinity, ∆Hm,PEG 100% = 196.8 J·g−1 [96].

Table 9. Rheological glass transition Tg,rheo, calorimetric glass transition Tg,DSC, melting temperature,
Tm, melting enthalpy, ∆Hm and crystallinity degree for PEG polymer, PEG-thy/dat and PEG-upy.

Tm [K] ∆Hm [J·g−1] Cryst. [%] Tg,DSC [K] Tg,rheo [K]

PEG 332.2 113.8 57.8 214.3 206.6
PEG-

Thy/DAT 314.2 81.8 41.5 202.7 206.6

PEG-UPy 306.5 61.5 31.3 234.2 * 245.5
* Value taken directly from the thermogram analysis.

It is observed that the addition of H-bonding groups on bifunctional PEG polymer
decreases Tm but increases Tg for PEG-upy, regarding both Tg and Tm of unfunctionalized
PEG polymer. In fact, especially for the melting temperature and the crystallization degree,
this decrease is concomitant with the change on the supramolecular polymers structure
due to the increase of the Flory–Huggins parameter. Indeed, the phase segregation of the
upy groups into spherical clusters hinders the crystallization of the stretched PEG chains
in larger extent than the chain length increases as in the case of PEG-thy/dat. Essentially
the association observed for PEG-thy/dat is mainly reflected by the slight decrease of
the crystallinity degree and the melting temperature, since the glass transition changes
insignificantly for PEG-thy/dat in comparison for PEG polymer. Indeed, it has been
also found for linear PDMS functionalized with small H-bonding groups no shift of Tg
with increasing number of association [95]. Moreover, values obtained by calorimetry
and rheology are quite compatible given the fact that the fits to the data used to find
the rheological glass transition are done at temperatures much higher than Tg and the
calorimetric Tg is highly influenced by the crystallinity.

4. Conclusions

We studied the impact of different H-bonding association types, PEG-thy/dat het-
erocomplementary association and PEG-upy homocomplementary association, on the
structure and dynamics of PEG polymer with molar mass below the entanglement mass
Me, using small angle scattering, linear rheology and DSC.

The Flory–Huggins interaction parameter is used to quantify the difference between
the two association types. The interaction parameter is almost 3× higher for the PEG-
upy homocomplementary association than for the PEG-thy/dat heterocomplementary
type, so that the interaction parameter for PEG-thy/dat can be considered unimportant in
comparison to the high χ of PEG-upy. In this context, the structure of the PEG-thy/dat and
PEG-upy are different and change from linear to spherical-like phase segregated cluster
association, respectively. In fact, the linear association is confirmed for PEG-thy/dat from
the Q-dependence of a multiblock random phase approximation (RPA) structure factor,
while for PEG-upy, the Percus–Yevick approximation is effectively used to model the
inter-particle structure factor of upy association into spheres.

Consequently, while the viscoelastic properties of PEG-thy/dat are Newtonian-liquid
like, and can be understood using the Rouse model, PEG-UPy viscoelastic properties are
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network-like, and the viscosity shows a shear thickening behavior that is interpreted using
Marrucci’s free path model. According to the free path model, a network detachment
relaxation time, defined as τd, is obtained from the maximum in the viscosity that occurs
at a critical shear rate for PEG-upy due to shear thickening. Moreover, a network longest
relaxation time τc, which is related to segmental friction of the polymeric network strands is
obtained by the inverse of the angular frequency where G′ and G′′ crosses from the network-
like to glass-like transition relaxation time by the complex shear modulus measurements of
PEG-upy. Therefore, the dynamics of PEG-upy is characterized by two different relaxation
times of different origin, one related to the dissociation times of the PEG-upy chains from
the upy-rich clusters or τd and the second to the longest relaxation time linked to the
network-like segmental chain dynamics or τc.

Through the Rouse model and using the zero-shear viscosity η0, the Rouse time τR
for PEG and the segmental relaxation time values for both PEG (τs) and PEG-thy/dat
(τs,td) are obtained. As expected, the segmental times for the unfunctionalized and for the
thy/dat functionalized PEG polymer are almost the same.

The activation energy Ea of both dissociation related relaxation times for PEG-thy/dat
and PEG-upy, τb,NSE or bond breaking time obtained by the analysis to NSE data for a
similar PEG-thy/dat [18] and τd for PEG-upy is very close for both H-bonding association
types. These Ea are in agreement to the known H-bonding energy values, even though the
dynamics of PEG-upy is always slower in comparison to the dynamics of PEG-thy/dat
and PEG polymer, but consistent to the small temperature influence on both PEG-thy/dat
and PEG-upy structure.

Albeit there is a rather limited discussion on the segmental dynamics in associating
polymers, in this study also the relaxation time related to the segmental dynamics of
PEG-thy/dat and PEG-upy is compared. The extrapolation to τ = 100 s of the obtained tem-
perature dependence of, τs,td and τc , for PEG-thy/dat and PEG-upy, respectively, provides
an estimate of the glass transition temperature Tg, which is mostly in good agreement with
Tg analysed from the DSC results, even though the Tg from viscoelastic measurements is
well above the glass region. Mostly the Tg for PEG-upy is higher than for PEG polymer due
to network formation and phase segregation due to the clusterization of upy. Moreover, as
found for other highly hydrophilic polymer functionalized with H-bonding groups too,
the Tg for PEG-Thy/dat is essentially independent of association [32,94], which is only
reflected in the decrease of the crystallinity degree and melting enthalpy in comparison to
unmodified PEG polymer.

Finally, a fundamental study on the influence of different H-bonding types on the
structure and dynamics of supramolecular PEG have shown the good agreement between
the microscopic and macroscopic observation by, small angle scattering, rheology and
calorimetry, respectively. Comparing the Flory–Huggins interaction parameter difference
between the chain and the H-bonding groups eventually allows predictions for the result-
ing microscopic structural and macroscopic viscoelastic properties. In other words, the
associating groups must be selected properly particularly for a specific polymer to ensure
that the desired properties can be achieved accordingly.
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