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ABSTRACT: The maximum overlap method (MOM) has
emerged from molecular quantum chemistry as a convenient
practical procedure for studying excited states. Unlike the Aufbau
principle, during self-consistent field (SCF) iterations, the MOM
forces orbital occupation to be maximally similar to that of a
reference state. Although still within a single-particle framework,
this approach allows for the evaluation of excitation energies (Δ-
SCF) and geometry optimization of electronic configurations other
than the ground state. In this work, we present an extension of the
MOM to periodic crystalline solids, within the framework of an
atom-centered Gaussian basis set. In order to obtain a realistic
concentration of excited electrons, we allow excitation in only
oneor a fewpoints of the Brillouin zone, leading to a fractional occupation of crystalline Kohn−Sham states. Since periodic SCF
solution techniques involve an iteration between direct and reciprocal spaces, only totally symmetric excitations are allowed in our
treatment, in order to preserve the translational symmetry: vertical Γ-point excitations or collective excitations in a sphere around Γ.
Other types of excitations are accessible through folding of the Brillouin zone subsequent to the creation of a supercell. The features
and performance of the method are presented through its application to prototypical solids such as bulk silicon, diamond, and
lithium fluoride and comparing the results with the available experimental data. The demonstrative application to nickel oxide and
solid CuI(piperazine)a luminescent copper halide compoundhighlights the promising potential of the MOM in solid-state
quantum chemistry.

1. INTRODUCTION

Excited states are notoriously much more challenging and
costly to be studied through ab initio methods than ground
states. The most commonly used approaches are many-body
methods such as time-dependent density functional theory,1,2

configuration interaction singles,3,4 and Green’s function of the
Bethe−Salpeter equation,5 even though a variety of other
methods are available.6

Such post-SCF and/or multiconfigurational methods are,
however, generally demanding, both in terms of computational
resources and efforts required for their implementation, and
often do not offer many useful tools such as a geometry
optimizer or vibrational frequency calculations. Thus, the idea
of a simple single-particle approach with the ability to
satisfactorily describe excited states by the same methods
and tools used for the ground state has a great appeal for
routine applications.7

In this view, the maximum overlap method (MOM)8,9 has
seen some success despite its simplicity. Given a reference
state, the MOM carries out a standard iterative self-consistent
procedure, except that instead of setting orbital occupations
according to the lowest energy ranking, it occupies those
orbitals with the largest overlap with respect to a reference

configuration. In this way, the Aufbau principle is overridden,
and the SCF iterations provide the orbitals of the desired
electronic configuration much in the same way as for the
ground state, thus allowing for the use of the many standard
ground-state algorithms such as the gradient calculation for
geometry optimization or vibrational frequency calculations.
The excitation (or de-excitation) energy can be evaluated
simply as the difference between the total energies of the two
configurations (Δ-SCF10−12). The interest toward MOM-
related approachesand beyondappears to be alive if not
increasing in recent years, and many works have been
published on the topic.13−16

In this work, we present an extension of the MOM to the
case of crystalline solids, treated within periodic boundary
conditions (PBCs) using a local atom-centered Gaussian basis
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set. While such extension might seem trivial at first sight, it
poses some conceptual challenges that have to be tackled, due
to the periodic nature of the crystal and the features of
electronic bands. In particular, (i) since the unit cell is
periodically repeated, performing the excitation in direct space
would lead to an unrealistically high density of excitations, thus
requiring costly supercell calculations as in ref 17; (ii) working
in reciprocal space allows for a single electron to be excited
within the PBCs, but how can one tune the concentration of
excitations? and (iii) evaluation of excitation energies and
atomic forces and gradients must properly take into account
such concentrations. Moreover, if the iterative SCF proce-
dureas is the case hereinvolves going back and forth from
reciprocal to direct space through the build of a density matrix,
only totally symmetric excitations are allowed in order to
preserve the translational symmetry.
As we will show, our solution passes through a fractional

occupation of electronic bands (Kohn−Sham states). This is
equivalent to thinking in terms of integer occupations of
extended generalized Kohn−Sham states in a supercellwhat
we called “concentration” above. In this connection, we note
that fractional occupations in DFT can lead to errors that
strongly depend on the amount of delocalization errors of the
underlying functional.18−20

In the following, we present the simple formalism we
developed and discuss its implications in connection with the
points listed above through example calculations on simple
crystalline systems (Si, diamond, and LiF). We also present
demonstrative applications on solid NiO17 and CuI-
(piperazine)21 crystals.

2. THEORY
In this section, starting from the basics of the SCF procedure
in periodic systems, we will present the details of the periodic
MOM and discuss the consequences of its application to
electronic bands. The method has been developed within a
local atom-centered (Gaussian) basis set framework22 but is
generally applicable, for instance, with other approaches such
as plane waves or finite-difference grids.
2.1. SCF in Periodic Systems. For a crystalline system,

Hartree−Fock/Kohn−Sham equations are commonly solved
in reciprocal space, in a number Nk of discrete k-points
constituting a uniform sampling of the first Brillouin zone

ϵ=F k C k S k C k k( ) ( ) ( ) ( ) ( ) (1)

where, as usual, in each k-point, F(k) is the Fock matrix, S(k)
is the overlap matrix, C(k) are the coefficients of the crystalline
orbitals, and ϵ(k) are the corresponding eigenvalues. The Fock
matrix build is, in turn, carried out in direct space, hence at
each iteration a direct-space representation of the density
matrix P is built from eigenvectors such that
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where g is the vector locating a lattice point (cell) in direct
space and n(k) is the occupation matrix, a diagonal matrix with
non-null elements in correspondence to the occupied orbitals.
In the case of a zero kelvin nonconducting system, which we
will assume in this work, such elements are either 1 or 0, and
for the ground state occupations are assigned following the
Aufbau principle filling in each k, the orbitals having the lowest
eigenvalues ϵ(k). From eq 2, it follows that Nk defines the

direct space PBCs, that is, the size of the portion of direct
space after which the orbital phases are replicated. Hence, the
definition of the reciprocal space sampling, which is usually in
the hands of the user, directly reflects on the characteristics of
the periodic boundaries adopted.

2.2. MOM for Periodic Systems. The MOM acts on the
definition of the n(k) occupation matrix of eq 2. Let us start
from a reference solution Cref(k)which can be either from
the converged ground state, or an initial guess. Once the
eigenvectors are sorted by energy, the code over-rides the
Aufbau principle by forcing a different occupation pattern
nref(k). Technically, this can be done in any oneor even
more than onek-points of the Brillouin zone, and in the next
subsection we will discuss which choices are physically
meaningful.
In subsequent iterations, the overlap between the new

coefficients C and Cref is evaluated

= †O k C k S k C k( ) ( ) ( ) ( )ref (3)

The projection of the j-th new orbital onto the old occupied
space is expressed as

∑ ∑ ∑ ∑= =
ν μ

μ ν

†

μνp O C S Ck k k k k( ) ( ) ( ) ( ) ( )j
i

n

ij

N N

i

n

i j
ref

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅ

i

k
jjjjjj

y

{
zzzzzz

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑ
(4)

For each nonzero diagonal element in nref(k), the largest
corresponding projection p(k) locates the position to be filled
in the new n(k).
The evaluation of O(k) as in eq 3 is relatively inexpensive,

hence the additional cost of the MOM is virtually negligible
with respect to that of the corresponding ground-state method
(i.e., HF and DFT), even though convergence can turn out to
be more difficult. Convergence accelerators such as DIIS23,24

can normally be used within this framework.
Depending on the definition of nref(k), the MOM can then

be used to converge the SCF toward solutions that are
different from the ground state. We will focus on this use of the
MOM in the following. A further possibility that we do not
explore here is to use the method to stabilize the ground state
solution, avoiding the intrusion of unphysical states arising
from numerical inaccuraciessuch as arising from integral
screenings and the subsequent early truncation of lattice
Fourier transforms, or instabilities due to the use of diffuse
functions within the Ewald sums.25 We also note that the
reference state Cref could be kept constant through the SCF or
changed at each iteration shifting the reference to the previous
cycle. The latter is the choice we adopted, as we found it to
lead more consistently to the desired result.

2.3. Excitations in Solids through the MOM.
2.3.1. Excitation from a Single k-point to Another. It follows
from eq 2 that the translational invariance of the direct space
density matrix has to be preserved in the SCF procedure.
Subsequently, only excitations that are totally symmetric with
respect to the group of lattice translation vectors are possible
within our approach. In fact, this property is granted by vertical
excitations at the center of the Brillouin zone (Γ-point-only
excitations) but neither by vertical excitation in other k-points
nor by diagonal excitations. Such excitations can, however, be
accessed through creation of a supercellas by increasing the
size of the periodically repeating unit in the direct space the
reciprocal space folds itself into Γ. In Figure 1, the band
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structure folding is reported for bulk silicon, for which we
report numeric results in the Results section: excitations EL
and EX, which are not accessible through our MOM in the
primitive unit cell, both become Γ-point excitations in the 2 ×
2 × 2 supercell (right panel).
Vertical Γ-point excitations result in a new nref(Γ) in which

one non-null element has been set to zero and a null element
has been set to one. A small variation of the density matrix of
eq 2 will follow, leading to a new density Pexc

g . Formally, this
excitation results in a fractional occupation of both the bands
from which the electron is removed and the one it is excited to.
Such fractional occupation is numerically 1/Nk. Physically, this
is equivalent to having only one single excitation within the
periodic boundaries, that is, in a supercell made of Nk unit
cells. Hence, the excitation is diluted in the whole PBC, and
since the unit cell total energy is computed, the excitation
energy for a full electron must be evaluated by multiplying the
excitation energy per cell by the inverse of the fractional
occupation number 1/Nk

= −E N E E( )k
exc

exc
tot

ground
tot

(5)

where Eexc
tot is the unit cell energy obtained through Pexc

g . In fact,
our reciprocal space MOM allows for a diluted excitation using
just the small primitive unit cellhence with a computation-

ally cheap calculationas opposite to direct-space Δ-SCF as in
ref 17 that also requires a more costly supercell calculation for
Γ-point excitations.

2.3.2. Tuning the Concentration of Excited Electrons. It
follows from the above discussion that changing the k-point
sampling also has an impact on the concentration of excited
electrons in direct space. It is also possible within our approach
to consider an excitation involving not only the Γ-point
electron but also a portion of the corresponding valence and
conduction bands corresponding to a sphere of radius r around
Γ. This corresponds to a physical process in which a light that
is not precisely monochromatichence with some frequency
broadeningis used to induce the excitation.
As a first thing, when defining the initial reference excited

state, we need to trace the involved bands across the Brillouin
zone to cope with possible band crossings and degeneracies.
Such approach is graphically described in Figure 2: once the Γ-
point excitation is defined, we evaluate the overlap Ok,k′
between the band eigenvectors in two neighboring points k
and k′, expressed as

= [ ′ ]†′O C k S k C k( ) ( ) ( )k k, (6)

The largest overlap elements allow tracing the bands
between k and k′. Since the space we deal with isin the

Figure 1. Graphical representation of some possible electronic excitationslabeled as EΓ1, EX, and EL, as computed in Table 1in the electronic
structure of bulk silicon (PBE functional). Left panel: primitive unit cell. Right panel: 2 × 2 × 2 supercell. Upon folding of the bands in the
supercell creation, the excitations EΓ1, EX, and EL become all Γ-point-only excitations. The lines along which the band structure is folded are marked
by dashed vertical lines in the left panel.

Figure 2. On the left, an excitation in Si bulk (PBE functional), in which the radial-sphere approach is graphically represented. On the right, the
path in a 2D Brillouin zone followed to trace the Γ-point bands and the spheres around Γ are represented.
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general casea 3D one (although all of our approach works
for 2D and 1D periodic systems as well), we follow a path in
reciprocal space as depicted in the right panel of Figure 2,
following subsequent rows starting from Γ until completing the
whole grid. Once the tracing is completed, a sphere is defined
around Γ, and only the number of n(k) corresponding to the
number of Nk

exc k-points is enclosed within this sphere. The
excitation defined in Γ is also then performed in these points
according to the band tracing information. Since the excitation
zone is spherical around Γ, the total symmetric character of the
density Pexc

bfg is preserved and then it can be effectively
represented in direct space (i.e., the total density remains
periodic in the 1 × 1 × 1 unit cell). Experimentally, increasing
the radius of such sphere corresponds to (1) a broadened
(non-exactly monochromatic) light triggering the excitation
and (2) a higher density of excited electrons, which are now
Nk/Nk

exc within the PBC. The fractional occupation of the
excitation band is, in fact, Nk

exc/Nk
The energy of the excitation is then evaluated as

= −E
N

N
E E( )k

k

exc
exc exc

tot
ground
tot

(7)

2.4. Energy Gradients and Geometry Optimization.
Let us start from eq 5 and sum back the SCF total energy of
the ground state to obtain the unit cell total energy of the
MOM excited state

= − +E N E E E( )kMOM
tot

exc
tot

ground
tot

ground
tot

(8)

Note how EMOM
tot is different from the SCF output energy

Eexc
tot , which contains a fractional excitation. If the excitation is

not restricted to Γ, eq 7 should be used instead. Taking the
derivative of eq 8 with respect to atomic displacements, we
obtain

∂
∂

=
∂
∂

−
∂

∂
−

E E
N

E
N( 1)

a a a
k k

MOM
tot

A
exc
tot

A
ground
tot

A
(9)

where a
A is the coordinate of atom A along a general

Cartesian direction a. Analogous equations hold for cell
gradients, which can always be expressed in the form of atomic
gradients.26

During a geometry optimization procedure, at each
geometry, the ground- and excited-state gradients are needed
for the evaluation of eq 9, thus requiring two SCF procedures.

3. RESULTS
In this section, we present some demonstrative calculations
using our MOM, with the purpose of validating the approach
and showing its capabilities. To this aim, we have tested the
lowest-energy excitations in a small group of simple solids
including LiF (ionic crystal), Si (covalent semiconductor), and
diamond (covalent insulator). In addition, we have inves-
tigated two cases with more applicative potential, namely, NiO
and the solid CuI-piperazine. All calculations were performed
with a development version of the CRYSTAL program.22

We have adopted triple-ζ electron basis sets from Peintinger
et al.27 for Si, C, and LiF. We applied the same basis sets for
the CuI-piperazine, while in the NiO application, a dcm-tzvp28

basis has been used.
3.1. Excitation Energies. In Table 1, we report Γ-point

excitations as computed with the MOM and compare the
results with experiments available from the literature. As it is

more than well known,29,30 the main impact of the functional
choice on the electronic structure is on its band gap, and the
amount of exact exchange plays a major role in that. As already
reported in literature for the fundamental band gap,31,32 the
range-separated HSE06 functional proved to provide a
successful balance in that, and this is observed in our results
for covalent crystals also, where it consistently leads to
excitation energies within 0.1 eV from experimental references
for silicon and diamond. However, for LiF, PBE0 seems to
represent a better approximation. The difference between the
triplet and singlet excited states is always in favor of the latter,
which lays in all three cases at a lower energy. The difference is
strongly dependent on the amount of exact exchange included,
thus suggesting a role of excitonic effects. In this connection,
we also remind the reader about the relationship between the
delocalization error and the fractional occupation discussed in
the Introduction. As per the nature of our single-determinant
approach, we use here the terminology “singlet” and “triplet” to
briefly indicate parallel and antiparallel spins.
The first two columns of Table 1 can be obtained with a

primitive cell or a supercell, yielding exactly the same results.
The EX and EL columns, however, were obtained adopting a 2
× 2 × 2 supercell that allows the bands in X and L points to
fold in Γ, as shown in Figures 1 and 3. The reciprocal space
grid was reduced to 4 × 4 × 4 for consistency.
As discussed in the theory section, the density of excited

electrons can be tuned either by changing the k-point sampling
of the Brillouin zone or by exciting Nk

exc k-points within a
sphere of radius rs around the Γ point (see Figure 2) The
tuning of the number of Nk points and the radius rs allows
assessing any desired exciton density.
In Table 2, we show the combined effect of the two

parameters in the case of bulk silicon:

• Increasing the radius rs rapidly increases the number of
points enclosed in the sphere. As a consequence, the
excitation energy becomes higher due to the increased
concentration of excited electrons

Table 1. Excitation Energies (in eV) for Simple Solids as
Computed with the MOM with Different Functionalsa

method EΓ
sing EΓ

trip EX
sing EL

sing

silicon Exp. 3.433−35 1.234 2.034

3.4536

PBE 2.691 2.688 0.988 1.743
HSE06 3.422 3.416 1.577 2.440
PBE0 4.048 3.993 2.162 3.416

diamond Exp. 6.037,38 5.46−5.634

7.7535

PBE 5.619 5.618 4.795
HSE06 7.000 6.988 5.942
PBE0 7.677 7.598 6.552

LiF Exp. 12.639,40

PBE 8.993 8.992
HSE06 11.300 11.289
PBE0 12.089 11.859

aA primitive cell (no supercell) is used for Γ-point excitations (EΓsing
and EΓ

trip). A 2 × 2 × 2 supercell has been adopted for EX
sing and EL

sing.
Available experimental values from the literature are reported for each
system.
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• In the second series of data in Table 2, we show that, by
changing both parameters simultaneously, we can keep
Nk

exc constant while increasing the size of the PBC
volume. The excitation energy decreases until a dilution
comparable to the [Nk = 512; rs = 0.01] case is reached.

By progressively increasing rs, we can reach a point in which
the whole valence band is excited to the whole conduction
band, that is, one electron per unit cell is excited. Such a
situation is barely physical, especially in covalently bonded
semiconductors. The excitation energy becomes, in fact,
extremely high. In the case of LiF (not shown here),
excitations are localized and then the penalty due to a high
density of excitons is smaller because they interact little one
with another.
3.2. Geometry Optimization and Luminescence.

3.2.1. Nickel Oxide. Even though nickel oxide is quite a
well-known material and has a simple atomic structure, its
magnetic and electronic properties making it a very interesting
system. In a recent work,17 its excited-state structure has been
studied extensively through Δ-SCF methods within the Crystal

code but with an approach different from the MOM. In short,
the approach in ref 17 consists of forcing an excited state
through atomic orbital occupations in the initial guess and
eigenvalue shifting. This is in practice a direct space approach
that leads to the excitation of entire bands (across the whole
BZ)hence a supercell calculation is mandatory in order to
reach a realistic dilution of excitation. Reference 17 testifies
how a detailed analysis of the excitations in NiO must be
carried out with great care, given the magnetic phases possible,
the number of relevant excited states, as well as the delicate
role of functional and basis set choice.
Such a detailed study goes well beyond the scope of this

work. Our aim here is to validate our method on a system that
is somewhat more complex than those in Table 1 and to test
our excited-state optimization algorithm. NiO, in fact,
possesses excited states that live long enough to give rise to
observable Stokes shifts. We considered here only the
ferromagnetic (FM) phase of NiO, which lends itself well to
our purpose because due to its simple structure there are no
internal degrees of freedom, so that only the lattice parameter
is subject to optimization. Even considering that NiO is
antiferromagnetic in nature, we believe the FM phases well
serve our validation purposes.
In Figure 4, we present our results. We have considered the

three lowest excited states in the Γ pointnote that NiO has

an indirect band gap, so these excitations do not correspond to
the band gapsupercells would be needed to reach other parts
of the Brillouin zone. Two of such excitations are labeled α →
α and β → β, that is, α and β highest occupied molecular
orbital (HOMO)−lowest unoccupied molecular orbital
(LUMO) transitions (in our ferromagnetic phase, there are
19 electrons in α bands and 17 in β ones). The third is the
spin-flip excitation from α-HOMO to β-LUMO. These
correspond in Figure 4 to green, yellow, and red curves,
respectively.
For each of the above-listed states, we have run both a

geometry optimization with analytical gradients and a series of

Figure 3. Diamond band structure of the primitive unit cell calculated
using the PBE functional.

Table 2. Singlet Excitation Energies (in eV) for Bulk Silicon
(PBE Functional) as Functions of the Number of Points
Sampling the Brillouin Zone (Nk) and the Radius of the k-
point Sphere around Γ (rs)

a

Nk rs Nk
exc Eexc

512 0.01 1 2.691
512 0.018 9 4.566
512 0.025 15 4.893
512 0.05 21 5.648
512 0.08 47 5.587
512 0.1 53 6.110
512 0.3 247 9.227

512 0.025 15 4.893
1728 0.015 15 2.972
4096 0.010 15 2.794
5832 0.008 15 2.744
13,824 0.005 15 2.621

aNk
exc indicates the number of points enclosed in the sphere having

radius rs.

Figure 4. Energy of the ground and first excited states of bulk
ferromagnetic NiO as a function of lattice parameter. The ground-
state minimum is taken as a reference (ΔE = 0). The B3LYP
functional was used. The full bullets mark the results of the geometry
optimizations using analytical gradients as in eq 9.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.1c00427
J. Chem. Theory Comput. 2021, 17, 6073−6079

6077

https://pubs.acs.org/doi/10.1021/acs.jctc.1c00427?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00427?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00427?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00427?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00427?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00427?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00427?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00427?fig=fig4&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.1c00427?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


single-point calculations. The results clearly show that our
MOM gradients correctly find the right minimum of the
excited state curves in all cases, located at 4.45, 4.47, and 4.56
Å. The Stokes shifts are 0.44, 0.5, and 1.51 eV. As a final note,
we remark that only a calculation on the primitive unit cell was
needed using our MOM, while a reciprocal space grid of 8 × 8
× 8 points was used, hence describing the excitation of one
electron every 512 unit cells.
3.2.2. Solid CuI(Piperazine). Among the luminescent

copper(I) halides, [CuI(piperazine)0.5]∞ is a peculiar com-
pound that exhibits dual luminescence, a feature that is of
potential relevance in technological applications. In recent
years, within the framework of a synergetic theoretical−
experimental study,21 we have characterized its excitations
through ab initio post-SCF methods.41 At that time, we were
not able to investigate the actual luminescence properties, as
we had no tools for optimizing geometries in the excited state,
as we have developed in this work.
We here apply our MOM geometry optimizer to this

structure so as to analyze the structural and electronic changes
of the long-lived excited state. As in previous work,21 we
considered two excitations around the Fermi level, namely,
HOMO → LUMO and HOMO − 1 → LUMO + 1, in the Γ-
point only. A pob-TZVP basis set was used, along with a
hybrid PBE functional with 10% of HF exchange.
The main results of our MOM calculations are reported in

Figure 5 and Table 3. From the figures, it is seen that the

structural relaxation of the excited states leads to mild but
significant modifications, mostly seen in the rotation of the

organic ring. From Table 3, we can also see that the Cu−Cu
distance is reduced up to 4% in the highest excitation, and
most notably that the cell parameters undergo quite a change,
especially in the HOMO→ LUMO excitation, which results in
a volume expansion. In the HOMO − 1 → LUMO + 1 case,
the volume does not change so significantly, but a cell
distorsion is observed, with an elongation along the c axis.
The effects of the geometry relaxation on the luminescence

energies are more pronounced on the highest excitation than
on the lowest, with the results of the two corresponding
emissions being 3.0 and 3.1 eV, respectively. This result is in
qualitative agreement with the results of Figure S3 in the
Supporting Information of ref 21, which shows that two
excitations exist with a markedly different excitation energy but
similar emission. Quantitatively, our excitation energies are in
reasonable agreement, while the emission energy is evidently
still too large with respect to the experiment. A more detailed
study would be needed to clarify this, with a careful analysis of
the role of basis sets and functional, which goes beyond the
purpose of this paper.

4. CONCLUSIONS
In this work, we have presented a periodic implementation of
the MOM. It allows selecting electronic excitations and
optimizing the geometries of excited states while keeping a
computationally cheap SCF approach as used for the ground
state. Due to the iterative transitions from direct to reciprocal
space and back, our approach works with excitations that
preserve the totally symmetric nature of the electron density,
namely, Γ-point excitations or collective excitations in a sphere
of k-points around Γ. A calculation using the primitive unit cell
allows describing the excitation of only one electron within the
PBCs, avoiding costly supercell calculations. Such a supercell
approach is, however, needed to access excitations far from the
center of the Brillouin zone.
Through demonstrative applications, we have shown how

the MOM can be easily applied to a variety of crystalline solids,
from prototypical simple crystals to complex organic−
inorganic frameworks, with full control on the electronic
occupations and spins.
As a future perspective, we plan to implement vibrational

frequencies and a representation of electronic densities, which
would significantly extend the usefulness and applicability of
the approach.
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