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The kidney has the capacity for regeneration and repair after a variety of insults. Over the past few decades, factors that promote
repair of the injured kidney have been extensively investigated. By using kidney injury animal models, the role of intrinsic and
extrinsic growth factors, transcription factors, and extracellular matrix in this process has been examined. The identification of renal
stem cells in the adult kidney as well as in the embryonic kidney is an active area of research. Cell populations expressing putative
stem cell markers or possessing stem cell properties have been found in the tubules, interstitium, and glomeruli of the normal kidney.
Cell therapies with bone marrow-derived hematopoietic stem cells, mesenchymal stem cells, endothelial progenitor cells, and
amniotic fluid-derived stem cells have been highly effective for the treatment of acute or chronic renal failure in animals. Embryonic
stem cells and induced pluripotent stem cells are also utilized for the construction of artificial kidneys or renal components. In
this review, we highlight the advances in regenerative medicine for the kidney from the perspective of renotropic factors, renal
stem/progenitor cells, and stem cell therapies and discuss the issues to be solved to realize regenerative therapy for kidney diseases

in humans.

1. Introduction

The kidney is indispensable for tissue homeostasis as well as
regeneration. Renal tubular epithelium composed of polar-
ized mature cells has the capacity to regenerate following
acute kidney injury. After the insult occurs, these cells rapidly
lose their brush border and dedifferentiate into a more mes-
enchymal phenotype. The dedifferentiated cells migrate into
the regions where cell necrosis, apoptosis, or detachment has
resulted in denudation of the tubular basement membrane.
They proliferate and eventually redifferentiate into an epithe-
lial phenotype, completing the repair process [1]. Recent
studies suggest that renal stem/progenitor system is present
in the tubules, interstitium, and glomeruli of the adult kidney
and functions as the main drivers of kidney regenerative
responses after injury. Understanding the mechanisms that
drive renal progenitor growth and differentiation represents
the key step for modulating this potential for therapeutic

purposes [2]. However, renal fibrosis, the inevitable conse-
quence of an excessive accumulation of extracellular matrix,
is irreversible. Patients with chronic renal disease show a
progressive decline in renal function with time, finally leading
to end-stage renal failure that requires lifelong dialysis or
renal transplantation. Many therapeutic interventions seem
to be effective in animal models of acute or chronic kidney
injury. Nonetheless, it is still difficult to translate these
promising results into humans in the clinical setting. As a
new therapeutic option, regenerative therapies for the kidney
have been extensively investigated from the aspect of stem
cell biology, developmental biology, and tissue engineering.
The four major strategies of regenerative medicine for the
kidney are as follows: (1) identification of renotropic factors;
(2) identification of renal stem/progenitor cells in embryonic
kidney or adult kidney; (3) cell therapies with bone marrow-
derived cells (BMDCs), namely, hematopoietic stem cells
(HSCs) or mesenchymal stem cells (MSCs), endothelial
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progenitor cells, and amniotic fluid stem cells; and (4)
reconstruction of artificial kidney or renal components by
using embryonic stem (ES) cells or induced pluripotent stem
(iPS) cells (Figure 1). In this review, we highlight the recent
advances of regenerative medicine for the kidney from the
perspective of renotropic factors, renal stem/progenitor cells,
and stem cell therapies and clarify the issues to be solved for
the establishment of regenerative therapy.

2. Renotropic Factors

The regeneration process resembles the developmental para-
digm. The remodeling and maturation of restored epithelium
after renal injury have many parallels with the growth and
maturation that occur during kidney organogenesis. Soluble
factors involved in kidney development have been identified
by gene targeting techniques, in vitro tubulogenesis models,
and organ culture systems. By using animal kidney injury
models, most of these factors also have been proved to
regulate kidney recovery as potential renotropic factors.
These factors include hepatocyte growth factor (HGF) [3],
epidermal growth factor [4], insulin-like growth factor-I
(IGF-I) [5, 6], heparin-binding EGF-like growth factor (HB-
EGF) [7, 8], platelet-derived growth factor (PDGF) [9],
bone morphogenetic protein-7 (BMP-7) [10, 11], and uter-
ine sensitization-associated gene-1 (USAGI), a novel BMP
antagonist [12]. Recently, the essential role of their receptors
in kidney injury also has been demonstrated. Mice with
a specific EGF receptor deletion in renal proximal tubules
showed the importance of EGF receptor activation in the
recovery phase after acute kidney injury [13]. Conditional
knockout mice lacking the HGF receptor, c-met, specifically
in renal tubules demonstrated the antiapoptotic or anti-
inflammatory role of c-met signaling in renal protection
after acute kidney injury [14]. Deletion of the BMP recep-
tor activin-like kinase 3 (Alk3) in the tubular epithelium

enhances TGF-beta signaling, epithelial damage, and fibrosis
[15].

A negative regulator of kidney repair has also been identi-
fied. Data from transgenic mice expressing truncated activin
type II receptor [16], an in vitro tubulogenesis model [17],
the Wolfhian duct culture [18-21], and isolated rat embryonic
kidney culture [20] indicate that activin A is an endogenous
inhibitor of renal organogenesis [22, 23]. Additionally, activin
A is a potent inhibitor of renal regeneration after injury [24].

Key regulatory molecules required for renal organogene-
sis are reactivated in regenerating tubular cells after ischemic
injury. These factors include Pax-2 [25-27], leukemia inhi-
bitory factor [28], and Wnt4 [29].

Although many renotropic factors or signaling pathways
have been identified, the mechanism by which these growth
factors mediate recovery from renal injury is not totally
understood. Most of these factors are epithelial cell mitogens
in vitro, and they induce tubular cell proliferation after
injury when exogenously administered. However, it remains
unknown if these factors are involved in cell maturation,
restoration of polarity, modulation of renal blood flow, and
neutrophil infiltration. It is of great interest to examine if
these renotropic factors promote renal regeneration via the
activation of intrinsic renal stem cells. Recently, a critical
role of peritubular capillary endothelium as a source of
factors required for tubular recovery after injury has been
reported [30]. Mechanisms of cell-cell interactions such as
tubular epithelium and peritubular capillary endothelium or
interstitial fibroblasts need to be clarified.

3. Renal Stem/Progenitor Cells

Despite the structural complexity of the adult kidney,
attempts to identify adult kidney stem cells have been made
based on the broad principles of stem cell biology, such as
prolonged cell-cycling time (label-retaining cells), Hoechst
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dye extrusion (side population cells), by growth in restrictive
cell culture conditions, or expression of markers for other
tissue stem cells or embryonic kidney.

3.1. Identification of Renal Stem/Progenitor Cells Based on Cell
Behavior. Stem cells are considered to have an inexhaustible
capacity for self-renewal and differentiation to ensure the
lifelong maintenance of tissue homeostasis. To conserve
growth potential and prevent genetic injury during mitosis,
stem cells cycle slowly and are recruited only as demanded by
tissue turnover.

One of the most common methods to identify stem cells
is to search for slow-cycling cells by labeling their DNA with
5-bromo-2-deoxyuridine (BrdU). A pulse of BrdU labeling
followed by a chase period allows the detection of slow-
cycling label-retaining cells (LRCs), which represent the stem
cell compartment. LRCs were identified in renal tubules of
normal rat kidneys, and regenerating cells during tubular
repair were essentially derived from LRCs [31]. Interestingly,
tubular LRCs were involved in the epithelial to mesenchymal
transition during renal fibrosis [32]. In vitro characterization
revealed that LRCs are a multipotent cell population with
tubulogenic capacity [33]. The number of these LRCs declines
with age, leading to reduced regenerative capacity after injury
in the aging kidney [34]. Other groups also found LRCs
in tubules [35, 36], papilla [37], or renal capsules [38]. The
location, properties, and behavior of LRCs after injury differ
or remain controversial. This lack of consistency is probably
due to differences in the timing or duration of the pulse and
the length of the chase. Every tubular cell shares the capacity
to retain BrdU and proliferate after injury. Nonetheless, the
patterns of growth and differentiation of LRCs should be
clarified in detail, because factors that can activate LRCs may
possess renoprotective effects.

The ability of hematopoietic stem cells to efflux dyes such
as Hoechst 33342 and Rhodamine 123 has been used as the
basis of a single-step HSC isolation protocol [39]. These side
population cells with the same efflux profile were found in
the adult rodent kidney. Renal side population cells possess
multilineage capacity [40, 41], and the introduction of side
population cells into a model of acute experimental renal
damage was therapeutically beneficial [40, 41]. In contrast,
renal side population cells have no capacity to transdif-
ferentiate into renal cells in vivo [42]. These data remain
contradictory in terms of the relative size, origin, and lineage
capacity of the renal side population cells. The definition
of a marker phenotype that allows isolation without the
assessment of dye efflux will be needed.

3.2. Identification of Renal Stem/Progenitor Cells Based on Spe-
cific Marker Expression. A subset of parietal epithelial cells
localized to the urinary pole of Bowman’s capsule was identi-
fied in human adult kidneys based on coexpression of CD24
and CD133, which are both used as markers of adult tissue
stem cells. These cells exhibited multidifferentiation potential
and long-term proliferative capacity in vitro. Injection of
CD24/CD133 double-positive cells into mice with acute renal
failure induced a complete recovery of renal function and

restoration of tubular structures [43]. CD24/CDI133 double-
positive cells with stem cell properties were also found in
embryonic kidney [44] as well as in proximal tubules [45].
Their proliferation rate and differentiation capacity into renal
epithelial cells seem to be regulated by Toll-like receptor 2
[46, 47]. It is unknown whether these cells elicit repair via
functional integration or humoral induction when delivered
into the recipient animal. Glomerular hyperplastic lesions
have been shown to be derived from the proliferation of
CD133/CD24 double-positive cells [48].

CD133 is mainly known as a marker of HSC and endothe-
lial progenitors [49], but recent reports indicate its expression
in adult tissue stem cells. A rare population of CD133-pos-
itive cells was found in the interstitium, glomeruli, and
tubules. When injected into mice with glycerol-induced acute
renal injury, CD133-positive cells homed to the kidney and
integrated into proximal and distal tubules during the repair
process [50].

A nontubular multipotent stem/progenitor cell popula-
tion was isolated from the adult mouse kidney and character-
ized as Sca-1 positive [51]. These cells were capable of differen-
tiation into myogenic, adipogenic, and neural lineages. When
injected directly into the renal parenchyma after ischemic
injury, renal Sca-l-positive cells adopt a tubular phenotype
and potentially could contribute to kidney repair.

3.3. Identification of Renal Stem/Progenitor Cells Based on
Selective Culture Conditions. A unique population of cells
that show self-renewal for more than 200 population dou-
blings without evidence of senescence was isolated from
rat kidneys. These cells express endothelial, hepatocyte, and
neural markers, suggesting the plasticity of these cells. When
injected intra-arterially after renal ischemia, these cells differ-
entiate into renal tubules [52]. Screening of stem cell potential
in nephron segments revealed that a cell line derived from
the S3 segment of the proximal tubules could be maintained
for a long term without transformation and replaced partly
in injured tubules when engrafted to the kidney after renal
ischemia [53]. A rare population of cells expressing several
stem cell markers was selectively identified in the interstitium
of the medulla. Intrarenal injection of this population into
mice with ischemic injury repaired renal damage [54].

4. Stem Cell Therapy

BMDCs have a surprising degree of plasticity and differenti-
ate into cell types of multiple organs of the body [55, 56]. Bone
marrow (BM) transplantation is commonly used to study BM
cell plasticity. The host BM is replaced by donor BM, and
after BM chimerism is established, donor cells are tracked in
the target tissues. The donor BMDCs are distinguished from
host cells by virtue of their chromosome content (male Y
chromosome-positive cells in a female host), the expression
of a reporter molecule (beta-galactosidase, luciferase, and
enhanced GFP), or the performance of a function (reestab-
lishment of a function in a knockout mouse model). BMDCs
have the ability to move to distant sites within the body. As
in most organs, BMDCs appear in the kidney in response to



renal injury. BMDCs can transdifferentiate into renal tubular
epithelial cells [57-59], mesangial cells [60-63], glomerular
endothelial cells [64, 65], and even podocytes [66, 67]. Based
on these data, cell therapy with BMDCs (HSCs and MSCs)
has been extensively examined and reported to be effective.
In light of their ease of accessibility, BMDCs are strong
candidates for the cell source in stem cell therapy.

4.1. HSCs. HSCs are undifferentiated cells capable of self-
renewal and stepwise differentiation into fully specialized
cells of the blood such as erythrocytes, thrombocytes, and
leukocytes. BMDCs significantly contribute to the regener-
ation of the renal tubular epithelium, differentiate into renal
tubules [57-59], or promote proliferation of both endothelial
and epithelial cells after injury [68]. These data suggest
that the enhancements of the mobilization, propagation, and
delivery of BMDC:s to the kidney hold potential as entirely
new approaches for the treatment of acute kidney injury.
Stem cell factor and granulocyte colony-stimulating factor
(G-CSF) induced HSC homing to the injured kidney, leading
to the significant enhancement of the functional recovery
of the kidney [69, 70]. In contrast, data against the use of
granulocytosis-inducing HSC mobilization protocols for the
treatment of ischemic injury was also reported. Unlike the
reports above, the boosting of peripheral stem cell numbers
was associated with increased severity of renal failure and
mortality. High numbers of activated granulocytes seem to
obscure the potential renoprotective effects of HSC [71].
There are several reports against the potential of BMDCs to
transdifferentiate into tubular cells after injury [72]. Based on
the data from transgenic mice that express GFP in BMDCs
[73], in mature renal tubular epithelial cells [74], or in all
mesenchyme-derived renal epithelial cells [75], it was sug-
gested that, while BMDC recruitment occurs, kidney repair is
predominantly elicited via proliferation of endogenous renal
cells. BMDCs might contribute to the regenerative process by
producing protective and regenerative factors, rather than by
differentiating to directly replace damaged cells [75].

The contradictory results in the localization of BMDCs
and the degree of the BMDC contribution to kidney regen-
eration after injury may be due to methodological limitations
in tracking BMDCs, particularly in injured tissues. There are
differences in the protocols used in these studies (species,
type of injury, transplantation methods, type of cells used
for transplantation, and specificity and sensitivity of the
detection methods for BM cell origin). Cell fusion may also
explain this discrepancy [76, 77]. In the reports of bone
marrow recruitment to damaged kidneys, the lineage of the
recruited BMDCs has not been established. Whether the
recruitment of BMDCs has a beneficial effect on chronic renal
damage remains unsolved.

4.2. MSCs. The other possible candidate for the BM cell res-
ponsible for ameliorating renal damage is the MSC. MSCs are
undifferentiated adult stem cells of mesodermal origin that
have the capacity to differentiate into a range of mesenchymal
tissue types, including cartilage, bone, muscle, stroma, fat,
tendon, and other connective tissues. MSCs represent a very
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small fraction of BM cells, but they can be isolated and
expanded with high efficiency in culture as plastic adherent
cells.

The therapeutic effect of MSC delivery has been demon-
strated in animal models of renal damage [78] such as acute
kidney injury induced by cisplatin [79, 80], gentamicin [81],
intramuscular injection of glycerol [82], or ischemia [83],
Adriamycin-induced nephrotic syndrome [84], mesangio-
proliferative anti-Thyl.l glomerulonephritis [85], a mouse
model of Alport disease [86], glomerular injured athymic
mice [87], a rat remnant kidney [88], and a rat kidney trans-
plantation model of chronic allograft nephropathy [89]. Ben-
eficial effects of MSC are primarily mediated via paracrine
factors [90] such as VEGE HGEF IGF-I [91-93], and ery-
thropoietin [94]. Heme oxygenase-1 (HO-1) [95], the SDF-
1-CXCR4/CXCR? axis [96], and CD44/hyaluronic acid inter-
actions [97] play an important role in MSC-mediated protec-
tion. On the other hand, maldifferentiation of intraglomeru-
lar MSC into adipocytes accompanied by glomerular sclerosis
was observed [98].

Adipose tissue-derived stem cells are an attractive source
of stem cells with regenerative properties that are similar to
those of BMDCs. Adipose tissue-derived stem cell therapy
minimized kidney damage or improved renal dysfunction
after renal damages such as ischemic injury [99], a mouse
progressive renal fibrosis model [100], acute kidney injury
induced by cisplatin [101] or folic acid [102], atherosclerotic
renal artery stenosis in pigs [103, 104] or swine [105], and
a rat antiglomerular basement membrane disease [106].
Beneficial effects of kidney-derived MSCs [107], allogeneic
fetal membrane-derived MSCs [108], and human embryonic
MSCs [109, 110] against renal damage have been reported.

4.3. Endothelial Progenitor Cells (EPCs). EPCs participate in
the repair of tissues, including the kidney, under diverse
physiological and pathological conditions. Renal ischemia
rapidly mobilizes EPCs, and transplantation of EPC-enriched
cells from the medullopapillary parenchyma provided partial
renoprotection after renal ischemia [111]. Acute but not
chronic elevation of uric acid acts as an endogenous mediator
of EPC mobilization and renoprotection [112]. In a chronic
renal artery stenosis model, a single intrarenal infusion of
autologous EPCs preserved microvascular architecture and
decreased microvascular remodeling by preserving hemody-
namics [113]. Manipulation of homing signals may potentially
allow therapeutic opportunities to increase endogenous EPC
recruitment [114].

4.4. ES Cells. ES cells with unlimited developmental potential
have been induced to differentiate in vitro into a broad
spectrum of specialized cell types and are regarded as new
tools for the elucidation of disease mechanisms. The gen-
eration of ES cell-derived progenitors offers the potential
for regenerative therapies. Although kidney structures are
complex, differentiation of ES cells into renal epithelial
cell lineages has been successfully demonstrated [115-118].
Recently, it was reported that decellularization of intact rat
kidneys in a manner that preserved the intricate architecture
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allowed seeded ES cells to populate and proliferate within the
glomerular, vascular, and tubular structures [119].

4.5. iPS Cells. Forced expression of selected transcription
factors can transform somatic cells into ES cell-like cells, ter-
med iPS cells [120], which have the potential for multilineage
differentiation and provide a resource for stem cell-based
treatment. Recently, unique methods for stimulating the
differentiation of human iPS cells into kidney lineages [121-
123] or three-dimensional structures of the kidney [124] have
been developed.

iPS cells from normal human mesangial cells [125], renal
tubular cells present in urine [126, 127], and fibroblasts of
patients with autosomal dominant polycystic kidney disease
[128] have been established. Reprogrammed kidney iPS cells
may aid the study of genetic kidney diseases and lead to the
development of novel therapies.

The therapeutic effect of iPS cells on renal ischemia was
also reported. Transplantation of iPS cells reduced the expres-
sion of oxidative substances, proinflammatory cytokines, and
apoptotic factors and eventually improved survival in rats
with ischemic acute kidney injury [129].

4.6. Human Amniotic Fluid Stem Cells. Human amniotic
fluid stem cells, a novel class of broadly multipotent stem cells
that exhibit characteristics of both embryonic and adult stem
cells, have been regarded as a promising candidate for stem

cell therapy [130]. Beneficial therapeutic effects of amniotic
fluid stem cells have been shown in kidney injury models
including acute kidney injury induced by glycerol [131,132] or
cisplatin [133], a mouse model of Alport syndrome [134], and
a mouse unilateral ureteral obstruction (UUQO) model [135].

5. Conclusion

In this review, the role of renotropic factors and intra- or
extrarenal stem cells in kidney regeneration after injury
is summarized (Figure 2). Compared to other organs, data
regarding renal stem/progenitor cells remain at a preliminary
stage. The precise location, size of the pool, and cellular
morphology are either unknown or controversial.

The delivery of soluble factors with the potential to imp-
rove the ability of the tissue to repair itself is the most pharma-
cologically attractive strategy for organ repair in situ. In this
regard, clarification of the factors or the signaling pathways
that enhance the regenerative capacity of stem/progenitor
cells will lead to a better understanding of the mechanisms of
kidney regeneration, as well as to the identification of novel
therapeutic strategies to facilitate renal repair after acute kid-
ney injury in humans. Considering the recapitulation of the
developmental process in kidney regeneration, such factors
may be produced by the embryonic kidney. Understanding
the molecular basis of kidney development will help us to
develop regenerative therapies for kidney diseases.
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