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Abstract

Background: Logistic regression-based signal detection algorithms have benefits over

disproportionality analysis due to their ability to handle potential confounders and masking

factors. Feature exploration and developing alternative machine learning algorithms can

further strengthen signal detection.

Objectives: Our objective was to compare the signal detection performance of logistic

regression, gradient-boosted trees, random forest and support vector machine models

utilizing Food and Drug Administration adverse event reporting system data.
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Evaluating new methods to detect potential harmful adverse drug events in

spontaneous report databases

Background:The Food and Drug Administration (FDA) adverse event reporting system
(FAERS] is a database that contains adverse event reports, medication error reports,
and product quality complaints. The FDA uses statistical methods to identify potentially
harmful drug-adverse event combinations, also known as signals, within FAERS. This
study compared several different methods to identify harmful drug-related events from
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which method worked best.

performance of multiple models.

safety programs.

adverse event reports in FAERS. The performance of each method was compared to see

Methods:Logistic regression-based signal detection methods have demonstrated
superior performance due to their ability to handle variables that can distort the effect

of other variables or hide potential associations. The development of other machine
learning models is of interest. Machine learning models can define complex relationships
between risk factors and outcomes. Our objective was to compare the signal detection

Results:Our study show that two models (logistic regression and random forest) were
better at identifying true signals than other models.

Conclusions:The four methods have differing abilities on how well they identify adverse
drug events in voluntarily reported surveillance data. Including both results of searches
for unexpected associations between drugs and adverse events and additional case
report information in models resulted in identifying more true signals than unexpected
association results alone. The models can be replicated or modified for use by drug
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Introduction

Disproportionality algorithms quantify the unex-
pectedness of specific drug-event combination
pairs (DECs) in a spontaneous adverse drug
event (ADE) report database. Unexpectedness
suggests the number of reports for a specific DEC
is higher than expected and can provide a signal
that warrants clinical review and further investi-
gation.! However, the algorithms give the same
weight to information from all reports in a data-
base, which may result in signals being masked or
false positives being flagged as signals.2 Multiple
groups have found that logistic regression (LR)-
based signal detection algorithms are superior to
disproportionality analysis due to their ability to
account for potential confounders and masking
factors.?-¢

Despite the demonstrated advantages of LR, it
does have limitations. First, interaction terms
need to be programmed into the LR model to
assess for interacting independent variables.
Second, LR does not work well with large data-
bases and outlier observations. Third, LR does
not handle complex, nonlinear relationships; or
correlated independent variables.”

Machine learning and deep learning algorithms
are able to define complex relationships between
risk factors and outcomes.!® They have mostly
been used to help predict ADEs during drug dis-
covery and preclinical trials. Wang ez al. used a
deep neural network to detect potential ADEs in
new drugs. Study results showed the overall per-
formance of the model had a mean average preci-
sion of 0.523 and the area under the curve (AUC)
was 0.844 for ADE prediction.!! Ietswaart et al.
developed random forest (RF) models to predict
ADEs from in wvitro pharmacological profiles
using i wvitro pharmacology assay data from
Novartis and ADE data from Food and Drug
Administration adverse event reporting system
(FAERS). The models had high accuracy and
precision ranging between 0.9 and 1, recall of 0.6
and an AUC of 0.8.12

Two studies have used machine learning algo-
rithms with FAERS data for pharmacovigilance
purposes.!3!4 Chen ez al. developed LR, support
vector machine (SVM), RF, and gradient-boosted
tree (GBT) models to predict hospitalizations
and deaths based on patient demographics and
drugs. The accuracy was between 73% and 75%
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for predicting hospitalization and 68% and 76%
for predicting deaths. The recall (90-99%) and
F1 score (83-84%) were also higher for models
predicting hospitalizations, and the precision was
similar. Part of the difference in performance
could be due to the relatively low number of
deaths in the data.!> Pham er al. compared the
accuracy of multiple methods to detect DEC
associations. The methods included frequentist
and Bayesian disproportionality analysis, multi-
variate methods, and machine learning algo-
rithms. Most AUC values were greater than 0.65,
with Bayesian confidence propagation neural net-
work having the highest AUC (0.693) and RF the
lowest (0.521).14

The objective of this study was to compare the
performance of LR, GBT, RF, and SVM for sig-
nal detection utilizing data from FAERS. Twelve
features were used for model development.
Accuracy, precision, F1 score, recall, the receiver
operating characteristic AUC (ROCAUC), and
the precision-recall curve AUC (PRCAUC) were
used to compare the performance of the models
against the testing set portion of the reference set.

Methods

Data sources

A cross-sectional study was conducted. The pub-
licly available FAERS quarterly data extract files
from 1 October 2017, through 31 December
2020, were downloaded. The Demographic,
Drug, Owutcome, Reaction, Therapy and
Indication files were used. The Demographic,
Drug, Outcome and Reaction files were linked on
the primary ID (PRIMARYID). The Drug,
Therapy and Indication files were linked on both
the primary ID (PRIMARYID) and drug sequence
(DRUG_SEQ) variables.!> Deduplication was
performed by selecting the highest PRIMARYID
for each report. Only the primary suspect drug
from a report (ROLE_COD =PS) was included in
the analysis. Secondary suspect, concomitant or
interacting drugs were excluded in efforts to
reduce noise in the data due to the uncertainty of
the association between the drug and the
ADE.!12:1617 Al ADEs listed on a report were
included, and ADE terms were standardized using
the Medical Dictionary for Regulatory Activities
(MedDRA) preferred terms listed in the Reaction
file. Reports missing a primary suspect drug or an

ADE were excluded. Generic names were used to
identify drugs, and all ADE and drug names were
converted to upper case text for standardization.

Variables

Table 1 includes the features included in this anal-
ysis. We developed a report completeness meas-
ure based on work by The Uppsala Monitoring
Centre and the Pharmacovigilance Programme of
India to quantify the amount of information avail-
able in an ADE report.!81° The features used are
displayed in Table 2. Time-to-onset is defined as
the time from treatment initiation to the suspected
ADE. The completeness of report score starts at 1
and for every missing variable the corresponding
penalty factor (Table 2) is applied. The score is
calculated using equation (1),

C=I1_,31-P), ¢9)

where P is the penalty listed in Table 2 for varia-
ble 7.1 The completeness of report score ranges
from a minimum of 1X0.5X0.73X0.93=0.125
to a maximum of 1 (zero penalties imposed).
A report was considered serious if OUTC_
COD contained a valid value. The reporter
was considered a healthcare provider if OCCP_
COD equaled physician (MD), pharmacist
(PH) or other healthcare professional (OT).15
Disproportionality signals from multi-item
gamma Poisson shrinker (MGPS), proportional
reporting ratio (PRR), and subgrouped PRR
analyses equalled 1 if a signal was identified and 0
if not. All numeric variables, except for the dis-
proportionality measures, were standardized by
subtracting the mean and dividing by the stand-
ard deviation. All data preparation and wrangling
were conducted using R (v4.0.2).

Reference data set

A reference set of positive and negative controls
was developed to evaluate and compare multiple
SDAs as part of a larger study examining pharma-
covigilance for direct-acting antivirals used for the
treatment of chronic hepatitis C virus infection.20
The reference set focused on the following
ADEs: dysglycaemia, hepatic decompensation
and hepatic failure, and angioedema.?!-23 A refer-
ence set was developed to evaluate the ability of
models to detect these ADEs. It included nine
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Table 1. Description of features from FAERS included in models."™

Feature Data element Feature definition Feature coding
Report N/A Number of informative or complete Numeric
completeness reports
Dechallenge DECHAL Was there a positive dechallenge 0=No/missing, 1=Yes
ADE report type REPT_COD Type of ADE report Number reports expedited,
periodic, or direct
Seriousness OUTC_COD Seriousness of outcome resulting 0=Non-serious,
from an ADE [death (DE]), life- 1=Serious
threatening (LT), hospitalization (HO),
disability (DS), congenital anomaly
(CA), intervention required to prevent
permanent impairment or damage
(RI), other serious or an important
medical event (OT)]
Reporter OCCP_COD Occupation of reporter listed on ADE 0=Non-healthcare
report worker, 1=Healthcare
worker
Recent reporting FDA_DT ADE reports from last 18 months 0=Not within last
18 months, 1=Within last
18 months
MGPS N/A Signal meeting MGPS thresholds 0=No signal,
1=Disproportionality
signal
PRR N/A Signal meeting PRR thresholds 0=No signal,
1=Disproportionality
signal
Subgrouped PRR N/A Signal meeting age or sex 0=No signal,
subgrouped PRR thresholds 1=Disproportionality
signal

ADE, adverse drug event; FAERS, Food and Drug Administration adverse event reporting system; MGPS, multi-item

gamma Poisson shrinker; PRR, proportional reporting ratio.

MedDRA preferred terms: angioedema, ascites,
encephalopathy, hepatic encephalopathy, hyper-
glycaemia, hypoglycaemia, jaundice, oesophageal
varices haemorrhage and varices oesophageal.
Positive controls are known associated DECs. %2425
Negative controls included drugs that do not
include one of the nine preferred terms and no
other MedDRA preferred term from the same
MedDRA high-level term listed in their prescrib-
ing information.>-2¢ A control variable was attached
to each DEC to classify it as either a positive con-
trol (1) or negative control (0). The reference set
included 155 DECs from 60 drugs with 110
DECGC:s for positive controls and 45 DECs for nega-
tive controls (Supplemental Material 1).20

Statistical analysis

Disproportionality  analysis. Disproportionality
analysis was conducted utilizing PRR, PRR sub-
grouped by age or sex, and MGPS. For PRR anal-
yses, a signal was defined by the accepted
thresholds of PRR = 2, number of reports =3 and
a y2=4.%% A subgrouped PRR analysis was con-
ducted for each age and sex, and a signal for a
DEC was counted if it met the signal criteria
within any strata. For the MGPS analysis, a signal
was defined as a DEC with a lower 95% confi-
dence interval limit =2.2728 Proportional report-
ing ratio and MGDPS analyses represented
frequentist and Bayesian disproportionality anal-
yses, respectively, in this study.?® All DECs
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Table 2. Description of features included in the report completeness score.

Feature Description

Notes

Penalty (%)

Time from start of
treatment to reported ADE

Time-to-onset

Missing or incomplete information to assess 50
if drug was started before the ADE

If incomplete dates or time difference is 30
greater than 120days

If time difference is 0 10
Indication Indication for drug N/A 30
Sex Patient sex Unknown sex is treated as missing 30
Age Patient age at time of Unknown age is treated as missing 30
reported ADE
Dose Dose of drug If either dose amount or units are missing 10
Reporter Occupation of who N/A 10
reported the ADE
Report type Expedited, periodic or N/A 10

direct

ADE, adverse drug event.

entered into FAERS during the study period were
included in the disproportionality analyses. Dis-
proportionality analyses were performed using R
(R Core Team, v4.0.2).

Models. The dataset was split into training (80%)
and testing (20%) sets. The outcome is imbal-
anced, containing 72.2% positive controls and
27.8% negative controls. To maintain the distri-
bution during model building, the training and
testing sets were stratified on the control variable
using the stratify parameter in the train_test_
split() Python function to ensure both sets have
the same distribution as the dataset. This training
set will be referred to as the balanced training set.

Due to the outcome imbalance, the Synthetic
Minority Oversampling Technique (SMOTE)
was also assessed. In SMOTE, the k-nearest
neighbours belonging to the minority class are
determined for each minority observation. Then
a synthetic minority observation at some interme-
diate point along the line joining x to one of its
randomly chosen k-nearest neighbour, x,, is gen-
erated.%3° In this study, the negative controls
were the minority class. LR, GBT, RF and SVM

models were trained using the balanced and
SMOTE training sets.

Models were optimized by fine-tuning the algo-
rithm hyperparameters, including the regulariza-
tion parameters of LR and SVM; and the number
of trees, features to consider, tree depth and
samples for GBT and RF. A randomized search
on hyperparameters was conducted using
RandomizedSearchCV() utilizing a repeated (z=3),
stratified fivefold cross-validation. Lasso regression
was used to identify significant features in the LR
model. Feature importance was used to identify the
most important features in the GBT and RF mod-
els and was computed as the (normalized) total
reduction of the Gini impurity caused by that fea-
ture. The higher the value the more important the
feature.! Feature coefficients that are not either
equal to or near zero were used to identify the most
important features in the SVM model. For each
model, both a crude model without hyperparameter
tuning or feature selection (crude) and a model with
tuned hyperparameters and feature selection (HPT)
were run. Machine learning models were built,
trained and tested using Python (Python Software
Foundation, v3.9.7) via the Spyder IDE (v5.1.5).
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Performance evaluation

Accuracy, precision, recall, F1 score, ROCAUC
and PRCAUC were used to evaluate and compare
the performance of the classification models.
These metrics provide important context regard-
ing the ability of the models to correctly identify
true positives and true negatives. Both ROCAUC
and PRCAUC were calculated to get a more com-
plete assessment and comparison of the models.
The PRCAUC is better at evaluating a model’s
ability to identify true positives and provides a bet-
ter estimation of performance in unbalanced data-
sets.32:33  Recall, precision, ROCAUC and
PRCAUC were the primary metrics used for com-
paring model performance against the testing set
portion of the reference set. Performance evalua-
tion was performed using Python (Python Software
Foundation, v3.9.7) via the Spyder IDE (v5.1.5).
The reporting of this study conforms to the
Strengthening the Reporting of Observational
Studies in Epidemiology (STROBE) statement
(Supplemental Material 2).34

Results

After the FAERS quarterly data extract files were
cleaned and merged, the data set contained
17,702,846 reported DECs from 5,497,137 ADE
reports. Next, in order to identify the positive and
negative control DECs in FAERS, the FAERS
data was merged with the reference set by DEC
to attach a control label for classification. This
resulted in 10,282 reported DECs from 10,079
ADE reports being labelled either a positive
control (1) or a negative control (0). Four
DECs (fluoxetine-jaundice, fluoxetine-oesopha-
geal varices haemorrhage, gabapentin-varices
oesophageal and metformin-oesophageal varices
haemorrhage) contained in the reference set were
not in the downloaded FAERS data. Finally, after
aggregating the 10,282 DECs there were 109 pos-
itive control DECs and 42 negative control DECs.

Feature inclusion and importance

For the LR model trained on the balanced train-
ing set, 9 of 12 features were selected by lasso LR
for inclusion: dechallenge, number of expedited,
periodic and direct reports; report completeness,
PRR signal, MGPS signal, PRR age subgrouped
signal and PRR sex subgrouped signal. For the
LR model trained on the SMOTE training set

only two features were selected by lasso LR for
inclusion: dechallenge and reporter. The most
important features for the GBT and RF models
trained on the balanced and SMOTE training
sets are in Figure 1(a) and (b) and Figure 2(a)
and (b), respectively. All GBT and RF models
had the same top seven most important features:
number of periodic reports, dechallenge, recent
reporting, reporter, number of expedited reports,
seriousness and report completeness. The most
important features for the SVM models trained
on the balanced and SMOTE training sets are in
Figure 3(a) and (b), respectively. There were
three features (number of direct reports, sex sub-
grouped PRR signal and age subgrouped PRR
signal) that were not important for the SVM
model trained on the balanced training set, and
only MGPS signal was not an important feature
when training on the SMOTE training set.

Performance evaluation

The performance evaluation metrics for each of
the models are in Table 3. Overall, the GBT
crude model trained on the SMOTE training set
had the highest ROCAUC (0.657), and the GBT
HPT model trained on the balanced training set
(0.646) was the second highest. The range of
ROCAUC values for models trained with the bal-
anced training set was 0.08 (0.566, 0.646) with
the GBT crude model achieving 0.566 and the
GBT HPT model achieving 0.646. The range of
ROCAUC values for models trained with the
SMOTE training set was 0.157 (0.5, 0.657) with
the SVM crude model achieving 0.5 and the GBT
crude model achieving 0.657.

When examining PRCAUC, the SVM crude
model trained on the SMOTE training set had the
highest PRCAUC (0.855), and the RF HPT
model trained on the SMOTE training set (0.848)
was the second highest. It should be noted that the
SVM crude model trained on the SMOTE train-
ing set did not predict any positive control out-
comes. The range of PRCAUC values for models
trained with the balanced training set was 0.099
(0.740, 0.839) with the GBT crude model achiev-
ing 0.740 and the RF crude model achieving
0.839. The range of PRCAUC values for models
trained with the SMOTE training set was 0.07
(0.785, 0.855) with the LR HPT model achieving
0.785 and the SVM crude model achieving 0.855.
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Figure 1. Feature importance for gradient-boosted tree model trained on the (a) balanced training set and (b)

SMOTE training set.

PRR age signal and PRR sex signal are signal identified when subgrouping PRR by age and sex, respectively.
PRR, proportional reporting ratio; MGPS, multi-item gamma Poisson shrinker; SMOTE, Synthetic Minority Oversampling

Technique.

The remaining performance evaluation metrics
were higher for models trained on the balanced
training set. Their accuracy, F1 score, and recall
were higher compared to models trained on the
SMOTE training set. The precision was higher
for the LR and GBT models in the balanced

training set, higher for RF in the SMOTE train-
ing set, and mixed between the two training sets
for SVM (Table 3).

When focusing on models trained on the bal-
anced training set, the LR, RF, and GBT HPT
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Figure 2. Feature importance for random forest model trained on the (a) balanced training set and (b) SMOTE

training set.

PRR age signal and PRR sex signal are signal identified when subgrouping PRR by age and sex, respectively.
PRR, proportional reporting ratio; MGPS, multi-item gamma Poisson shrinker; SMOTE, Synthetic Minority Oversampling

Technique.

models had a PRCAUC =0.8. All models had an
ROCAUC=0.5. This is represented in the PRC
and ROC curves (Figures 4 and 5). The HPT
models had higher ROCAUC values in the LR,
GBT, and SVM models. The LR model had
equivalent or higher performance evaluation
metrics compared to the other three models. It

had the highest accuracy, precision, and recall
metrics.

Discussion

Our study evaluated the performance of LR,
GBT, RF and SVM against a reference set and
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Coefficient Value

Coefficient Value

Feature

Figure 3. Feature importance for support vector machine model trained on the (a) balanced training set and

(b) SMOTE training set.

PRR age signal and PRR sex signal are signal identified when subgrouping PRR by age and sex, respectively.
PRR, proportional reporting ratio; MGPS, multi-item gamma Poisson shrinker; SMOTE, Synthetic Minority Oversampling

Technique.

included 12 features in the models (Table 1). All
models performed similarly (Table 3). In general,
models trained on the balanced training set had
higher evaluation metric values than models
trained on the SMOTE training set. Possible

reasons for this include that SMOTE can only
generate new synthetic minority class observa-
tions within the space of the existing minority
class observations, it will not improve the repre-
sentation of the minority class outside the
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Table 3. Performance evaluation metrics for models against test data.
Model Data set Metric
Accuracy F1score Precision Recall ROCAUC PRCAUC

Logistic Balanced 0.710 0.824 0.724 0.955 0.591 0.811
regression Crude

Balanced 0.710 0.816 0.741 0.909 0.601 0.819

HPT

SMOTE 0.452 0.514 0.692 0.409 0.606 0.826

Crude

SMOTE HPT  0.516 0.634 0.684 0.591 0.543 0.785
Gradient-boosted Balanced 0.645 0.766 0.720 0.818 0.566 0.740
trees Crude

Balanced 0.645 0.776 0.704 0.864 0.646 0.825

HPT

SMOTE 0.645 0.766 0.720 0.818 0.657 0.803

Crude

SMOTE HPT  0.613 0.750 0.692 0.818 0.641 0.847
Random forest Balanced 0.645 0.776 0.704 0.864 0.641 0.839

Crude

Balanced 0.710 0.830 0.710 1 0.596 0.808

HPT

SMOTE 0.645 0.766 0.720 0.818 0.624 0.832

Crude

SMOTE HPT  0.645 0.766 0.720 0.818 0.636 0.848
Support vector Balanced 0.710 0.830 0.710 1 0.586 0.789
machine Crude

Balanced 0.677 0.792 0.731 0.864 0.591 0.794

HPT

SMOTE 0.290 0* 0* 0* 0.500 0.855

Crude

SMOTE HPT  0.548 0.588 0.833 0.455 0.611 0.817
Disproportionality =~ MGPS - - 0.750 0.275 0.519 -
analyses

PRR - - 0.673 0.321 0.458 -

PRR age - - 0.740 0.523 0.523 -

subgrouped

PRR sex - - 0.721 0.450 0.499 -

subgrouped

Bolded values are the highest value for each performance metric.

Crude, model without hyperparameter tuning or feature selection; HPT, model with hyperparameter tuning and feature
selection; MGPS, multi-item gamma Poisson shrinker; PRR, proportional reporting ratio; SMOTE, Synthetic Minority

Oversampling Technique.

*This model did not predict any positive control outcomes for the test data.
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Figure 4. Precision-recall curve comparing the performance of the LR, GBTs, RF and SVM algorithms.
Crude, model without hyperparameter tuning or feature selection; HPT, model with hyperparameter tuning and feature
selection; LR, logistic regression; GBT, gradient-boosted tree; RF, random forest; SVM, support vector machine.

10 -
-~
~ -~ “'
08 1 - e—
. -
< 06 1
2 -= No Skill
'&‘ ~w LR Crude
€ 044 — LRHPT
'E ! —e— SYM Crude
»” —>¢ SVM HPT
02 1 > =+ RF Crude
P v RF HPT
P o’ —+— GBT Crude
0o0{ & GBT HPT
T T L T T T
0.0 02 04 06 08 10

False Positive Rate

Figure 5. Receiver operating characteristic curve comparing the performance of the LR, GBTs, RF and SVM

algorithms.

Crude, model without hyperparameter tuning or feature selection; HPT, model with hyperparameter tuning and feature
selection; LR, logistic regression; GBT, gradient-boosted tree; RF, random forest; SVM, support vector machine.

boundary of the existing observations, and it
could potentially create synthetic observations in
locations where majority class observations are
located.?35:3% In this study, the reference set had
109 positive controls (72.2%) and 42 negative
controls (27.8%), and this classifies as low imbal-
anced data.?® Depending on the location of the

new synthetic negative control observations, the
models may have a more difficult time correctly
distinguishing between the classes, leading to the
decline in the metrics seen in the results.

Our models go beyond standard disproportional-
ity analysis for signal detection by incorporating
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the amount and type of information in individual
case reports in addition to disproportionality
analysis. Table 3 includes the performance evalu-
ation metrics for the disproportionality analyses.
The models have higher recall and ROCAUC
values; and comparable precision.

A precision-recall curve plot shows the relation-
ship between precision and recall, of which preci-
sion is particularly important because it measures
the fraction of correct predictions among the pos-
itive predictions. They provide a visual summary
of the susceptibility of models to imbalanced
datasets.3?2 The high PRCAUC values indicate
the models perform well at detecting true posi-
tives. In addition, the ROCAUC values are all
greater than 0.5, which indicates the performance
is better than chance. It has been shown that there
is a connection between ROCAUC and PRCAUC
since both include the recall measure and that if a
model has a strong precision-recall curve, it will
also have a strong ROC curve.3?

An error analysis using decision trees was con-
ducted to identify how to improve classification
(Supplemental Materials 3 and 4).38:3% In general,
all models were affected by two features, recent
reporting and ADE report type. The models
poorly classified reports submitted greater than
18 months from the end of the study period and
all ADE report types. The ADE report type fea-
ture quantified the number of expedited, periodic
and direct reports for a DEC. An individual DEC
could have reports in each category, which could
complicate classification. Future research could
examine using more recent reports only and
removing the ADE report type feature.

This study builds off prior research of using LR
and machine learning algorithms for signal detec-
tion.2% ADE report type was structured as the
number of expedited, periodic or direct reports
and subgrouped PRR analyses were conducted
for age and sex. In total, 12 features were used in
model development. Prior studies investigated
the use of age, sex, report year and ADE time-to-
onset as predictors.2> Qur study included recent
reporting as a feature, but age, sex and ADE
time-to-onset were accounted for in the report
completeness feature. Our LR model did not find
recent reporting as a significant feature. However,
it was an important feature in GBT, RF and SVM
models. Caster er al.> suggested dechallenge

should be investigated further as it was included
in two of their cross-validation models. In this
study, the dechallenge feature represented if there
was a positive dechallenge. Dechallenge had the
largest coefficient in the LR model, the second
highest importance in the RF and SVM models,
and fourth highest importance in the GBT model.
Scholl er al.® found percentage of reports from
healthcare professionals to be a strong predictor
of the presence of a unique DEC association in
the Summary of Product Characteristics in their
LR model. Our reporter feature represented the
number of reports from a healthcare worker. It
was not a significant feature in our LR model, but
it was one of the most important features in the
GBT, RF and SVM models.

Limitations

Our analysis has limitations. One, ADE reports in
FAERS are likely underreported and subject
to reporting biases such as dilution bias, indica-
tion bias, co-prescription bias and competition
bias.29:40:41 It is important to understand the vari-
ety of biases involved in ADE reporting in order
to properly interpret the data. Two, the ADE
reports in FAERS are subject to issues of data
quality and consistency due to a lack of required,
standardized fields; missing data, and potential
duplicate reports. Three, ADE reports submitted
to FDA do not undergo extensive validation or
verification, and therefore, a causal relationship
cannot be established between a product and the
reactions listed in a report. Four, the lack of a
gold standard for evaluating signal detection algo-
rithm performance is an issue. We developed a
reference set based on ADEs that describe dysgly-
caemia, hepatic decompensation and hepatic fail-
ure; and angioedema. It is imbalanced with more
positive controls than negative controls, which
can influence the calculations of recall, precision
and PRCAUC (Table 3). Lastly, results from this
study are not generalizable to other spontaneous
report databases, different subgrouping variables
or use of an alternative reference set. It is possible
that changing one or multiple of these aspects
may produce different results. However, our
results do provide examples of models and fea-
tures, in particular dechallenge, that can be con-
sidered in future research. Future research
examining different machine learning models and
data sets would be helpful to expand the general-
izability of our findings.
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Conclusion

This study compared the performance of LR,
GBT, RF and SVM for signal detection utilizing
data from FAERS. LR, RF and the GBT hyperpa-
rameter tuned models had a PRCAUC=0.8, and
all models had ROCAUC values >0.5. The LR
models had higher accuracy, precision and recall.
Incorporating additional information from case
reports and the disproportionality analysis results
into the models resulted in higher performance
evaluation metrics than disproportionality analysis
alone. The models can be replicated or modified
for use by pharmacovigilance programs.
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