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Evaluation of four machine learning models 
for signal detection
Daniel G. Dauner , Eleazar Leal, Terrence J. Adam, Rui Zhang and Joel F. Farley

Abstract
Background: Logistic regression-based signal detection algorithms have benefits over 
disproportionality analysis due to their ability to handle potential confounders and masking 
factors. Feature exploration and developing alternative machine learning algorithms can 
further strengthen signal detection.
Objectives: Our objective was to compare the signal detection performance of logistic 
regression, gradient-boosted trees, random forest and support vector machine models 
utilizing Food and Drug Administration adverse event reporting system data.
Design: Cross-sectional study.
Methods: The quarterly data extract files from 1 October 2017 through 31 December 2020 
were downloaded. Due to an imbalanced outcome, two training sets were used: one stratified 
on the outcome variable and another using Synthetic Minority Oversampling Technique 
(SMOTE). A crude model and a model with tuned hyperparameters were developed for 
each algorithm. Model performance was compared against a reference set using accuracy, 
precision, F1 score, recall, the receiver operating characteristic area under the curve 
(ROCAUC), and the precision-recall curve area under the curve (PRCAUC).
Results: Models trained on the balanced training set had higher accuracy, F1 score and 
recall compared to models trained on the SMOTE training set. When using the balanced 
training set, logistic regression, gradient-boosted trees, random forest and support vector 
machine models obtained similar performance evaluation metrics. The gradient-boosted trees 
hyperparameter tuned model had the highest ROCAUC (0.646) and the random forest crude 
model had the highest PRCAUC (0.839) when using the balanced training set.
Conclusion: All models trained on the balanced training set performed similarly. Logistic 
regression models had higher accuracy, precision and recall. Logistic regression, random 
forest and gradient-boosted trees hyperparameter tuned models had a PRCAUC ⩾ 0.8. All 
models had an ROCAUC ⩾ 0.5. Including both disproportionality analysis results and additional 
case report information in models resulted in higher performance evaluation metrics than 
disproportionality analysis alone.
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Plain language summary 

Evaluating new methods to detect potential harmful adverse drug events in 
spontaneous report databases

Background:The Food and Drug Administration (FDA) adverse event reporting system 
(FAERS) is a database that contains adverse event reports, medication error reports, 
and product quality complaints. The FDA uses statistical methods to identify potentially 
harmful drug-adverse event combinations, also known as signals, within FAERS. This 
study compared several different methods to identify harmful drug-related events from 
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Introduction
Disproportionality algorithms quantify the unex-
pectedness of specific drug-event combination 
pairs (DECs) in a spontaneous adverse drug 
event (ADE) report database. Unexpected ness 
suggests the number of reports for a specific DEC 
is higher than expected and can provide a signal 
that warrants clinical review and further investi-
gation.1 However, the algorithms give the same 
weight to information from all reports in a data-
base, which may result in signals being masked or 
false positives being flagged as signals.2 Multiple 
groups have found that logistic regression (LR)-
based signal detection algorithms are superior to 
disproportionality analysis due to their ability to 
account for potential confounders and masking 
factors.2–6

Despite the demonstrated advantages of LR, it 
does have limitations. First, interaction terms 
need to be programmed into the LR model to 
assess for interacting independent variables. 
Second, LR does not work well with large data-
bases and outlier observations. Third, LR does 
not handle complex, nonlinear relationships; or 
correlated independent variables.7–9

Machine learning and deep learning algorithms 
are able to define complex relationships between 
risk factors and outcomes.10 They have mostly 
been used to help predict ADEs during drug dis-
covery and preclinical trials. Wang et al. used a 
deep neural network to detect potential ADEs in 
new drugs. Study results showed the overall per-
formance of the model had a mean average preci-
sion of 0.523 and the area under the curve (AUC) 
was 0.844 for ADE prediction.11 Ietswaart et al. 
developed random forest (RF) models to predict 
ADEs from in vitro pharmacological profiles  
using in vitro pharmacology assay data from 
Novartis and ADE data from Food and Drug 
Administration adverse event reporting system 
(FAERS). The models had high accuracy and 
precision ranging between 0.9 and 1, recall of 0.6 
and an AUC of 0.8.12

Two studies have used machine learning algo-
rithms with FAERS data for pharmacovigilance 
purposes.13,14 Chen et al. developed LR, support 
vector machine (SVM), RF, and gradient-boosted 
tree (GBT) models to predict hospitalizations 
and deaths based on patient demographics and 
drugs. The accuracy was between 73% and 75% 

adverse event reports in FAERS. The performance of each method was compared to see 
which method worked best.
Methods:Logistic regression-based signal detection methods have demonstrated 
superior performance due to their ability to handle variables that can distort the effect 
of other variables or hide potential associations. The development of other machine 
learning models is of interest. Machine learning models can define complex relationships 
between risk factors and outcomes. Our objective was to compare the signal detection 
performance of multiple models.
Results:Our study show that two models (logistic regression and random forest) were 
better at identifying true signals than other models.
Conclusions:The four methods have differing abilities on how well they identify adverse 
drug events in voluntarily reported surveillance data. Including both results of searches 
for unexpected associations between drugs and adverse events and additional case 
report information in models resulted in identifying more true signals than unexpected 
association results alone. The models can be replicated or modified for use by drug 
safety programs.

Keywords: adverse drug events, machine learning, pharmacovigilance, signal detection
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for predicting hospitalization and 68% and 76% 
for predicting deaths. The recall (90–99%) and 
F1 score (83–84%) were also higher for models 
predicting hospitalizations, and the precision was 
similar. Part of the difference in performance 
could be due to the relatively low number of 
deaths in the data.13 Pham et al. compared the 
accuracy of multiple methods to detect DEC 
associations. The methods included frequentist 
and Bayesian disproportionality analysis, multi-
variate methods, and machine learning algo-
rithms. Most AUC values were greater than 0.65, 
with Bayesian confidence propagation neural net-
work having the highest AUC (0.693) and RF the 
lowest (0.521).14

The objective of this study was to compare the 
performance of LR, GBT, RF, and SVM for sig-
nal detection utilizing data from FAERS. Twelve 
features were used for model development. 
Accuracy, precision, F1 score, recall, the receiver 
operating characteristic AUC (ROCAUC), and 
the precision-recall curve AUC (PRCAUC) were 
used to compare the performance of the models 
against the testing set portion of the reference set.

Methods

Data sources
A cross-sectional study was conducted. The pub-
licly available FAERS quarterly data extract files 
from 1 October 2017, through 31 December 
2020, were downloaded. The Demographic, 
Drug, Outcome, Reaction, Therapy and 
Indication files were used. The Demographic, 
Drug, Outcome and Reaction files were linked on 
the primary ID (PRIMARYID). The Drug, 
Therapy and Indication files were linked on both 
the primary ID (PRIMARYID) and drug sequence 
(DRUG_SEQ) variables.15 Deduplication was 
performed by selecting the highest PRIMARYID 
for each report. Only the primary suspect drug 
from a report (ROLE_COD = PS) was included in 
the analysis. Secondary suspect, concomitant or 
interacting drugs were excluded in efforts to 
reduce noise in the data due to the uncertainty of 
the association between the drug and the 
ADE.12,16,17 All ADEs listed on a report were 
included, and ADE terms were standardized using 
the Medical Dictionary for Regulatory Activities 
(MedDRA) preferred terms listed in the Reaction 
file. Reports missing a primary suspect drug or an 

ADE were excluded. Generic names were used to 
identify drugs, and all ADE and drug names were 
converted to upper case text for standardization.

Variables
Table 1 includes the features included in this anal-
ysis. We developed a report completeness meas-
ure based on work by The Uppsala Monitoring 
Centre and the Pharmacovigilance Programme of 
India to quantify the amount of information avail-
able in an ADE report.18,19 The features used are 
displayed in Table 2. Time-to-onset is defined as 
the time from treatment initiation to the suspected 
ADE. The completeness of report score starts at 1 
and for every missing variable the corresponding 
penalty factor (Table 2) is applied. The score is 
calculated using equation (1),

 C Pi i= −=∏ 1
7 1( ), (1)

where Pi is the penalty listed in Table 2 for varia-
ble i.18 The completeness of report score ranges 
from a minimum of 1 × 0.5 × 0.73 × 0.93 = 0.125 
to a maximum of 1 (zero penalties imposed).  
A report was considered serious if OUTC_ 
COD contained a valid value. The reporter  
was considered a healthcare provider if OCCP_
COD equaled physician (MD), pharmacist  
(PH) or other healthcare professional (OT).15 
Disproportionality signals from multi-item 
gamma Poisson shrinker (MGPS), proportional 
reporting ratio (PRR), and subgrouped PRR 
analyses equalled 1 if a signal was identified and 0 
if not. All numeric variables, except for the dis-
proportionality measures, were standardized by 
subtracting the mean and dividing by the stand-
ard deviation. All data preparation and wrangling 
were conducted using R (v4.0.2).

Reference data set
A reference set of positive and negative controls 
was developed to evaluate and compare multiple 
SDAs as part of a larger study examining pharma-
covigilance for direct-acting antivirals used for the 
treatment of chronic hepatitis C virus infection.20 
The reference set focused on the following  
ADEs: dysglycaemia, hepatic decompensation 
and hepatic failure, and angioedema.21–23 A refer-
ence set was developed to evaluate the ability of 
models to detect these ADEs. It included nine 
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MedDRA preferred terms: angioedema, ascites, 
encephalopathy, hepatic encephalopathy, hyper-
glycaemia, hypoglycaemia, jaundice, oesophageal 
varices haemorrhage and varices oesophageal. 
Positive controls are known associated DECs.2,24,25 
Negative controls included drugs that do not 
include one of the nine preferred terms and no 
other MedDRA preferred term from the same 
MedDRA high-level term listed in their prescrib-
ing information.5,24 A control variable was attached 
to each DEC to classify it as either a positive con-
trol (1) or negative control (0). The reference set 
included 155 DECs from 60 drugs with 110 
DECs for positive controls and 45 DECs for nega-
tive controls (Supplemental Material 1).20

Statistical analysis
Disproportionality analysis. Disproportionality 
analysis was conducted utilizing PRR, PRR sub-
grouped by age or sex, and MGPS. For PRR anal-
yses, a signal was defined by the accepted 
thresholds of PRR ⩾ 2, number of reports ⩾3 and 
a χ2 ⩾ 4.26 A subgrouped PRR analysis was con-
ducted for each age and sex, and a signal for a 
DEC was counted if it met the signal criteria 
within any strata. For the MGPS analysis, a signal 
was defined as a DEC with a lower 95% confi-
dence interval limit ⩾2.27,28 Proportional report-
ing ratio and MGPS analyses represented 
frequentist and Bayesian disproportionality anal-
yses, respectively, in this study.29 All DECs 

Table 1. Description of features from FAERS included in models.15

Feature Data element Feature definition Feature coding

Report 
completeness

N/A Number of informative or complete 
reports

Numeric

Dechallenge DECHAL Was there a positive dechallenge 0 = No/missing, 1 = Yes

ADE report type REPT_COD Type of ADE report Number reports expedited, 
periodic, or direct

Seriousness OUTC_COD Seriousness of outcome resulting 
from an ADE [death (DE), life-
threatening (LT), hospitalization (HO), 
disability (DS), congenital anomaly 
(CA), intervention required to prevent 
permanent impairment or damage 
(RI), other serious or an important 
medical event (OT)]

0 = Non-serious, 
1 = Serious

Reporter OCCP_COD Occupation of reporter listed on ADE 
report

0 = Non-healthcare 
worker, 1 = Healthcare 
worker

Recent reporting FDA_DT ADE reports from last 18 months 0 = Not within last 
18 months, 1 = Within last 
18 months

MGPS N/A Signal meeting MGPS thresholds 0 = No signal, 
1 = Disproportionality 
signal

PRR N/A Signal meeting PRR thresholds 0 = No signal, 
1 = Disproportionality 
signal

Subgrouped PRR N/A Signal meeting age or sex 
subgrouped PRR thresholds

0 = No signal, 
1 = Disproportionality 
signal

ADE, adverse drug event; FAERS, Food and Drug Administration adverse event reporting system; MGPS, multi-item 
gamma Poisson shrinker; PRR, proportional reporting ratio.
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entered into FAERS during the study period were 
included in the disproportionality analyses. Dis-
proportionality analyses were performed using R 
(R Core Team, v4.0.2).

Models. The dataset was split into training (80%) 
and testing (20%) sets. The outcome is imbal-
anced, containing 72.2% positive controls and 
27.8% negative controls. To maintain the distri-
bution during model building, the training and 
testing sets were stratified on the control variable 
using the stratify parameter in the train_test_
split() Python function to ensure both sets have 
the same distribution as the dataset. This training 
set will be referred to as the balanced training set.

Due to the outcome imbalance, the Synthetic 
Minority Oversampling Technique (SMOTE) 
was also assessed. In SMOTE, the k-nearest 
neighbours belonging to the minority class are 
determined for each minority observation. Then 
a synthetic minority observation at some interme-
diate point along the line joining x to one of its 
randomly chosen k-nearest neighbour, xk, is gen-
erated.9,30 In this study, the negative controls 
were the minority class. LR, GBT, RF and SVM 

models were trained using the balanced and 
SMOTE training sets.

Models were optimized by fine-tuning the algo-
rithm hyperparameters, including the regulariza-
tion parameters of LR and SVM; and the number 
of trees, features to consider, tree depth and  
samples for GBT and RF. A randomized search 
on hyperparameters was conducted using 
RandomizedSearchCV() utilizing a repeated (n = 3), 
stratified fivefold cross-validation. Lasso regression 
was used to identify significant features in the LR 
model. Feature importance was used to identify the 
most important features in the GBT and RF mod-
els and was computed as the (normalized) total 
reduction of the Gini impurity caused by that fea-
ture. The higher the value the more important the 
feature.31 Feature coefficients that are not either 
equal to or near zero were used to identify the most 
important features in the SVM model. For each 
model, both a crude model without hyperparameter 
tuning or feature selection (crude) and a model with 
tuned hyperparameters and feature selection (HPT) 
were run. Machine learning models were built, 
trained and tested using Python (Python Software 
Foundation, v3.9.7) via the Spyder IDE (v5.1.5).

Table 2. Description of features included in the report completeness score.

Feature Description Notes Penalty (%)

Time-to-onset Time from start of 
treatment to reported ADE

Missing or incomplete information to assess 
if drug was started before the ADE

50

 If incomplete dates or time difference is 
greater than 120 days

30

 If time difference is 0 10

Indication Indication for drug N/A 30

Sex Patient sex Unknown sex is treated as missing 30

Age Patient age at time of 
reported ADE

Unknown age is treated as missing 30

Dose Dose of drug If either dose amount or units are missing 10

Reporter Occupation of who 
reported the ADE

N/A 10

Report type Expedited, periodic or 
direct

N/A 10

ADE, adverse drug event.
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Performance evaluation
Accuracy, precision, recall, F1 score, ROCAUC 
and PRCAUC were used to evaluate and compare 
the performance of the classification models. 
These metrics provide important context regard-
ing the ability of the models to correctly identify 
true positives and true negatives. Both ROCAUC 
and PRCAUC were calculated to get a more com-
plete assessment and comparison of the models. 
The PRCAUC is better at evaluating a model’s 
ability to identify true positives and provides a bet-
ter estimation of performance in unbalanced data-
sets.32,33 Recall, precision, ROCAUC and 
PRCAUC were the primary metrics used for com-
paring model performance against the testing set 
portion of the reference set. Performance evalua-
tion was performed using Python (Python Software 
Foundation, v3.9.7) via the Spyder IDE (v5.1.5). 
The reporting of this study conforms to the 
Strengthening the Reporting of Observational 
Studies in Epidemiology (STROBE) statement 
(Supplemental Material 2).34

Results
After the FAERS quarterly data extract files were 
cleaned and merged, the data set contained 
17,702,846 reported DECs from 5,497,137 ADE 
reports. Next, in order to identify the positive and 
negative control DECs in FAERS, the FAERS 
data was merged with the reference set by DEC  
to attach a control label for classification. This 
resulted in 10,282 reported DECs from 10,079 
ADE reports being labelled either a positive  
control (1) or a negative control (0). Four  
DECs (fluoxetine-jaundice, fluoxetine-oesopha-
geal varices haemorrhage, gabapentin-varices 
oesophageal and metformin-oesophageal varices 
haemorrhage) contained in the reference set were 
not in the downloaded FAERS data. Finally, after 
aggregating the 10,282 DECs there were 109 pos-
itive control DECs and 42 negative control DECs.

Feature inclusion and importance
For the LR model trained on the balanced train-
ing set, 9 of 12 features were selected by lasso LR 
for inclusion: dechallenge, number of expedited, 
periodic and direct reports; report completeness, 
PRR signal, MGPS signal, PRR age subgrouped 
signal and PRR sex subgrouped signal. For the 
LR model trained on the SMOTE training set 

only two features were selected by lasso LR for 
inclusion: dechallenge and reporter. The most 
important features for the GBT and RF models 
trained on the balanced and SMOTE training 
sets are in Figure 1(a) and (b) and Figure 2(a) 
and (b), respectively. All GBT and RF models 
had the same top seven most important features: 
number of periodic reports, dechallenge, recent 
reporting, reporter, number of expedited reports, 
seriousness and report completeness. The most 
important features for the SVM models trained 
on the balanced and SMOTE training sets are in 
Figure 3(a) and (b), respectively. There were 
three features (number of direct reports, sex sub-
grouped PRR signal and age subgrouped PRR 
signal) that were not important for the SVM 
model trained on the balanced training set, and 
only MGPS signal was not an important feature 
when training on the SMOTE training set.

Performance evaluation
The performance evaluation metrics for each of 
the models are in Table 3. Overall, the GBT 
crude model trained on the SMOTE training set 
had the highest ROCAUC (0.657), and the GBT 
HPT model trained on the balanced training set 
(0.646) was the second highest. The range of 
ROCAUC values for models trained with the bal-
anced training set was 0.08 (0.566, 0.646) with 
the GBT crude model achieving 0.566 and the 
GBT HPT model achieving 0.646. The range of 
ROCAUC values for models trained with the 
SMOTE training set was 0.157 (0.5, 0.657) with 
the SVM crude model achieving 0.5 and the GBT 
crude model achieving 0.657.

When examining PRCAUC, the SVM crude 
model trained on the SMOTE training set had the 
highest PRCAUC (0.855), and the RF HPT 
model trained on the SMOTE training set (0.848) 
was the second highest. It should be noted that the 
SVM crude model trained on the SMOTE train-
ing set did not predict any positive control out-
comes. The range of PRCAUC values for models 
trained with the balanced training set was 0.099 
(0.740, 0.839) with the GBT crude model achiev-
ing 0.740 and the RF crude model achieving 
0.839. The range of PRCAUC values for models 
trained with the SMOTE training set was 0.07 
(0.785, 0.855) with the LR HPT model achieving 
0.785 and the SVM crude model achieving 0.855.
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The remaining performance evaluation metrics 
were higher for models trained on the balanced 
training set. Their accuracy, F1 score, and recall 
were higher compared to models trained on the 
SMOTE training set. The precision was higher 
for the LR and GBT models in the balanced 

training set, higher for RF in the SMOTE train-
ing set, and mixed between the two training sets 
for SVM (Table 3).

When focusing on models trained on the bal-
anced training set, the LR, RF, and GBT HPT 

Figure 1. Feature importance for gradient-boosted tree model trained on the (a) balanced training set and (b) 
SMOTE training set.
PRR age signal and PRR sex signal are signal identified when subgrouping PRR by age and sex, respectively.
PRR, proportional reporting ratio; MGPS, multi-item gamma Poisson shrinker; SMOTE, Synthetic Minority Oversampling 
Technique.

https://journals.sagepub.com/home/taw
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models had a PRCAUC ⩾ 0.8. All models had an 
ROCAUC ⩾ 0.5. This is represented in the PRC 
and ROC curves (Figures 4 and 5). The HPT 
models had higher ROCAUC values in the LR, 
GBT, and SVM models. The LR model had 
equivalent or higher performance evaluation  
metrics compared to the other three models. It 

had the highest accuracy, precision, and recall 
metrics.

Discussion
Our study evaluated the performance of LR, 
GBT, RF and SVM against a reference set and 

Figure 2. Feature importance for random forest model trained on the (a) balanced training set and (b) SMOTE 
training set.
PRR age signal and PRR sex signal are signal identified when subgrouping PRR by age and sex, respectively.
PRR, proportional reporting ratio; MGPS, multi-item gamma Poisson shrinker; SMOTE, Synthetic Minority Oversampling 
Technique.
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included 12 features in the models (Table 1). All 
models performed similarly (Table 3). In general, 
models trained on the balanced training set had 
higher evaluation metric values than models 
trained on the SMOTE training set. Possible 

reasons for this include that SMOTE can only 
generate new synthetic minority class observa-
tions within the space of the existing minority 
class observations, it will not improve the repre-
sentation of the minority class outside the 

Figure 3. Feature importance for support vector machine model trained on the (a) balanced training set and 
(b) SMOTE training set.
PRR age signal and PRR sex signal are signal identified when subgrouping PRR by age and sex, respectively.
PRR, proportional reporting ratio; MGPS, multi-item gamma Poisson shrinker; SMOTE, Synthetic Minority Oversampling 
Technique.

https://journals.sagepub.com/home/taw
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Table 3. Performance evaluation metrics for models against test data.

Model Data set Metric

Accuracy F1 score Precision Recall ROCAUC PRCAUC

Logistic 
regression

Balanced 
Crude

0.710 0.824 0.724 0.955 0.591 0.811

Balanced 
HPT

0.710 0.816 0.741 0.909 0.601 0.819

SMOTE 
Crude

0.452 0.514 0.692 0.409 0.606 0.826

SMOTE HPT 0.516 0.634 0.684 0.591 0.543 0.785

Gradient-boosted 
trees

Balanced 
Crude

0.645 0.766 0.720 0.818 0.566 0.740

Balanced 
HPT

0.645 0.776 0.704 0.864 0.646 0.825

SMOTE 
Crude

0.645 0.766 0.720 0.818 0.657 0.803

SMOTE HPT 0.613 0.750 0.692 0.818 0.641 0.847

Random forest Balanced 
Crude

0.645 0.776 0.704 0.864 0.641 0.839

Balanced 
HPT

0.710 0.830 0.710 1 0.596 0.808

SMOTE 
Crude

0.645 0.766 0.720 0.818 0.624 0.832

SMOTE HPT 0.645 0.766 0.720 0.818 0.636 0.848

Support vector 
machine

Balanced 
Crude

0.710 0.830 0.710 1 0.586 0.789

Balanced 
HPT

0.677 0.792 0.731 0.864 0.591 0.794

SMOTE 
Crude

0.290 0* 0* 0* 0.500 0.855

SMOTE HPT 0.548 0.588 0.833 0.455 0.611 0.817

Disproportionality 
analyses

MGPS – – 0.750 0.275 0.519 –

PRR – – 0.673 0.321 0.458 –

PRR age 
subgrouped

– – 0.740 0.523 0.523 –

PRR sex 
subgrouped

– – 0.721 0.450 0.499 –

Bolded values are the highest value for each performance metric.
Crude, model without hyperparameter tuning or feature selection; HPT, model with hyperparameter tuning and feature 
selection; MGPS, multi-item gamma Poisson shrinker; PRR, proportional reporting ratio; SMOTE, Synthetic Minority 
Oversampling Technique.
*This model did not predict any positive control outcomes for the test data.
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boundary of the existing observations, and it 
could potentially create synthetic observations in 
locations where majority class observations are 
located.9,35,36 In this study, the reference set had 
109 positive controls (72.2%) and 42 negative 
controls (27.8%), and this classifies as low imbal-
anced data.35 Depending on the location of the 

new synthetic negative control observations, the 
models may have a more difficult time correctly 
distinguishing between the classes, leading to the 
decline in the metrics seen in the results.

Our models go beyond standard disproportional-
ity analysis for signal detection by incorporating 

Figure 4. Precision-recall curve comparing the performance of the LR, GBTs, RF and SVM algorithms.
Crude, model without hyperparameter tuning or feature selection; HPT, model with hyperparameter tuning and feature 
selection; LR, logistic regression; GBT, gradient-boosted tree; RF, random forest; SVM, support vector machine.

Figure 5. Receiver operating characteristic curve comparing the performance of the LR, GBTs, RF and SVM 
algorithms.
Crude, model without hyperparameter tuning or feature selection; HPT, model with hyperparameter tuning and feature 
selection; LR, logistic regression; GBT, gradient-boosted tree; RF, random forest; SVM, support vector machine.

https://journals.sagepub.com/home/taw
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the amount and type of information in individual 
case reports in addition to disproportionality 
analysis. Table 3 includes the performance evalu-
ation metrics for the disproportionality analyses. 
The models have higher recall and ROCAUC 
values; and comparable precision.

A precision-recall curve plot shows the relation-
ship between precision and recall, of which preci-
sion is particularly important because it measures 
the fraction of correct predictions among the pos-
itive predictions. They provide a visual summary 
of the susceptibility of models to imbalanced 
datasets.32 The high PRCAUC values indicate 
the models perform well at detecting true posi-
tives. In addition, the ROCAUC values are all 
greater than 0.5, which indicates the performance 
is better than chance. It has been shown that there 
is a connection between ROCAUC and PRCAUC 
since both include the recall measure and that if a 
model has a strong precision-recall curve, it will 
also have a strong ROC curve.37

An error analysis using decision trees was con-
ducted to identify how to improve classification 
(Supplemental Materials 3 and 4).38,39 In general, 
all models were affected by two features, recent 
reporting and ADE report type. The models 
poorly classified reports submitted greater than 
18 months from the end of the study period and 
all ADE report types. The ADE report type fea-
ture quantified the number of expedited, periodic 
and direct reports for a DEC. An individual DEC 
could have reports in each category, which could 
complicate classification. Future research could 
examine using more recent reports only and 
removing the ADE report type feature.

This study builds off prior research of using LR 
and machine learning algorithms for signal detec-
tion.2–6 ADE report type was structured as the 
number of expedited, periodic or direct reports 
and subgrouped PRR analyses were conducted 
for age and sex. In total, 12 features were used in 
model development. Prior studies investigated 
the use of age, sex, report year and ADE time-to-
onset as predictors.2–5 Our study included recent 
reporting as a feature, but age, sex and ADE 
time-to-onset were accounted for in the report 
completeness feature. Our LR model did not find 
recent reporting as a significant feature. However, 
it was an important feature in GBT, RF and SVM 
models. Caster et al.5 suggested dechallenge 

should be investigated further as it was included 
in two of their cross-validation models. In this 
study, the dechallenge feature represented if there 
was a positive dechallenge. Dechallenge had the 
largest coefficient in the LR model, the second 
highest importance in the RF and SVM models, 
and fourth highest importance in the GBT model. 
Scholl et al.6 found percentage of reports from 
healthcare professionals to be a strong predictor 
of the presence of a unique DEC association in 
the Summary of Product Characteristics in their 
LR model. Our reporter feature represented the 
number of reports from a healthcare worker. It 
was not a significant feature in our LR model, but 
it was one of the most important features in the 
GBT, RF and SVM models.

Limitations
Our analysis has limitations. One, ADE reports in 
FAERS are likely underreported and subject  
to reporting biases such as dilution bias, indica-
tion bias, co-prescription bias and competition 
bias.29,40,41 It is important to understand the vari-
ety of biases involved in ADE reporting in order 
to properly interpret the data. Two, the ADE 
reports in FAERS are subject to issues of data 
quality and consistency due to a lack of required, 
standardized fields; missing data, and potential 
duplicate reports. Three, ADE reports submitted 
to FDA do not undergo extensive validation or 
verification, and therefore, a causal relationship 
cannot be established between a product and the 
reactions listed in a report. Four, the lack of a 
gold standard for evaluating signal detection algo-
rithm performance is an issue. We developed a 
reference set based on ADEs that describe dysgly-
caemia, hepatic decompensation and hepatic fail-
ure; and angioedema. It is imbalanced with more 
positive controls than negative controls, which 
can influence the calculations of recall, precision 
and PRCAUC (Table 3). Lastly, results from this 
study are not generalizable to other spontaneous 
report databases, different subgrouping variables 
or use of an alternative reference set. It is possible 
that changing one or multiple of these aspects 
may produce different results. However, our 
results do provide examples of models and fea-
tures, in particular dechallenge, that can be con-
sidered in future research. Future research 
examining different machine learning models and 
data sets would be helpful to expand the general-
izability of our findings.
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Conclusion
This study compared the performance of LR, 
GBT, RF and SVM for signal detection utilizing 
data from FAERS. LR, RF and the GBT hyperpa-
rameter tuned models had a PRCAUC ⩾ 0.8, and 
all models had ROCAUC values >0.5. The LR 
models had higher accuracy, precision and recall. 
Incorporating additional information from case 
reports and the disproportionality analysis results 
into the models resulted in higher performance 
evaluation metrics than disproportionality analysis 
alone. The models can be replicated or modified 
for use by pharmacovigilance programs.
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