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ABSTRACT

Many RNAs fold into multiple structures at equilib-
rium, and there is a need to sample these struc-
tures according to their probabilities in the ensem-
ble. The conventional sampling algorithm suffers
from two limitations: (i) the sampling phase is slow
due to many repeated calculations; and (ii) the end-
to-end runtime scales cubically with the sequence
length. These issues make it difficult to be applied
to long RNAs, such as the full genomes of severe
acute respiratory syndrome coronavirus 2 (SARS-
CoV-2). To address these problems, we devise a new
sampling algorithm, LazySampling, which eliminates
redundant work via on-demand caching. Based on
LazySampling, we further derive LinearSampling, an
end-to-end linear time sampling algorithm. Bench-
marking on nine diverse RNA families, the sampled
structures from LinearSampling correlate better with
the well-established secondary structures than Vi-
enna RNAsubopt and RNAplfold. More importantly,
LinearSampling is orders of magnitude faster than
standard tools, being 428× faster (72 s versus 8.6 h)
than RNAsubopt on the full genome of SARS-CoV-2
(29 903 nt). The resulting sample landscape corre-
lates well with the experimentally guided secondary
structure models, and is closer to the alternative con-
formations revealed by experimentally driven analy-
sis. Finally, LinearSampling finds 23 regions of 15 nt
with high accessibilities in the SARS-CoV-2 genome,
which are potential targets for COVID-19 diagnostics
and therapeutics.

INTRODUCTION

RNAs are involved in many cellular processes, including ex-
pressing genes, guiding RNA modification (1), catalyzing
reactions (2) and regulating diseases (3). Knowing the spa-
tial structure of RNAs is one of the keys to better under-
stand these biological processes and further harness RNAs
for diagnostics and therapeutics, but determining the 3D
structures is hard and expensive (4). Alternatively, RNA
secondary structure is helpful for revealing the structure–
function relationship, and can be used for inferring the 3D
structure (5,6). Therefore, being able to rapidly and accu-
rately predict RNA secondary structures is desired.

Commonly, the minimum free energy (MFE) structure is
predicted (8,9), but these methods do not capture the fact
that many RNAs fold into multiple structures at equilib-
rium (10,11). To address this issue, Ding and Lawrence (12)
pioneered stochastic sampling, which samples secondary
structures according to their probabilities in the ensemble
(see Figure 1). These samples are not only informative for
describing or probing the ensemble, but are also useful for
downstream applications. First, we can model the multiple
conformations based on the sampled structures, and further
cluster them into representative structures (7,13). For exam-
ple, several studies used sampled structures, together with
SHAPE mapping data, to model and cluster the conforma-
tions of the frameshifting region in severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) (14,15). Also, we
can use a set of samples to estimate the end-to-end distance
of an RNA (16). In addition, we often want to predict the
probability that a region is completely unpaired, known as
the accessibility of that region, which plays an important
role in small interfering RNA (siRNA) drug design (17–19).
Accessibility can be easily estimated from the fraction of
sampled structures for which the region is completely un-
paired (see Figure 1).
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Figure 1. Overview and applications of stochastic sampling of RNA sec-
ondary structure. The FMN riboswitch is used as an example, and their
centroid structures in the absence of the ligand are shown (7).

However, widely used as it is, the standard sampling al-
gorithm suffers from two main limitations. First, the sam-
pling phase is slow due to many repeated and redundant cal-
culations, wasting a substantial amount of time especially
for large sample sizes. Note that our notion of ‘redundant’
is unrelated to the one in ‘non-redundant sampling’ (20),
which is a variant to output a collection of unique struc-
tures, while standard sampling can sample the same struc-
ture more than once. Second, its end-to-end runtime scales
cubically with sequence length as it has to calculate the par-
tition function using the standard McCaskill algorithm (21)
before sampling. Therefore, both the sampling and partition
function phases scale superlinearly with the sequence length.
This makes it difficult to be applied to long sequences, such
as the full-genome of SARS-CoV-2.

To alleviate these issues, we present three innovations,
each built upon the previous one, that together linearize
both the sampling and partition function phases to achieve
end-to-end linear runtime. The first idea, Full-Saving Sam-
pling, eliminates all redundant calculations in the sam-
pling phase by saving all computations during the partition-
function phase. The second idea, LazySampling, is an
even smarter version that only saves computations that are
needed during the sampling phase on the fly, greatly reduc-
ing the amount of runtime and memory used for saving.
These two ideas are based on the observation that node vis-
its are highly unbalanced: most nodes are never visited while
a small fraction of ‘important’ nodes are visited repeatedly.
Finally, we further improve LazySampling by replacing its
O(n3)-time partition function calculation by our recently
proposed O(n)-time approximate algorithm, LinearParti-
tion (22). This combination gives rise to LinearSampling,
an end-to-end linear time sampling algorithm that is orders
of magnitude faster than the standard one (see Figure 6 for
speedup details).

More importantly, in order to fight current and future
pandemics, it is of great value to study the SARS-CoV-2
genome structure and find the regions with high accessi-
bilities, which can be potentially used for coronavirus dis-
ease (COVID) diagnostics and therapeutics. However, the
conventional tools, including the traditional sampling tools,

and other methods to estimate accessibility, e.g. constrained
partition function (forcing each region of interest to be
fully unpaired, and computing the fraction of the result-
ing constrained partition function over the global one) and
direct computation (23,24), all run in at least O(n3) time
and are too slow on such long sequences with the consid-
eration of global, long-range base pairs. In contrast, Lin-
earSampling can easily scale up to the whole SARS-CoV-
2 genomes without local window constraints, and sample
10 000 structures in only 72 s, achieving 428× speedup (72
s versus 8.6 h) compared with RNAsubopt, a widely used
sampling tool in the ViennaRNA package (25). We con-
firm that LinearSampling-derived accessibilities correlate
well with the experimentally guided structures (14), result-
ing in 23 regions of 15 nt with high accessibilities, which are
potential targets of diagnostics and drug design.

In addition, the lazy saving strategy can also be applied
to other stochastic sampling tasks, such as the Gibbs cen-
troid sampling (26) and structural alignment sampling (27).
Also, LinearSampling can load partition function (hyper-
graph nodes) dumped from LinearTurboFold (28), a tool
for simultaneous folding and alignment of RNA homologs,
which integrates homologous information into the sampled
structures to identify conserved and accessible regions.

MATERIALS AND METHODS

To facilitate our discussion on sampling, we first formu-
late the search space of RNA folding using the framework
of (directed) hypergraphs (29,30) which have been used for
both the closely related problem of context-free parsing (31)
and RNA folding itself (30,32). This formulation makes
it possible to present the standard sampling algorithm as
top-down stochastic backtracing that is mirror-symmetric
to the bottom-up partition function computation. Then we
present our two novel sampling algorithms which elimi-
nate redundant computations by saving and on-demand
caching, respectively. Finally, we present our LinearSam-
pling algorithm which is the first sampling algorithm to run
in end-to-end linear time.

Hypergraph framework

For RNA sequence x = x1... xn , we formalize its fold-
ing space as a hypergraph H = 〈V, E〉. Each node v is
a subsequence (i.e. span) xi. j = xi ...xj , and each hyper-
edge e is a pair 〈node(e), subs(e)〉 representing a de-
composition of node(e) into a list of children nodes
subs(e), e.g. 〈xi, j , [xi,k, xk+1, j ]〉 divides one span into two

smaller ones. For each node v, we define INEDGES(v) �=
{e | node(e) = v} to be its set of incoming hyperedges, i.e. all
decompositions of v.

Hyperedges with one and two child(ren) nodes are called
unary and binary hyperedges, respectively. In order to recur-
sively assemble substructures to form the global structure,
each hyperedge e = 〈v, subs〉 is associated with a combi-
nation function f (e) : S|subs(e)| �→ S that assembles substruc-
tures from subs into a structure for v (here S is the set of
dot–bracket strings that represent RNA secondary struc-
ture). Each hyperedge e is associated with an (extra) energy
term w(e) ∈ R.
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We take the classical Nussinov algorithm (8) as a con-
crete example, which scores secondary structures by count-
ing the number of base pairs. The nodes include sin-
gleton spans xi,i that are terminals, and decomposable
spans xi, j (1 ≤ i < j ≤ n) that can be decomposed in three
ways depending on base xj:

• xj is unpaired, which corresponds to a unary hyperedge
〈xi, j , [xi, j−1]〉 with the combination function f1(a) =
“a.” and energy term 0:

xi, j︷ ︸︸ ︷
xi, j−1 .

i j

• xj pairs with xi (if allowed), denoted by a unary hyper-
edge 〈xi, j , [xi+1, j−1]〉 with combination function f ′

1(a) =
“(a)” and energy term −1:

xi, j︷ ︸︸ ︷
( xi+1, j−1 )

i j

• xj pairs with some xk (i < k < j), dividing xi, j into two
smaller spans xi,k−1 and xk+1, j−1:

xi, j︷ ︸︸ ︷
xi,k−1 ( xk+1, j−1 )

i k j

These bifurcations correspond to a set of binary hyper-
edges with combination function f2(a, b) = “a(b)” and
energy term −1:

BINARY(xi, j ) =
⋃

i < k< j
(xk,xj ) pair

{〈xi, j , [xi,k−1, xk+1, j−1]〉}

See Figure 2 for an illustration.
This framework can easily extend to other folding al-

gorithms such as Zuker (9) and LinearFold (33), where
nodes are ‘labeled spans’ such as Ci, j for substructures
over xi, j with (xi, xj) paired, Mi, j for multiloops over xi, j ,
etc.

Classical sampling algorithm under a hypergraph framework

All sampling algorithms consist of the (bottom-up) parti-
tion function calculation phase and the (top-down) stochas-
tic backtracing phase which is mirror-symmetric to the for-
mer.

The partition function phase. In this bottom-up phase,
we first calculate the local partition function Z(v) of each
node v (see Supplementary Figure S1), summing up the
contributions from each incoming hyperedge e (line 7),
i.e. Z(v) = ∑

e∈INEDGES(v) Z(e). This part takes O(E) = O(n3)
time as each hyperedge is traversed once and O(V) = O(n2)
space as we need to store Z(v) for each node v. Note that
the hyperedges are by default not saved, and will be recalcu-
lated on demand during the sampling phase. If we want to
save all hyperedges instead, we need O(n3) space; the time

Figure 2. Top: the hypergraph framework and the bottom-up partition
function calculation. All nodes and hyperedges are shown. Bottom: two
sampling instances given the partition function above. The sampling is just
top-down stochastic backtracing, i.e. at each visited node, we randomly
choose one of its incoming hyperedges, traverse that hyperedge down and
recursively visit its children nodes.

complexity remains O(n3), but in practice the overhead for
saving (line 8) is quite costly and it may run out of memory
(see Figure 4).

Classical ‘Non-Saving’ Sampling. In the sampling phase,
the Non-Saving Sampling algorithm (see Supplementary
Figure S2) recursively and stochastically backtraces from
the goal node, in the exact opposite direction to the bottom-
up partition function phase (see Figures 2 and 3). When
visiting a node v, it tries to sample a hyperedge e from v’s
incoming hyperedges INEDGES(v) according to the proba-
bility Z(e)/Z(v). This is done by first generating a random
number p between 0 and Z(v), and then gradually recover-
ing each incoming hyperedge e, accumulating its Z(e) to a
running sum s, until s exceeds p, at which point that cur-
rent hyperedge e is chosen as sampled. Note that this al-
gorithm in general does not need to recover all incoming
hyperedges of v (see ‘partial recovery of hyperedges’ in Fig-
ure 3), though in the worst case it would. It then backtraces
recursively to the corresponding subnode(s) of hyperedge
e. See Supplementary Sec. 1.1 for the detailed complexity
analysis of Full-Saving Sampling.

Our presentation resembles the original Ding and
Lawrence (12) algorithm, but is simpler and cleaner thanks
to the hypergraph framework and the mirror symmetry be-
tween the bottom-up and top-down phases. In contrast,
Ding and Lawrence’s recurrences for the two phases are dif-
ferent in nature (see figure 1 of their paper), which results
in unnecessarily complicated implementations [see Vienna
RNAsubopt for an example; RNAstructure’s (34) sampling
is much closer to our non-saving version, except for being
non-recursive]. Ponty (35) also exploits this symmetry both
in theory and in simulations, but his analysis is for the spe-
cial case under the simplified Nussinov model. Our work is
on the full Turner model (36), being the first to formulate
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Figure 3. Illustrations of the three sampling algorithms: classical Non-Saving Sampling, our Full-Saving Sampling and our LazySampling. For each
sample, the newly recovered hyperedges are shown with shadow, and the bold hyperedges are the chosen derivation in stochastic backtracing (pointing
downwards). Non-Saving Sampling needs to repeatedly recover hyperedges in each sample (most of the node visits are non-unique; see �k), whereas Full-
Saving Sampling does not need to recover any hyperedge thanks to storing all of them during the bottom-up phase, but rather oversaves (only less than half
of the nodes are visited during the first five samples; see �k; in fact, six nodes {x2,5, x3,4, x3,5, x4,5, x5,5, x4,4} are never visited even when k → ∞ as they
are not reachable from the goal node x1,5). LazySampling is a smart hybrid between the two, using on-demand caching, thus saving only a small fraction
of hyperedges.

general sampling (Nussinov, Zuker, LinearFold, etc.) under
a unified framework.

Idea 1: Full-Saving Sampling

One observation is that Non-Saving Sampling wastes time
on recovering hyperedges during the sampling phase. First,
due to the symmetry, all hyperedges recovered in the sam-
pling phase have already been traversed during the inside
phase. To make things worse, a great number of hyperedges
are recovered multiple times across different samples be-
cause, whenever a node is (re-)visited, its hyperedges need to
be re-recovered. This situation worsens with the sample size
k. More formally, we define the ‘unique visit ratio’ among k
samples,

αk
�= # of unique nodes visited in k samples

#of all node visits in k samples
(1)

which we will see in Figure 5A to be extremely small, quickly
approaching 0% as k increases, meaning most node visits
are repeated ones. Actually, all hyperedges could have been
saved during the inside phase, thus alleviating the need to
recover hyperedges during sampling. Therefore, we devise a
new algorithm, Full-Saving Sampling (see Supplementary
Figures S2 and S3 for pseudocode). For each node v, for
each of its incoming hyperedges e, we save Z(e), which is
e’s contribution to the local partition function Z(v), once
and for all. Then the sampling phase is easier, only requir-
ing sampling a hyperedge e according to its relative contri-
bution (or ‘weight’) to v, i.e. Z(e)/Z(v) (line 2 in Supplemen-
tary Figure S3). See Supplementary Sec. 1.2 for the detailed
complexity analysis of generating each sample.

Idea 2: LazySampling = Lazy-Saving Sampling

Though Full-Saving Sampling avoids all re-calculations, it
costs too much more space [O(n3) versus O(n2)] and signif-
icantly more time in practice for saving the whole hyper-
graph. Actually, the vast majority of nodes are never visited
during the sampling phase even for a large sample size. To
quantify this, we define the ‘visited ratio’ to be:

βk
�= # of unique nodes visited in k samples

# of all nodes in hypergraph
(2)

Our experiments in Figure 5B show that only <0.5% of all
nodes in the hypergraph are ever visited for 20 000 samples
of a 3048 nt sequence (URS0000D5C703 9606) using Vi-
enna RNAsubopt, so most of the saving is indeed wasted.
In other words, node visits are greatly unbalanced, i.e. a
small portion of nodes are repeatedly visited, while most
nodes are barely visited. Based on this observation, we de-
vise an even smarter algorithm, LazySampling, which is a
hybrid between Non-Saving and Full-Saving Samplings (see
Supplementary Figure S4). By ‘lazy’ we mean only recover-
ing and saving a node v’s hyperedges when needed, i.e. the
first time v is visited during the sampling phase. In this way,
each hyperedge is recovered at most once, and most are not
recovered at all. This version balances between space and
time, and is the fastest among the three versions in most
settings in practice.

The complexity analysis of LazySampling is also a hy-
brid between the Non- and Full-Saving versions, combined
together using the �k and �k ratios. We note that the sam-
pling time of LazySampling consists of two parts: (i) the
hyperedge recovery (and saving) work and (ii) the sampling
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Table 1. Time complexities of four sampling algorithms (n is the sequence length, k is sample size, �k and �k are the ‘unique visit’ (Eq. 1) and ‘visited’
(Eq. 2) node ratios, respectively, and b is beam size)

Partition function

Sampling algorithm Time Space
Sample time
(worst-case)

Sample time
(best-case)

Sample space
(worst-case)

Classical Non-Saving Sampling O(n3) O(n2) O(kn2) O(knlog n) O(n)
Idea 1: Full-Saving Sampling O(n3) O(n3) O(knlog n) O(kn) O(n)
Idea 2: LazySampling O(n3) O(n2) O(�kkn2 + knlog n) O(�kknlog n + kn) O(�kn3)
Idea 3: LinearSampling O(nb2) O(nb) O(�kknb + knlog b) O(�kknlog b + kn) O(�knb2)

The runtime of LazySampling is a hybrid between those of the Non- and Full-Saving ones, i.e. TS
lazy = αkTS

non(hyperedge recovery) + TS
full(backtracing)

(Eq. 3). LinearSampling extends LazySampling by replacing the exact partition function with LinearPartition, and achieves end-to-end linear runtime.
Note that the sampled derivations are mostly balanced as the depth of derivation scales O(log n) in practice (see Supplementary Figure S6), therefore the
complexity of the average case is close to that of the best case.

A B C D

Figure 4. Runtime and memory comparisons against sequence length on the RNAcentral dataset (cut at 4000 nt) under exact partition function. The
sample size is 50 000. (A–C) Partition function, sampling-only and end-to-end runtime. (D) Memory usage.

(backtracing) work after relevant hyperedges are recovered.
Part (i) resembles Non-Saving Sampling, but with a ratio
of �k, because only a tiny fraction of node visits are unique,
and hyperedge recovery is only performed at the first visit to
each node. Part (ii) is identical to Full-Saving Sampling (in
both cases, all needed hyperedges are already saved). There-
fore, we have the following relationships among the time
complexities for the sampling phase of these three versions:

TS
lazy(n, k) = αkTS

non(n, k)︸ ︷︷ ︸
hyperedge recovery

+ TS
full(n, k)︸ ︷︷ ︸

backtracing

(3)

This holds for both the worst- and best-case scenarios in Ta-
ble 1. The space complexity is easier: LazySampling saves
only a fraction (�k) of all nodes in the hypergraph, thus
O(�kn3). See Table 1 for summary.

Idea 3: LinearSampling = LazySampling + LinearPartition

LazySampling is the most efficient among all three sam-
pling algorithms above, but the end-to-end runtime still
scales O(n3) due to the partition function computation. To
address this problem, we use our recently proposed linear-
time approximate algorithm, LinearPartition (22), to re-
place the conventional cubic-time algorithm. It can be used
with any of the three sampling algorithms and, in particu-
lar, we name the combination, ‘LinearPartition + LazySam-
pling’, the LinearSampling algorithm as it is the fastest
among all combinations and achieves end-to-end linearity.

Supplementary Figure S5 describes a simplified pseu-
docode using the Nussinov–Jacobson energy model. In-

spired by LinearPartition, we employ a beam search to
prune out nodes with the small partition function (line 11)
during the inside phase. So at each position j, only the top
b promising nodes ‘survive’ [i.e. O(nb) nodes survive in to-
tal]. Here the beam size b is a user-specified hyperparame-
ter, and the default b = 100 is found to be more accurate
for structure prediction than an exact search (22). See Sup-
plementary Sec. 1.3 for the detailed complexity analysis of
LinearSampling.

RESULTS

Efficiency and scalability

We benchmark the runtime and memory usage on 36 se-
quences sampled from RNAcentral (37), ranging from 100
to 27 985 nt, which we refer to as the RNAcentral dataset;
see Supplementary Table S2 for statistics. We use a Linux
machine (CentOS 7.7.1908) with 2.30 GHz Intel Xeon E5-
2695 v3 CPU and 755 GB memory, and gcc 4.8.5.

Comparing Non-Saving, Full-Saving and LazySampling.
Figure 4 compares the three sampling strategies under
the exact partition function calculation. Non-Saving Sam-
pling and LazySampling have identical partition function
runtime, which are both faster than Full-Saving Sam-
pling, benefiting from saving no hyperedges. However, for
the sampling phase, Non-Saving has to repeatedly recover
hyperedges, resulting in a runtime increase in sampling-
only time. LazySampling avoids this cost and reduces
the runtime to less than half of Non-Saving’s, leading
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A B

Figure 5. In practice, most node visits are repeated, and only a small por-
tion of all nodes are visited. (A) Unique visit ratio �k. (B) visited ratio
�k. Note that �k is higher in LinearSampling than in RNAsubopt, mainly
because the denominator scales quadratically with sequence length n in
RNAsubopt, while it scales linearly in LinearSampling; see Table 1 for
the analysis of partition function space complexity (which is related to
the number of all nodes in the hypergraph) of different systems. Here n =
3048 nt. Supplementary Figure S10 demonstrates the trend with sequence
length, and Supplementary Figure S11 shows that most of the visits are
concentrated on a few nodes.

to a similar performance as Full-Saving at sampling-only
time. Regarding end-to-end runtime, which combines the
partition function and the sampling phases, LazySam-
pling is the fastest and Full-Saving is the slowest. For
memory usage, Full-Saving uses much more memory,
while the other two are close. Supplementary Figure S9
shows the comparisons against sample size k, which con-
firms that LazySampling is the best, especially when k is
large.

We also illustrate why LazySampling is a better strategy.
Figure 5A shows the unique visit ratio, �k, is <5% when k
>1000 for both RNAsubopt and LinearSampling, confirm-
ing that LazySampling is able to avoid a large number of re-
calculations during the sampling phase. On the other hand,
the visited ratio �k (Figure 5B) is always smaller than 0.5%
and 3% for RNAsubopt and LinearSampling, respectively,
and grows slower and slower as the sample size increases,
suggesting that saving all hyperedges (i.e. Full-Saving) is
not ideal. Supplementary Figure S10 further confirms that
both �k and �k do not increase with sequence length;
therefore, this analysis applies to both short and long
sequences.

Comparing LinearSampling with Vienna RNAsubopt global
and local modes. We compare the efficiency and scala-
bility between LinearSampling and Vienna RNAsubopt
(version 2.4.14) in Figure 6. RNAsubopt (–p mode) im-
plemented the conventional sampling algorithm based on
the exact partition function, and it enables local sampling
(--maxBPspan mode) by limiting the sequence distance
between paired nucleotides. Figure 6A confirms that Lin-
earSampling scales end-to-end linearly against sequence
length n, and is much faster than RNAsubopt, which
has an empirical runtime of O(n2.8). For 50 000 sam-
ples, LinearSampling is 208× faster (2 m versus 7 h) than
RNAsubopt on the longest sequence of the RNAcentral
dataset (URS0001BDA28C 9606, 27 985 nt), and 251×
faster on the SARS-CoV-2 sequence (29 903 nt). Regard-
ing sampling-only runtime, LinearSampling is >3× faster.
Figure 6C confirms that the memory usage of LinearSam-
pling is also linear, but RNAsubopt requires O(n2) memory.
LinearSampling uses 1 GB for SARS-CoV-2, while RNA-
subopt needs 20 GB.

It is surprising that RNAsubopt local mode has an em-
pirical complexity of O(n3.3) for end-to-end runtime, and is
even slower than its global mode. For a 9211 nt sequence
(URS00009BB84A 10090), RNAsubopt local mode, using
a span of 70, takes 83.8 min, and its global mode takes 18.7
min, while LinearSampling only takes 34.9 s. Memory-wise,
RNAsubopt local mode uses as much as its global mode.

We also observe that RNAsubopt turns to overflow on
long sequences, making it less reliable. For example, RNA-
subopt overflows on four sequences in the RNAcentral
dataset, shown in Figure 6 with open triangles whose end-
to-end and sampling-only runtime drop unreasonably. For
one of them (URS00007C400D 9606, 19 071 nt), an over-
flow happens in the segment [5775, 12619], leading to an un-
paired region longer than 6000 nt in all sampled structures.
Another one (URS00009C28A8 9606, 22 158 nt) triggers
an error during the sampling phase:

ERROR: backtrack failed in qm1

resulting in an abnormal exit, with only a few structures
generated. Though a self-adapted partition function scale
(named pf scale) is used in RNAsubopt, overflow is still
unavoidable for some long sequences. In contrast, follow-
ing LinearPartition, LinearSampling uses log-space for the
partition function, which does not have overflow issues.

LinearSampling benefits from both LinearPartition and
LazySampling. Figure 7A investigates the runtime of Non-
Saving Sampling and LazySampling under the linear par-
tition function, and compares them with LinearPartition
with sequence length up to ∼30 000 nt. We observe that
the partition function phase is fast and no longer the bot-
tleneck, while the classical Non-Saving Sampling is 5–6×
slower than LinearPartition, and takes the majority of end-
to-end runtime. LazySampling enjoys ∼3.5× speedup from
the Non-Saving Sampling and substantially reduces the
sampling runtime to roughly the same as LinearPartition’s
runtime.

We further compare LazySampling with Non-Saving
Sampling and RNAsubopt under the exact partition func-
tion. RNAsubopt uses the non-saving strategy, but adopts
an optimization called the ‘Boustrophedon’ method (35),
which makes it slightly faster than our Non-Saving Sam-
pling. However, it is clear that LazySampling’s speedup is
more significant.

Correlation with well-established structures across diverse
families

We use the ArchiveII dataset (34,38) to investigate the cor-
relation between sampled structures and the ground truth
structures. This dataset contains diverse families of RNA
sequences and their well-established secondary structures,
and each family has a reliable source. We follow the pre-
processing steps of a previous study (22), and obtain a sub-
set of 2859 sequences distributed in nine families (see Sup-
plementary Table S1).

We investigate the sampled structure’s correlation with
the ground truth using ‘ensemble defect’ (39), the expected
number of incorrectly predicted nucleotides over the ensem-
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A B C

Figure 6. Runtime and memory usage between RNAsubopt, its local mode (span = 70) and LinearSampling on the RNAcentral dataset and SARS-
CoV-2 (sample size 50 000). (A) End-to-end runtime. (B) Sampling-only runtime. (C) Memory usage. The large filled triangles and circles around n =
30 000 represent SARS-CoV-2 sequences, and the open triangles are the sequences that RNAsubopt overflows. Note that the sampling-only time of
LinearSampling is already the majority of its end-to-end time on SARS-CoV-2 (64.6 out of 123.4 s). See Supplementary Figure S7 for the comparison
within 10 000 nt.

A B

Figure 7. LazySampling can reduce sampling phase runtime with both linear (A) and exact (B) partition function. (A) Linear partition function time (using
LinearPartition), Non-Saving Sampling and LazySampling against sequence length. Here LP = LinearPartition. (B) The sampling time of RNAsubopt,
Non-Saving Sampling and LazySampling under the exact partition function. The runtime of RNAsubopt from Non-Saving Sampling is reduced by
‘Boustrophedon’ optimization. See Supplementary Figure S8 for the comparison within 10 000 nt, and Supplementary Figure S15 for more runtime
analysis regarding the ‘Boustrophedon’ method.

ble. It is defined as:

�(S, y∗) = 1
|S|

∑

y∈S

d(y, y∗)

= |y∗| − 2
∑

(i, j )∈pairs(y∗)

pi, j (S) −
∑

j∈unpaired(y∗)

q j (S)

where y∗ is the ground truth structure, and d(y, y∗) is the dis-
tance between y and y∗, defined as the number of incorrectly
predicted nucleotides in y. pi, j(S) is the probability of nu-
cleotide i pairing with nucleotide j in sample S, which can be
easily calculated as the number of (i, j) pairs divided by sam-
ple size. Similarly, qj(S) is the probability of j being unpaired
in the sample S, i.e. qj(S) = 1 − ∑

pi, j(S). For this database
of non-coding RNAs with well-defined structures, we ex-
pect that a lower ensemble defect indicates better structure
prediction accuracy.

Figure 8A shows the ensemble defect differences between
LinearSampling and RNAsubopt on each family and over-
all. Note that the lower ensemble defect suggests better cor-
relation with the ground truth structures. For short fami-
lies, the differences between LinearSampling and RNAsub-
opt are either 0 or close to 0, indicating that the sampling
qualities of the two systems are similar on these families.
However, on the longer families (i.e. 16S and 23S rRNAs),
LinearSampling has lower ensemble defects, showing that
it performs better on longer sequences. The only family for
which LinearSampling performs worse is tmRNA. We also
present the results of RNAsubopt local mode, with base

pair length limitations of 70 and 150. RNAsubopt local
mode does not have a default span size; we choose 70 fol-
lowing the default setting in RNAplfold (40), and 150 since
it is the largest default limit in the local folding literature
and software. It is obvious that the local sampling has a
much higher (worse) ensemble defect on 23S rRNA, which
is probably caused by not predicting the known base pairs
beyond the maximum span limit.

An important application of the sampling algorithm is to
calculate a region’s accessibility. Therefore, we follow Ding
and Lawrence (12), calculating accessibilities of window size
4 from structures generated by LinearSampling and RNA-
subopt, as well as directly from RNAplfold, which imple-
mented a dynamic programming algorithm for calculating
accessibility in cubic time (24), and compare them based on
the ground truth structures. We denote the measurement of
accessibility defect as D, which evaluates the averaged incor-
rect predictions of the accessibility to the ground truth given
a window size. For sampling-based methods, D(S, y∗) is
generated from the samples S and is defined as:

D(S, y∗) = 1
|y∗| − 3

|y∗|−3∑

i=1

∣∣∣acc({y∗}, i ) − acc(S, i )
∣∣∣

where acc(S, i) is the accessibility of region [i, i + 3]:

acc(S, i ) = 1
|S|

∑

y∈S

1[yi,i+3 = “....”]
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A B

Figure 8. LinearSampling is better correlated with the ground truth structure. (A) The ensemble defect difference of each family and overall (averaged
by families) of the ArchiveII dataset, comparing LinearSampling, RNAsubopt and its local modes (span = 70 and 150); RNAsubopt is set to be the
baseline. (B) The accessibility defect difference among LinearSampling, RNAsubopt, RNAplfold and their local modes, using RNAplfold as the baseline.
The sample size is 50 000. The families are ordered by their average sequence lengths, from the shortest to the longest; see Supplementary Table S1 for
length and identity information of each family.

Figure 8B compares the accessibility defect of Lin-
earSampling with RNAsubopt, RNAplfold and their lo-
cal modes on the ArchiveII dataset. We observe that Lin-
earSampling outperforms (or is as good as) all others on
seven out of nine families, and is the best overall. Notably,
both RNAsubopt’s and RNAplfold’s local modes are worse
than their global modes, with only one exception on Group
I Intron, indicating that the local modes are less accurate.

It is worth noting that the lower ensemble and accessibil-
ity defects of LinearSampling are inherited from LinearPar-
tition, which was shown to be better correlated with the
ground truth structures (22) by pruning out structures with
low probabilities. To confirm this, we investigate the root-
mean-square deviation (RMSD) between the base pairing
probability matrices p(S), which is derived from the sam-
ple set S, and p′, which is generated by Vienna RNAfold or
LinearPartition. The results are shown in Supplementary
Figure S12, suggesting that structures generated by Lin-
earSampling strictly match with the ensemble distribution
of LinearPartition. Since LinearPartition deviates from the
exact partition function of RNAfold with a small margin,
the folding landscape structures of LinearSampling have
different sampling probabilities compared with RNAsub-
opt. In most cases, structures with lower folding free ener-
gies may have higher probabilities in LinearSampling than
in RNAsubopt, while low-probability structures in RNA-
subopt may have 0 or close to 0 probabilities in LinearSam-
pling.

Applications to SARS-CoV-2

The COVID-19 pandemic swept the world in 2020–2022,
and is likely to threaten global health for a long time. There-
fore, it is valuable to study the structure of the SARS-CoV-2
genome, which helps us better understand biological pro-
cesses such as virus replication and translation. Now with
the significant speedup, LinearSampling is able to quickly
sample structures for the whole genome of SARS-CoV-
2, providing an efficient tool for SARS-CoV-2 structural
studies. In this section, we run LinearSampling, as well as
the conventional tools, on NC 0405512.2, the reference se-
quence of SARS-CoV-2 (42), investigate the multiple con-
formations and accessible regions of great interest and show
that LinearSampling’s structures correlate better with the

Figure 9. The correlation between sampled structures and DRACO-
inferred structures of the SARS-CoV-2 3′-UTR. LinearSampling and
RNAsubopt are represented in solid bars and striped bars, respectively;
the two DRACO-inferred conformations are in blue (conformation A) and
red (conformation B), respectively. The normalized structural distance of
sampled structures against DRACO-inferred conformations are grouped
into 10 bins, where the distance of 0 means a perfect match of the whole
structure, and the distance of 1 means that all positions in the region are
incorrectly predicted. The numbers of sampled structure in each bin are
illustrated. The majority of samples from LinearSampling are distributed
in bins with smaller structural distance compared with RNAsubopt for
both conformations, suggesting that LinearSampling has a better ability
to model alternative conformations. Here the sample size is 10 000.

experimental models. Then we report the LinearSampling’s
findings on new targets with high accessibility, which can
be potentially used for COVID-19 diagnostics and drug de-
sign.

Alternative conformations and base pairs. Experimental
studies on SARS-CoV-2 have inferred that multiple con-
formations exist. For example, DRACO analysis (43) sug-
gests two alternative structures in the 3′-untranslated re-
gion (UTR) of SARS-CoV-2 based on the clustering of
DMS-MaPseq data. To see if LinearSampling’s structures
are closer to this experimental analysis, we calculate the
normalized structural distance (i.e. the number of incor-
rectly predicted nucleotides normalized by sequence length)
between different algorithms and the two conformations,
where the lower (normalized) structural distance indicates
better correlation with the DRACO results. Figure 9 shows
the number of sampled structures derived from LinearSam-
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pling and RNAsubopt against normalized structural dis-
tance, grouped into 10 bins from the lowest (best) to the
highest (worst) of the distances. It is clear that the distri-
bution of distance between LinearSampling and conforma-
tion A of the DRACO analysis (solid blue bars) shifts to
the direction of lower structural distance compared with
RNAsubopt’s (striped blue bars). Specifically, for confor-
mation A, there are 7023 among 10 000 of LinearSampling’s
structures in the bin of [20, 30), suggesting that 70% of Lin-
earSampling’s structures are similar to conformation A. In
contrast, the majority of RNAsubopt’s sample are in the
bins that have structural distance >50%, suggesting that the
structures of RNAsubopt are similar to neither conforma-
tion A nor conformation B. Therefore, LinearSampling’s
sample correlates better with the DRACO analysis.

Besides the DRACO analysis, COMRADES analysis
provides experimental data for short- and long-range base-
pairing interactions (44), which can be used to verify
the quality of the folding landscape samples regarding
the base pairs in different conformations of SARS-CoV-2
genomes. We observed that LinearSampling’s oracle struc-
ture, compared with that of RNAsubopt, has more base
pairs matched with COMRADES analysis with varying
sample sizes (Supplementary Figure S13). Regarding the
full sample landscapes, LinearSampling has a higher ratio
of matched base pairs to predicted ones, and its total num-
ber of unmatched base pairs is substantially smaller than
RNAsubopt against different sample sizes (Supplementary
Figure S14A and B), indicating that LinearSampling has
a higher hit rate on the COMRADES-inferred base pairs.
The COMRADES data also provides the chimeric reads of
each interaction region, where a larger number of chimeric
reads indicates high credibility of interaction, and we con-
firm that LinearSampling has higher average chimeric reads
per predicted base pairs for all tested sample sizes (Sup-
plementary Figure S14C). On the other hand, RNAsubopt
has higher coverage of COMRADES base pairs, but costs
much longer time (Supplementary Figure S14D). The dif-
ference in sample landscape between LinearSampling and
RNAsubopt is illustrated in a Venn diagram (Supplemen-
tary Figure S14E). LinearSampling tends to sample less di-
verse base pairs, which leads to the benefit of obtaining a
higher ratio of matched base pairs and the cost of missing
some base pairs shown in the COMRADES analysis; while
RNAsubopt tends to sample more diverse base pairs, which
has higher coverage but also results in more base pairs that
are not supported by experimental data.

Accessibility. We investigate if the accessibilities predicted
by LinearSampling match better with the experimentally
guided structures, especially on the regions of interest, e.g.
the 5′-UTR which has conserved structures and plays a
critical role in viral genome replication (46). A number
of studies report structural probing data for SARS-CoV-
2 genomes (14,15,41,43,47,48), including the selective 2′-
hydroxyl acylation analyzed by primer extension (SHAPE)
and dimethyl sulfate (DMS) data. These well-accepted ex-
perimental techniques for RNA secondary structure prob-
ing have been shown to be able to improve the accuracy
of structure prediction (49–51). Therefore, we utilize two

SHAPE-directed structures (14,41) to evaluate different
systems, i.e. LinearSampling, RNAsubopt and RNAplfold.
Figure 10 compares the accessibilities derived from the three
systems with the experimentally guided structures based on
SHAPE reactivities (14). Following the previous study (12),
the accessibilities of window size 4 are visualized in the
top sub-figure, and LinearSampling clearly correlates bet-
ter with the SHAPE-directed structure. For example, RNA-
subopt and RNAplfold (span = 150) overestimate the ac-
cessibilities around the double-stranded region [174, 181],
and RNAplfold (both span = 150 and span = 800) overesti-
mates in the region [276, 284]; in contrast, LinearSampling’s
predictions are close to 0. Also, LinearSampling correctly
captures the accessible region around 50, with a high pre-
dicted accessibility of nearly 1. We further extend the win-
dow size to cover a wider range (from 1 to 11), and visualize
the computational results versus the SHAPE-directed struc-
ture model in the second row (LinearSampling), the third
row (RNAsubopt) and the bottom two rows (RNAplfold).
For instance, the black circle at position 52 and window
size 5 (indicated by a green arrow) represents a highly ac-
cessible region [52, 56] predicted by LinearSampling, which
is surrounded by a box, indicating that the prediction is
supported by the wetlab experiment. In RNAsubopt and
RNAplfold predictions, the same positions are in purple
or orange, indicating that they have lower accessibility and
are less correlated with the SHAPE reactivities. In addition,
LinearSampling predicts the region around position 279,
indicated by blue arrows, as an inaccessible region, which
is supported by the SHAPE-directed structures. The main
differences between the three systems are highlighted in gray
shades. In general, LinearSampling’s result correlates better
with the experimentally guided models.

To further quantify the difference, we calculate the acces-
sibility defects of three important and well-studied regions
in SARS-CoV-2, i.e. the 5′-UTR, the frameshifting element
(FSE) and the 3′-UTR, shown in Table 2. LinearSampling
has lower (better) accessibility defects on all these three re-
gions, except for the FSE region using the reference struc-
ture from Manfredonia et al., on which LinearSampling is
the second best (behind RNAplfold, span = 150) and has
only 0.0025 difference from the best one.

New findings on accessible targets. Next, we aim to com-
putationally obtain accessible regions as potential targets
for diagnostics and drug discovery. A previous study (45)
locates unstructured regions of SARS-CoV-2 by scanning
the reference sequence with windows of 120 nt, sliding by
40 nt and then calculating base-pairing probabilities using
CONTRAfold (52) for these fragments. In total, 75 acces-
sible regions with ≥15 nt are claimed, where each base has
the average unpaired probability of at least 0.6. However,
this method has two flaws: (i) it is not correct to evaluate ac-
cessibility based on unpaired probabilities due to their mu-
tual dependency; and (ii) it neglects long-range base pairs
and has to approximate the accessibilities based on local
structures, which is less accurate (see Figure 8). Instead, we
measure the accessibilities based on samples generated by
LinearSampling, setting the window size to be 15 follow-
ing Rangan et al. (45). We only show the fragments whose
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Figure 10. The accessibilities derived from LinearSampling correlate better with the unpaired region in the SHAPE-directed structure of the 5′-UTR of
SARS-CoV-2 (14,41). Note that the full sequence was used for the accessibility calculation, but only the 5′-UTR is shown. First row: accessibilities of
window size 4 derived from SHAPE-directed structures (blue plus symbol and purple cross symbol; agreed on >90% positions), RNAsubopt (green line),
RNAplfold local mode (blue lines) and LinearSampling (red line). Following the previous study (12), the accessibility of position i stands for the region [i,
i + 3]. Second row: accessibilities predicted by LinearSampling with window sizes from 1 to 11. Each prediction is presented with a filled circle, where the
color correlates with its accessibility value. The SHAPE-directed structure (14) is shown in dot–bracket format along the x-axis, and its accessible regions
are annotated in boxes. Third, fourth and fifth rows: accessibilities predicted by RNAsubopt and RNAplfold (with a base pairing limit of 150 and 800),
respectively. Note that the first row is a special case (window size 4) of the bottom four rows. The main differences are highlighted in gray shading, where
LinearSampling is the most accurate in all cases. For example, the green arrows point to window size 5 at position 52 (representing the region [52, 56]),
showing the case of a 5 nt accessible region in which LinearSampling predicts the highest accessibility, correlating better with the experimentally guided
models. In addition, the blue arrows, pointing to the region around position 279, illustrate an example where an inaccessible region is accurately predicted
by LinearSampling but not by other tools. We chose span = 150 and span = 800 for RNAplfold, the former being the largest default limit of local folding
in most literature and software, and the latter following a previous study (19).

Table 2. Accessibility defect comparisons between in silico predictions (LinearSampling, RNAsubopt and RNAplfold) and experimentally guided models
[Huston et al. (14) and Manfredonia et al. (41)] on UTRs and FSE regions

5′-UTR FSE 3′-UTR Reference

LinearSampling 0.0824 0.4021 0.2151 Huston et al. (14)
RNAsubopt 0.1061 0.4461 0.2573
RNAplfold (span = 150) 0.1304 0.4094 0.2773
RNAplfold (span = 800) 0.1145 0.4320 0.2528

LinearSampling 0.1007 0.3578 0.1338 Manfredonia et al. (41)
RNAsubopt 0.1113 0.3647 0.1879
RNAplfold (span =150) 0.1408 0.3553 0.2154
RNAplfold (span = 800) 0.1201 0.3595 0.1793

The 5′-UTR, FSE and 3′-UTR are [1, 450], [13470, 13545] and [29550, 29870], respectively (45). The sample size is 10 000.

accessibilities are >0.5, i.e. they are more likely to be open
than closed. We list all 23 regions found by LinearSampling
in Supplementary Table S3. Some of the regions are over-
lapped, resulting in a total of nine separate accessible re-
gions, which are illustrated in Figure 11. Of the nine regions,
two are in ORF1ab, one in ORF3a, one in the M gene, three
in the N gene and two in the S (spike) gene whose proteins
can recognize and bind with its receptor (53).

The constant emergence of mutations may lead to
changes in new virus variants. Therefore, it is better to tar-
get both conserved and accessible regions. LinearSampling
is able to integrate conservation information for sampled
structures by loading the partition function dumped from

LinearTurboFold (28), which simultaneously folds and
aligns homologous sequences and can identify conserved
regions. This feature of LinearSampling allows mutation-
insensitive diagnostics and drug design. The homology-
assisted results have been previously reported (28).

DISCUSSION

We focus on simplifying and accelerating the stochastic
sampling algorithm for a given RNA sequence. Algorith-
mically, we present a hypergraph framework under which
the classical sampling algorithm can be greatly simplified.
We further elaborate this sampling framework to formal-
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Figure 11. LinearSampling predicts nine separate accessible regions in the SARS-CoV-2 full genome. Top: the predicted accessibilities of window size 4
(the blue curve) and 15 (the purple curve) within the nine regions. Middle: accessibilities with window sizes from 1 to 20. The region [25700, 25720] in
ORF3a is highly accessible, with an accessibility of >0.9. Bottom: the relative position of each accessible region in the full-genome of SARS-CoV-2. Most
of the regions are in the last third of the genome, and three out of nine are in the N protein. Note that ORF1ab can be further divided.

ize the classical Non-Saving Sampling, and devise two new
sampling algorithms, the Full-Saving Sampling that saves
all hyperedges a priori and avoids re-computing in sampling
phase, and LazySampling which eliminates redundant work
and avoids unnecessary hyperedges saving via on-demand
caching. We show that the LazySampling algorithm, i.e. ex-
act partition function followed by a Lazy-Saving sampling,
is the fastest among the three sampling strategies. Then
we present LinearSampling, which combines LazySampling
and LinearPartition.

LinearSampling is the first sampling algorithm to run in
linear time without imposing constraints on the base pair
distance, and is orders of magnitude faster than Vienna
RNAsubopt. We conclude that

• LinearSampling runs linearly both in end-to-end and
sampling-only time, and can scale up to long RNA se-
quence without any overflow issue;

• its sampled structures correlate better with the ground
truth structures on a diverse database, and with the ex-
perimentally guided structure of SARS-CoV-2;

• it can be applied to SARS-CoV-2 to discover regions with
high accessibilities, which are potential targets for diag-
nostics and drug design.
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Our web server is available at http://linearfold.org/sampling.
Our code and dataset used for benchmark are available
at https://github.com/LinearFold/LinearSampling, and
are uploaded to Zenodo (DOI:10.5281/zenodo.7221764).
The data is also available in the RNAcentral Dataset
at https://rnacentral.org/ with the accession numbers:
URS00000CECFC 6239, URS00000AFBE0 579112,
URS000063D36F 9606, URS000011EF6F 6239,
URS0000A76ACA 3702, URS0000D54043 2711,

URS00006550DA 10090, URS00003E727B 6239,
URS0000505673 559292, URS00005126C9 447,
URS0001980E62 6239, URS00003B07A3 559292,
URS00007A2AA8 1417852, URS0000A96D67 9606,
URS0000A77336 9606, URS0001BE2F5C 9606,
URS00004A9E12 77133, URS0001B81E2E 3702,
URS00008BC195 9606, URS00009B6D67 10090,
URS0000D5C703 9606, URS0001BD0E62 9606,
URS0000E6F737 132585, URS0000A8277C 9940,
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URS00009B94BB 10090, URS0000ECC0E3 191816,
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