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Abstract
As a result of the greatly increased use of mobile devices, the disadvantages of portable

devices have gradually begun to emerge. To solve these problems, the use of mobile cloud

computing assisted by cloud data centers has been proposed. However, cloud data centers

are always very far from the mobile requesters. In this paper, we propose an improved

multi-objective local mobile cloud model: Compounded Local Mobile Cloud Architecture
with Dynamic Priority Queues (LMCpri). This new architecture could briefly store jobs that

arrive simultaneously at the cloudlet in different priority positions according to the result of

auction processing, and then execute partitioning tasks on capable helpers. In the Schedul-
ing Module, NSGA-II is employed as the scheduling algorithm to shorten processing time

and decrease requester cost relative to PSO and sequential scheduling. The simulation

results show that the number of iteration times that is defined to 30 is the best choice of the

system. In addition, comparing with LMCque, LMCpri is able to effectively accommodate a

requester who would like his job to be executed in advance and shorten execution time.

Finally, we make a comparing experiment between LMCpri and cloud assisting architec-

ture, and the results reveal that LMCpri presents a better performance advantage than

cloud assisting architecture.

Introduction
As a result of advances in mobile communication technology, an increasing number of people
are using mobile devices. Mobile devices, such as smart phones and tablets, play an important
role in daily life. These portable devices provide convenience and pleasure to users and, in
doing so, break the restrictions of time and space. Nevertheless, because of inherent hardware
constraints, such as low CPU speeds, limited battery capacities and heat dissipation problems,
mobile devices are not in a position to perform many computation-intensive tasks [1].

Fortunately, the concept of cloud datacenters provides various solutions to these problems.
Because such centers provide abundant computation and storage resources, handheld devices
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can offload their complex applications to the cloud datacenter for execution by the cloud
instead of the mobile devices. For this reason, the concept of mobile cloud computing was pro-
posed [2]. However, because of the long transmission distances from portable devices to cloud
data centers, such a mobile cloud model would suffer from longer latency times and weak-
nesses of wireless networks. In order to solve these problems, two other mobile cloud models
have been presented: one model uses a number of nearby mobile devices as helpers to assist in
fulfilling the requests of the handheld devices, and the other model uses a cloudlet, which is a
nearby server, to fulfill such requests.

In this paper, we propose a novel architecture that replaces the distant cloud using cloudlets
and mobile helpers. Part of helpers and cloudlet would be able to provide assistance to request-
ers in a wireless local area network. To avoid the assistance programming interfering applica-
tion programs which are running in helpers, we think isolation techniques could be used in the
situation. Through isolation techniques, the assistance proceeding is like normal application
programs in mobile devices except that it is monitored and isolated from local applications [3].
In order to resolve the problems that arise when multiple jobs arrive at the local cloud almost
simultaneously, we introduce queues and priorities. Via the architecture, we attempt to solve
the multi-objective scheduling problem that includes minimal execution time and minimal
requester cost of a job. Here, the incoming jobs are briefly stored in different priority positions
according to the result of auction procedure, and that means in every auction round, the win-
ning job could get the current best position. The modified system is called Compounded Local
Mobile Cloud Architecture with Dynamic Priority Queues (LMCpri). In addition, we focus on
scheduling and allocating tasks on helpers in this paper. Because a multi-objective problem is
needed to solve, non-dominated sorting genetic algorithm II (NSGA-II) [4] is employed, which
uses Pareto dominance principle to achieve comparison of different individuals under distinct
objectives. To summarize, our contributions are as follows:

• We propose LMCpri to achieve high QoS of requesters, and LMCpri satisfies minimum exe-
cution time and cost of requesters.

• We concentrate on the scheduling algorithm in Scheduling Module, and NSGA-II is chosen
as scheduling algorithm. The best number of iteration is 30 via comparisons.

• We evaluate LMCpri and LMCque, which does not include priority queues, by execution
time, and prove that LMCpri is better than LMCque. Moreover, we obtain the most suitable
number of priority queues is six via comparing performance-price ratio.

• LMCpri is compared with cloud assisting architecture through CloudSim platform, and the
result reveals that LMCpri is more suitable for the model.

The remainder of this paper is organized as follows. In the following section, we introduce
various related works that have been made by researchers. In Section 3, an improved architec-
ture is illustrated in detail. Section 4 presents the experimental results and analyzes of the ame-
liorating framework. Finally, in Section 5, we conclude the paper and discuss future work.

RelatedWork
Mobile cloud computing has served in a large range of domains, including health care [5], elec-
tronic commerce [6] and online gaming [7]. Most applications of them are relatively heavy
load for mobile devices. To support these applications, researchers have proposed many frame-
works that offload heavy-load jobs from portable devices. There are three general mobile cloud
computing architectures [8]: (1) augmenting the execution of mobile applications using cloud
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resources; (2) enabling mobile devices to work collaboratively as cloud resource providers; and
(3) extending the access to cloud services to mobile devices.

The first architecture takes advantages of traditional cloud computing into mobile comput-
ing. The MAUI offloading architecture attempts to offload fine-grained code to maximize
energy savings with a minimum burden from mobile devices on the infrastructure, as opposed
to coarse-grained process migration [9]. CloneCloud is a system that uses a combination of
static analysis and dynamic profiling to perform partitioning that enables unmodified mobile
applications running in an application-level virtual machine to seamlessly offload part of their
execution from mobile devices onto device clones operating in a computational cloud [10].

The second mobile cloud computing architecture can be characterized into two types of
architectures. One type of representative framework is given in [11] and [12] is an end-to-end
model. The requester device is able to discover a nearby optimal portable device; then, the opti-
mal mobile device will help the requester execute the application. The other model relies on the
remaining resources of adjacent handheld devices, which would constitute an ad hoc network
used to assist the mobile requesters, such as in MobiCloud [13].

Because cloud data centers are always far away from the mobile users, e.g., Amazon’s EC2
infrastructure is located in only six cities worldwide [14], one architecture proposed utilizing a
cloudlet [15] that is a trusted, resource-rich computer or cluster of computers that is well-con-
nected to the Internet and is available for use by nearby mobile devices. Although this frame-
work is situated at the virtual machine level, which is a coarse-grained migration, T. Verbelen
et al. proposed a component-level migration that is a fine-grained process migration [16]. K.A.
Khan et al. quantifiably demonstrated advantages of the cloudlet paradigm over its Internet
cloud counterpart in supporting the quality of service of real-time application in [17]. How-
ever, due to the nature of cloudlet, including managing, scheduling and execution, its resources
may not be available to complete all jobs, thus resulting in increased latency.

As for multi-objective task scheduling, meta-heuristic algorithm always presents a desired
performance, such as multi-objective genetic algorithm. WBGA [18] was proposed by Hajela
P. et al., and it settles different weight to different objective functions. Mostly, the sum of these
weights is 1. Although the advantage of the method is convenient to realize, the disadvantage
of the method is the choice of weight, as it needs plenty of experiment. Srinivas N. et al. pro-
posed NSGA [19], and its fitness assignment is based on non-domination sorting. In order to
preserve diversity in the population, they introduce the biological concept of niche, and then
properly increase the fitness of the individuals which are in the area of sparse density. The
same as WBGA, NAGA is required to define a niche size parameter artificially. So as to avoid
artificial operation and minimize handling time, Deb K. et al. proposed NAGA-II that it uses
the distance between the (x-1) and (x+1) in the same Pareto front on every objective function
to measure the density, where x replaces every individual [4].

Architecture and Scheduling Algorithm

1. Compounded Local Mobile Cloud Architecture
In order to improve real-time performance and make requesters experience high quality of ser-
vices (QoS), the new architecture should decrease latency and cost. Based on these characteris-
tics and to address the disadvantages of existing architectures which are presented in related
works, we introduce a cloudlet and mobile helpers that have relatively sufficient resources into
the new architecture. The new architecture is called Compounded Local Mobile Cloud Architec-
ture (CLMCA) and is described in Fig 1.

According to Fig 1, the operation of CLMCA can be generalized into the following twelve
steps:
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1. Cloudlet monitors the local area network.

2. Mobile helpers send their own information to the cloudlet regularly, and the period is Δt.
The collection module in the cloudlet collects information, which includes the available
CPU power (RCPU), available battery power (BP), wireless bandwidth (WB) and assigned
sequence numbers (SN), which range from 1 tom, from each mobile helper (the serial num-
ber of the cloudlet is 0). We suppose that there arem handheld device helpers. Users of
mobile helpers could set the RCPU,WB and BP by themselves according to current using
situation. After collecting information, cloudlet maintains its resource table, which is uti-
lized to store information of helpers.

3. Requester offloads a job that it cannot execute by itself to the cloudlet through wireless net-
work and requests service.

4. The cloudlet partitions the job and requires a heuristic algorithm for scheduling. The sched-
uling method should make the subtasks faster and more economically, according to col-
lected information.

5. Cloudlet sends a helpful packet to all selected helpers in a broadcasting way within its local
area network.

6. If the helper does not leave the area, it would return a response and its available parameters
to cloudlet.

Fig 1. Compounded local mobile cloud architecture. This model is used to present the execution process of CLMCA.

doi:10.1371/journal.pone.0158491.g001
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7. Cloudlet updates recourse table and statistics status of live helpers within a waiting time,
deadTime. If all helpers, which are chosen to assist requester, response to cloudlet, it will
enter the next step. If any selected helper does not reply until deadTime, cloudlet goes to
have to return to step (4).

8. Cloudlet dispatches tasks to helpers.

9. The working helpers return findings and performance parameters to cloudlet.

10. The work of the cloudlet is to integrate these data and the costs, which the requester should
pay to all helpers through the wireless network, and meanwhile, update recourse table. If
any results are no longer returned within the deadline, outTime, cloudlet will rank helpers
that are in the latest resource table in descending order, and then send uncompleted tasks
to superior helpers again.

11. Cloudlet returns the final result and the deserved reward to requester.

12. Requester pays for the service to helpers in the local mobile cloud through cloudlet.

While there is a problem that is when many requesters send their help requests almost
simultaneously, the original CLMCA is not able to store these jobs. To solve the problem,
queues are added to the architecture.

2. Compounded Local Mobile Cloud Architecture with Queues
The new system is called Compounded Local Mobile Cloud Architecture with Queues
(LMCque), and the framework is shown in Fig 2.

To establish the modified system, we propose four hypotheses in this paper. The first
hypothesis is that the wireless connections between portable devices and the cloudlet are suffi-
cient. The second hypothesis is that not only the cloudlet but also all handheld devices must
install the collecting equipment to collect the necessary information from itself. The third
hypothesis is that Q1, Q2 and Q3 have the ability to store all of the incoming jobs at any time
point. The last hypothesis is that during the time of updating recourse table, none of the col-
lected data change.

As Fig 2 shows, the architecture consists ofManagement Module, Partition Module, Sched-
uling Module and Assembling Module. We use pseudo code to display core functions of these
modules. In initial situation, all modules listen to message continually and wait for input data.

Management Module is used to maintain resource table and administrateQueue Pool in
LMCque. TheQueue Pool, which consists of Q1, Q2, and Q3, is a newly introduced storage cell.
So as to achieve effectiveness of a buffer pool, the Queue Pool is used to provisionally store the
arriving and leaving jobs which are frommobile requesters and Assembling Module, respectively.
Q1 takes charge of storing intact jobs received from requesters when Partition Module is in busy.
Q2 is responsible for stashing tasks which are partitioned from jobs, and waits for scheduling
operations. Q3 is in charge of storing the final result of each job before returning to requesters.

After leaving Q1, job enters into Partition Module. The goal of the Partition Module is to
partition a job, which is in the waiting queue, into multiple tasks and then registers the size of
sending instruction transmissions (ITs), for which the unit is 1 MB, and the calculation amount
(CA), for which the unit is 1 MIPS, of every task. Therefore, a suitable partitioning method
should be adopted. After that, we dispose the partitioned tasks into Q2, and then delete the job
from Q1. Finally, the split result is returned to ensure a successful partition.

Before the tasks are scheduled, theManagement Module collects information of all helpers
again to ensure that they have the most recent data and stores them in the resource table.

Multi-Objective LMCpri to Process Multiple Jobs
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Following the resource table, Scheduling Module executes the scheduling algorithm. The duty
of Scheduling Module is to dispatch all these tasks to helpers, which have sufficient resources to
execute the tasks according to the resource table, and push tasks into a waiting queue taskQ of
corresponding helpers. Within the procedure, we can obtain CPU power dissipation (CP),
sending power dissipation (SP) and receiving power dissipation (RP) through the Wi-Fi Radio
[20].

If a mobile phone is selected as a helper and it is not busy, it will check its taskQ to see
whether it is empty. If there is at least one task in taskQ, the task will be handled by the helper
and then popped from taskQ.

Finally, cloudlet retrieves findings of tasks from all the helpers, assembles the results, and
sends it to Q3 through Assembling Module. In Assembling Module, the core function is startAs-
sembly() and the module maintains two vectors named RcvMsgs and tempRcvMsgSet. The vec-
tor tempRcvMsgSet contains a set of consequences of tasks. RcvMsgs is a vector set, which
stores vectors constructed by results of tasks. When tempRcvMsgSet is not empty, a result
taskRcvMsg will be taken out from it. If there is a vector related to a job (taskRcvMsg is a conse-
quence of a task which belongs to the job) in RcvMsgs, and then taskRcvMsg will be added into
the vector of RcvMsgs. Otherwise, Add taskRcvMsg to a new vector and add the new vector to
RcvMsgs. If all results of the job of taskRcvMsg have been collected, then clear up all of the
results of this job to filnalResult and push filnalResult into Q3. After handling taskRcvMsg, it
will be popped from tempRcvMsgSet.

Fig 2. LMCque: Construct a Queue Pool to briefly store incoming jobs.Q1, Q2, Q3 are queues, which are used to stash jobs or tasks or
results. Resource table is used to store collected information about helpers. All of them are dominated by Management Module.

doi:10.1371/journal.pone.0158491.g002
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However, when some jobs are urgent and the requester would like to pay more money to
complete it early, a single Q1 in the Queue Pool cannot achieve this function. Hence, we apply
the idea of setting jobs to dynamic different priority queues.

3. Compounded Local Mobile Cloud Architecture with Dynamic Priority
Queues
To resolve the problem created by only one waiting job queue, a set of dynamic different prior-
ity queues are set before Q1. The modified framework is named Compounded Local Mobile
Cloud Architecture with Dynamic Priority Queues (LMCpri), and its constructed specification
is presented in Fig 3.

As Fig 3 shows, all the jobs are auctioned according to the sealed-bid second price [21]. Because
the sealed-bid second price is a weak dominant strategy, it is the best choice for all requesters to
bid at the same price as their valuation. By this method, we ensure that requesters tell the truth,
and there is no inflating price situation. The winning job is inserted into the current best position
in a greedy way and the best position is selected in terms of the following formulation:

vp ¼ jnP
h¼1et

; ð1Þ

in which vpmeans processing velocity of the priority queue currently. Moreover, jn and ∑h = 1 et
are the number and the sum of estimated time of jobs which are receiving by the queue, respec-
tively. Initially, the priorities of these priority queues are set randomly, and vp is equal to1. After
inserting a job, vp is smaller than1, so the queue is not the current best position. The estimated
time (et) of a job could compute according to formulation (2):

et ¼ JITsPm
i¼0WBi

þ JITRPm
i¼0WBi

þ JCAPm
i¼0RCPUi

; ð2Þ

Fig 3. A detailed description of dynamic priority queue. Through auction processing, the winning job obtains the current best position, and enters into
corresponding priority queue with timestamp. Then, the job waits for being scanned and inputted in Q1.

doi:10.1371/journal.pone.0158491.g003
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wherem is the sequence number of helpers and we will describe it particularly in next section. JITs
and JITR are data gross of the requester sending and receiving, respectively, and JCA is calculation
quantity of the job. After entering into the current best position, the job is added timestamp to
ensure that only a job would be sent into Q1 even there are two jobs with the same priority at a
certain time. Through this method, if a job transmits request in the second4t, but bids at a high
price, it may be executed earlier than some jobs that arrive in the first4t. On the output end of
priority queues, we scan them in sequence, and choose the job with the highest priority. If there
are two jobs with the same priority, the job having a small timestamp is going to be sent into Q1
first. The dynamic priority processing flowchart is presented in Fig 4.

Fig 4. A flowchart of priority processing.

doi:10.1371/journal.pone.0158491.g004
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After leaving priority queues and waiting queues, the job is moved in Partition Module,
Scheduling Module, and Assembling Module in sequence, the same as LMCque. The Scheduling
Module is discussed mainly in the paper, therefore, multi-objective scheduling method is pre-
sented in the next section.

4. Multi-Objective Scheduling Problem Formulation
This paper shows two different objectives which are minimizing requester cost and minimizing
execution time in LMCpri system. On the one hand, every processor has its own computing
capacity, thus varied processing time and power consumption are exhibited within a set of pro-
cessors, even if each processor completes the same task. On the other hand, because there is a
distinct amount of wireless bandwidth available for every helper, the transmission time and the
transmission costs differ with each other. Since the measurement unit of the size of the trans-
mission task is 1MB, while the unit of bandwidth is bps, in order to uniform units, and make
the formulation seem convenient,WB is multiplied by a constant 0.128 before it is introduced
in formulations. Here, three assumptions have been taken. First, a job is partitioned into n
tasks; there are (m+1) helpers, which consist ofmmobile helpers and the cloudlet, and n is not
smaller than (m+1). Second, these partitioning tasks run independently, and all of the helpers
are heterogeneous. Therefore, the multi-objective task scheduling problem can be proposed as
mapping n tasks onto (m+1) helpers to minimize the total execution time and the requester
cost. Every individual would include an n-dimension solution vector, and the j-th element of
this vector is the SN of the helper that is chosen to perform the j-th task. Thirdly, because the
framework is a small business model, and it is suitable in a local area network, we do not con-
sider about blocking or delaying situations during the transfer time.

If one helper wants to assist requesters to process tasks, the power that it can supply should
be greater than the power consumed by the tasks. Based on the collected information, we pres-
ent the limiting condition as follows:

X
z

CAz

RCPUi

� CP þ ITR
z

WBi

� RP þ ITS
z

WBi

� SP

� �
� BPi;

z 2 f1; 2; � � � ; ng; i 2 f0; 1; 2; � � � ;mg: ð3Þ

This means that a helper whose SN is equal to i can accomplish the z-th task, which may
include more than one task, and that the total consumed power of these tasks is less than the
power that the i-th helper can offer. Under these conditions, we hypothesize that all n tasks can
be completed by the (m+1) helpers. Thus, we introduce a metric denotation θ to register the
number of executed tasks; according to the problem description, the sum of the components of
θ should be equal to n. The definition of θ is

y ¼ Pn
j¼1

Pm
i¼0g

i
j ¼ n; j 2 f1; 2; � � � ; ng; i 2 f0; 1; 2; � � � ;mg: ð4Þ

In this equation, gij denotes that the j-th task could be executed by the i-th helper, and its def-

inition is

gij ¼
1; the i�th helper could execute the j�th task;

0; the i�th helper could not execute the j�th task:
ð5Þ

(

In this paper, we want to solve a multi-objective task scheduling problem in terms of the
minimal execution time and the minimal requester cost; thus, the objective function should be
discussed. The first goal is to minimize execution time, which includes the helper processing
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time and the transmission time, both of which depend on the CA, RCPU and on the ITS, ITR,
WB, respectively. According to [22], the execution time function can be written as

T ¼ Max
Pn

j¼1

CAj

RCPUi

� gij þ
ITR

j

WBi

� gij þ
ITS

j

WBi

� gij

� �� �
; i 2 f0; 1; � � � ;mg: ð6Þ

The second objective is to minimize the cost of all requesters, which includes the power con-
sumption of the helpers and the bandwidth cost of transmission, both of which in turn are
dependent on CA, ITR and ITS, respectively. Here, we define CPro as the processing cost, COUT

as the sending cost and CIN as the receiving cost. Therefore, the requester cost function of the
jobs in no priority queue is as follows:

Cbase ¼
Pm

i¼0

Pn
j¼1

CAj

RCPUi

� CPro � gij þ
ITR

j

WBi

� CIN � gij þ
ITS

j

WBi

� COUT � gij

� �� �
: ð7Þ

When considering about priority, different extra cost should be added to the requesters’
cost. According to sealed-bid second price [21], the winner in each auction round should pay
the second high bid price to obtain the best position of priority queues, and we use Cadd to pres-
ent extra cost. Therefore, the total cost could be calculated, which is

Ctotal ¼ Cbase þ Cadd: ð8Þ

Based on these objective functions, the fitness functions can be written as follows:

T ¼ Max
Pn

j¼1

CAj

RCPUi

� gij þ
ITR

j

WBi

� gij þ
ITS

j

WBi

� gij

� �� �
;

Cbase ¼
Pm

i¼0

Pn
j¼1

CAj

RCPUi

� CPro � gij þ
ITR

j

WBi

� CIN � gij þ
ITS

j

WBi

� COUT � gij

� �� �
;

Ctotal ¼ Cbase þ Cadd;

ð9Þ

8>>>>>><
>>>>>>:

which should satisfy the constrains:

P
z

CAz

RCPUi

� CP þ ITR
z

WBi

� RP þ ITS
z

WBi

� SP

� �
� BPi;

y ¼ Pn
j¼1

Pm
i¼0g

i
j ¼ n:

z 2 1; 2; � � � ; nf g; j 2 1; 2; � � � ; nf g; i 2 0; 1; 2; � � � ;mf g:ð10Þ

8><
>:

5. Task Scheduling using NSGA-II Algorithm
5.1 Selection Operator. Efficient scheduling algorithm is able to increase the searching

speed and avoid falling into local optimal early. Therefore, NSGA-II is designated as scheduling
algorithm. According to NSGA-II [4], we have two fitness values, Rp and Dp. Rp means the
front number of p, and Dp displays the degree of looseness of the location of p. Due to the dif-
ferent significance of these two fitness values, a partial relationship is used in selection operator.
The partial relationship�Rp;Dp

is like this:

m�Rp;Dp
u if ðmRp

< uRpÞ
or ðmRp

¼ uRpÞ and ðmDp
> uDp

Þ; ð11Þ

where μ and ν are different individuals. Through this operation, we get a new generation popu-
lation, in which the individuals possess a smaller Rp or a larger Dp when they have the same Rp.
Just as Fig 5 shows:
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Pt and Qt are used to represent the parent generation and the offspring generation, respec-
tively. When choose appropriate Dp, in order to increase the calculation speed, a tournament
selection operator is employed.

5.2 Crossing Operator and Mutation Operator. Crossing and mutation operators are
used to generate more diverse individuals. In this paper, adaptive linear crossing operator is
employed. It not only improves the global convergence at the beginning and the local conver-
gence at the ending of processing, but also protects diversity of the population as far as possible.
Xt

n and X
t
m represent individual n and individualm in the t-th generation respectively. By the

linear crossing operator, their offspring Xtþ1
n and Xtþ1

m can be calculated as follows:

Xtþ1
n ¼ aXt

n þ ð1� aÞXt
m

Xtþ1
m ¼ ð1� aÞXt

n þ aXt
m

; ð12Þ
(

where α is a crossing probability and it is not a constant, since it is denoted according to the fit-
ness value Rp, just as follows:

a ¼
mRp

ðmRp
þ nRp

Þ : ð13Þ

As for the mutation operator, a fixed mutation probability β is chosen. If the random proba-
bility of an element is less than β, it will trigger a mutation operator.

After selection operator, crossing operator and mutation operator, the next generation
could be obtained, and the number of iteration is t. If t has not arrived at the max iterations,
the procedure will enter into the next iteration, otherwise, an optimal result will be selected
randomly from the first front.

Fig 5. Selection operator of NSGA-II.

doi:10.1371/journal.pone.0158491.g005
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Simulation and Evaluation

1. Experimental environment and methodology
We employ Lenovo ThinkCentre M8400t-N000 installed 32-bit Ubuntu 14.04 LTS to achieve
the simulation. The programming language uses C++ and Java. The architecture is imple-
mented by C++ programming language, and we use vector container to achieve FIFO function
of queues in the architecture. Java is utilized to simulate cloud center through a platform,
CloudSim [23].

We consider the real-time performance of the architecture, so jobs which are chosen should
take up lots of CPU performance and have a fast processing speed, for example, quick sort on
data stream, and data stream, which is composed of natural numbers, is split randomly. In the
experiments, the population size (Pop), max iteration and mutation probability (β) are set at
20, 100 and 0.05. Moreover, we want to explain the architecture by simulation, every job is gen-
erated randomly according to size and complexity, so they are selected from intervals [10, 200]
(MB) and [500, 5000] (MI) at random, respectively. In order to measure the scalability of our
architecture, we set helper number in {4, 6, 8, 12, 16, 20} and task number in {16, 32, 64}. In
addition, the helpers’ parameters which include RCPU, BP andWB are randomly chosen from
three intervals that are [10, 750] (MIPS), [130,260] (mAh) and {4, 5, 6, 7, 8} (Mbps), respec-
tively. We suppose that the status of helpers do not change within 60s and it is expressed by Δt.
The parameters contained by the framework are deadTime and outTime that are assigned at 4s
and 30s, and Cadd is randomly selected from interval [0.1, 0.5].

In the following section, the LMCpri is evaluated using simulation experiments, which is
composed of three parts. First, we compare NSGA-II with PSO and sequential scheduling, via
requester cost and total execution time, to present that NSGA-II is the best choice. Moreover,
we search for suitable iteration times of task dispatching using the NSGA-II algorithm in our
system through different number tasks and helpers to make a determining on a finer scale. Sec-
ondly, LMCpri is compared with LMCque when more than one job arrive simultaneously to
illustrate the advantages of LMCpri. Thirdly, we make a comparison between the proposed
architecture and the cloud assisting architecture that has been introduced by other papers. In
order to guarantee the accuracy of data result, we run every experiment 30 times, and then
record average values.

2. Experiments on Scheduling Selection
In this paper, the NSGA-II algorithm is used as the task scheduling decision method. To show
that NSGA-II is a better choice for this special application, we compare it with Particle Swam
Optimization (PSO) [24] and sequential scheduling, based on execution time and cost of the
requester. The specific parameters of PSO are c1 = c2 = 2.0, vmax = 4.0, vmin = -4.0, xmax = 4.0
and xmin = 0, and the fitness function could be obtained from (6) and (8), that is

fitness value ¼ 0:7� Tþ 0:3� Ctotal: ð14Þ

Moreover, in order to shorten convergence time of NSGA-II algorithm, we try to select an
appropriate iteration times for this particular system. In this set of experiments, the same job is
used because of the necessity of fixing variant. In addition, we do not set priority for the job,
and that means there no extra expenditure. So as to prove scalability of the architecture, the job
is partitioned into 16, 32 and 64 tasks, and these tasks are executed on four, six, eight, twelve,
sixteen, and twenty helpers, respectively. Since we have supposed that the task number is more
than the helper number, we do not consider the situation that 16 tasks are scheduled to 20
helpers.
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2.1 The Requester Cost of NSGA-II, PSO Algorithm and sequential scheduling.
Because users in different countries use different monetary systems, the cost presented in this
paper is a fiducial comparable value, and the actual expense should be determined according to
the factual situations. In this group of experiments, the same job is employed by different
experiments. According to reference [20], we can define CPro, CIN and COUT in Table 1, and
the relationship among total requester cost, the number of helpers and tasks is illustrated in
Fig 6.

As Fig 6 displays, NSGA-II brings the least total cost compared with PSO and sequential
scheduling, and with the increasing number of helpers, the advantage of NSGA-II is shown
more clearly. The reason for this phenomenon is that tasks have more choice about choosing
which helper to process them, and NSGA-II has the ability to find more accurate global opti-
mal solutions than other scheduling algorithms through Pareto dominance. In addition, what-
ever the scheduling algorithm, total cost reduces with decreasing number of tasks. That is
explained by the fact that it also inevitably lengthens communication time, even though a fine-
grained task could be dispatched to a helper which owns stronger task processing capability.
Thirdly, with increasing of iteration times, the total cost reduces when task numbers and helper
numbers are fixed, and this is because of the convergence of scheduling algorithm.

2.2 The Total Execution Time of NSGA-II, PSO Algorithm and sequential scheduling.
When the job is handled on twelve and sixteen helpers by sequential scheduling, it takes 10.1s
and 6.1s to complete sixteen tasks, so they spend longer time than other measurement groups.
Therefore, we do not present the sequential scheduling time for 16 tasks that are processed on
12 or 16 helpers.

From Fig 7, we could find that regardless of helper number and task number, NSGA-II
always presents the shortest total execution time among the three scheduling algorithms,
which uses within 4000ms when there are 16 tasks, and within 2000ms at 32 or 64 tasks. The
second one is PSO, and the last one is sequential scheduling. The reason for this phenomenon
is that though NSGA-II algorithm spends longer time than PSO in scheduling process, but it
can avoid locally optimal solution effectively and tries it best finding the most excellent solution
in global searching space, and so it reduces processing time of helpers. In addition, we surpris-
ingly discover that with the increasing number of tasks, NSGA-II does not decrease execution
time obviously, and when a job is partitioned into 32 tasks, it reveals a better performance.
This may be due to incremental communication time within processors. Though helpers
implement tasks during shorter processing time, it takes a long time for transferring. Therefore,
64 tasks do not show a result as expectation. However, with the increasing of helpers, total exe-
cution time decreases dramatically.

So as to reduce unnecessary scheduling time, we try to select the most suitable iteration
times, and it will be shown in the next section.

2.3 Iteration Times of NSGA-II Algorithm. We find that the total execution time takes
on a stable tendency with increasing iteration times. Therefore, for purpose of cutting down
execution time, we try to reduce iteration time.

As Fig 8(A) shows, average time drops markedly when the number of iteration times
declines from 10 to 30, and it ascends gradually with increasing iteration times from 30 to 150.

Table 1. Power consumption of requester cost items.

Cost item Average cost

Processing cost (CPro) 0.7

Receiving cost (CIN) 0.2

Sending cost (COUT) 0.3

doi:10.1371/journal.pone.0158491.t001
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When the iteration times arrive at 150, average execution time exceeds the time that the num-
ber of iterations is 10. So iteration times are 30, the average execution time is shortest, which is
less than 1s. From Fig 8(B), it apparently presents that as iteration times reach 30, the fre-
quency of iteration times of the shortest execution time is the maximum value of seven.

The number of iterations equaling to 30 presents the best execution time both in Figs 8(A)
and 7(B), because of the strong convergence and global searching capability of NSGA-II. In the
following experiments, we will choose the number of iterations as 30 to decrease execution time.

Fig 6. Total requester cost with a varying number of helpers and tasks. The x-axis and y-axis represent iteration times and the total cost, respectively.
Every line graph reveals a number of helpers. We use triangle, square, and circle to denote sequential scheduling, NSGA-II and PSO, respectively. Green,
blue and red show different task numbers respectively.

doi:10.1371/journal.pone.0158491.g006
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3. Evaluation of Compounded Local Mobile Cloud Architecture with
Dynamic Priority Queues
In this section, we are going to evaluate LMCpri, according to the defined performance-price
ratio, and the formula of performance-price ratio is as following:

performance�price ratio ¼ lifeTime� Time
Cost

; ð15Þ

Fig 7. Total execution time with different number of tasks, helpers. The x-axis and y-axis represents iteration times and total execution time,
respectively. Every line graph represents a number of helpers. We use triangle, square, and circle to denote sequential scheduling, NSGA-II and PSO,
respectively. Green, blue and red show different task numbers respectively.

doi:10.1371/journal.pone.0158491.g007
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where lifeTime represents the longest waiting time of requesters, and we set it at 180s. Time
and Cost stand for the total execution time and the total expense of a job, respectively. Firstly,
we want to choose a suitable number for priority queues. Then, we would like to prove LMCpri
is better than LMCque via comparing execution time.

3.1 The number of priority queues. So as to choose a suitable number for priority queues,
we compare the number of priority queues in range of 2, 4, 6, 8, and moreover, every priority
queue has capacity to accommodate five jobs. The number of arriving jobs is within 5, 10, 20,
30 and 40. In addition, according to the second section of experiments, we select task number
is 32 and helper number is 8, which present the shortest execution time and lowest cost when
the number of scheduling times is 30. The average performance-price ratio of jobs in different
numbers of priority queues is shown in Fig 9.

The lines in Fig 9 show a tendency from rise to decline to rise of performance-price ratio of
different number of jobs in priority queues. The performance-price ratio remains stable when
the jobs’ number is in the range of five to ten, and then, when there are twenty jobs arrive
simultaneously, the highest performance-price ratio emerges no matter how many priority
queues. Moreover, if 30 jobs reach cloudlet at the same time, even though the priority number
is different, they all present the lowest performance-price ratio. However, with the increasing
number of jobs, average performance-price ration starts to recover. We could find that the
green line, which means six priority queues, appears a better trend, and the performance-price
ratios of jobs in it are higher than 35 except 30 jobs reach at the same time. When there are 20
or 40 jobs in the system, it even presents the best ratio. Therefore, in the following experiments,
we choose the number of priority queues is six.

3.2 Experiments Comparing LMCpri and LMCque. In order to present all of possible sit-
uations, we choose the number of jobs in 5, 10, 20, 30, 40 again. These two frameworks mea-
sure the same jobs to control variable. Moreover, the number of priority queues is 6 and the
storage capability of every priority queue is five jobs. The same as previous experiment, the
task number is 32 and the helper number is eight.

As Fig 10 displays, jobs in LMCpri present a shorter execution time than LMCque in general
tendency. When there are not so many jobs coming simultaneously, the lines of their process-
ing time overlap with each other. That is because jobs’ number is few, the current best position
in priority queues does not plays its effect fully. With the number of jobs increasing, LMCpri

Fig 8. Selecting iteration times of NSGA-II in LMCque and LMCpri. (a). Average value of execution time of different iteration times.
Different iteration times are exhibited in x-axis, and y-axis presents average value of execution time. (b). Frequency of iteration times.Different
iteration times are displayed in x-axis, and y-axis presents the frequency of iteration times.

doi:10.1371/journal.pone.0158491.g008
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presents its advantages gradually. When there are 40 jobs arrive at the same time, average exe-
cution time of jobs in LMCpri remains lower than 60s, but in LMCque, it has raised more than
one minute. We discover that even though auction process of priority queues introduces extra
time, the strategy of choosing the current best position for winner still saves more execution
time. Therefore, LMCpri shows a better performance than LMCque no matter the number of
arriving jobs.

4. Comparing LMCpri and Cloud Center Architecture
In this section, we utilize CloudSim platform [23] to simulate cloud datacenter and make a
comparison between LMCpri and cloud assisting architecture (CAA) through the gradually
increasing number of jobs, which are defined by 5, 10, 20, 30, respectively, in every group of
contrast test. In the experiments, we modify the number of helpers and tasks to testify compre-
hensively. In order to uniform variants in the two mobile cloud architectures, the number of
helpers equals to the number of VMs in CloudSim, and similarly, the number of tasks is the
same in both two architectures.

As Fig 11 shows, with the increasing number of jobs, both LMCpri and CAA present a rais-
ing execution time tendency. When there are five jobs, the longest total execution time of
LMCpri and CAA are 2.75s and 6.08s, respectively, while when there are twenty jobs, the lon-
gest time of LMCpri and CAA are 41.45s and near 250s, respectively. In addition, we can clearly
find that following the augment of job number, the lines of execution time of LMCpri and CAA
coincide gradually. This is because cloud centers are designed for large scale applications, and
present excellent performance. While there are not so many jobs due to LAN, therefore, our

Fig 9. Selecting a suitable number for priority queues.Different numbers of jobs are displayed in x-axis, and y-axis presents the average
performance-price ratio of jobs. On the right side, 2, 4, 6, 8 represents different numbers of priority queues.

doi:10.1371/journal.pone.0158491.g009
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architecture displays greater performance than cloud assisting architecture. Moreover, we find
that there is a plateau in the first and second figures, and that is because jobs are not split in
CloudSim platform, every job is scheduled as an entirety. If they were split into tasks, it would
augment workload of scheduling procedure, and bring plenty of extra time.

Conclusion and Future Work
In this paper, we exhibit a compounded local mobile cloud computing architecture with
dynamic priority queues (LMCpri) to achieve high QoS of requesters. The architecture should
meet minimum execution time and cost of requesters, and we give its main idea, simulation
implementation and evaluation. In addition, we are focused on the scheduling algorithm in
cloudlet, and NSGA-II is chosen as scheduling algorithm through comparing with PSO and
sequential scheduling. In order to satisfy the business model and save execution time, the num-
ber of iteration times is confirmed as 30. So as to choose the best number of priority queues of
LMCpri, performance-price ratio is introduced, which is calculated by lifeTime, execution time
and the total cost, and we prove the most suitable number is six through experiments. Compar-
ing with LMCque, LMCpri has a short execution time no matter jobs’ number. Finally, after
comparing it with cloud assisting architecture through CloudSim platform, LMCpri is approved
more suitable than cloud assisting architecture in LAN, since it takes shorter execution time
when there are not so many jobs and helpers simultaneously.

In future work, we plan to thoroughly improve the architecture. Firstly, we will seek to
achieve the architecture on hardware, not only simulation. Secondly, the partitioning and
scheduling algorithms will be selected strictly to present a better performance than now.

Fig 10. Comparing LMCpriwith LMCque at execution time. Different numbers of jobs are displayed in x-axis, and y-axis presents the
average execution time of jobs.

doi:10.1371/journal.pone.0158491.g010
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Finally, appropriate employment rules will be proposed which is used to solve the problem that
many cloudlet response to the same requester at the same time.
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