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The harshness of legionellosis differs from mild Pontiac fever to potentially fatal Legionnaire’s disease. The increasing 
development of drug resistance against legionellosis has led to explore new novel drug targets. It has been found that 
phosphoglucosamine mutase, phosphomannomutase, and phosphoglyceromutase enzymes can be used as the most 
probable therapeutic drug targets through extensive data mining. Phosphoglucosamine mutase is involved in amino sugar 
and nucleotide sugar metabolism. The purpose of this study was to predict the potential target of that specific drug. For this, 
the 3D structure of phosphoglucosamine mutase of Legionella pneumophila (strain Paris) was determined by means of 
homology modeling through Phyre2 and refined by ModRefiner. Then, the designed model was evaluated with a structure 
validation program, for instance, PROCHECK, ERRAT, Verify3D, and QMEAN, for further structural analysis. Secondary 
structural features were determined through self-optimized prediction method with alignment (SOPMA) and interacting 
networks by STRING. Consequently, we performed molecular docking studies. The analytical result of PROCHECK showed 
that 95.0% of the residues are in the most favored region, 4.50% are in the additional allowed region and 0.50% are in the 
generously allowed region of the Ramachandran plot. Verify3D graph value indicates a score of 0.71 and 89.791, 1.11 for 
ERRAT and QMEAN respectively. Arg419, Thr414, Ser412, and Thr9 were found to dock the substrate for the most favorable 
binding of S-mercaptocysteine. However, these findings from this current study will pave the way for further extensive 
investigation of this enzyme in wet lab experiments and in that way assist drug design against legionellosis. 
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Introduction

Legionella pneumophila is a gram-negative intracellular 
facultative pathogen that is mainly responsible behind 
hospital and community-acquired legionellosis and about 
90% cases of legionellosis are caused by this species [1]. 
Legionellosis patients predominantly have pneumonia, 
chills, fever even their cough likely to be dry or phlegm 

nature. L. pneumophila isolation by comparing clinical and 
environmental L. pneumophila isolates precludes different 
sources whether it is contagious or not through a number of 
typing methods. Such methods of typing make it’s easier like 
pulsed-field gel electrophoresis (PFGE), is usually considered 
to be extremely biased [2-6]. PFGE can recognize unique 
strains of L. pneumophila with a precise profile that is 
considered sporadic. The origin of L. pneumophila sg 1 clone 
was identified at 1997. In Paris, legionellosis was caused by 
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a single L. pneumophila sero group 1 strain [7]. An ample of 
enzymes is required in bacterial metabolism. Drugs 
resistance against L. pneumophila considered to the search for 
most novel drugs of designing. At present, computational 
analysis was taken place in order to discover novel drug 
targets that are non-homologous to human. All enzymes 
involved in metabolic pathway of those certain bacteria are 
precursor to design such kind of drugs. Phosphoglucosa-
minemutase and phosphomannomutase, these two typically 
have the potential target sites. Phosphomannomutase is 
processed with glycosylation, adding the groups of sugar 
molecules (oligosaccharides) to proteins. The enzyme pho-
sphoglucosamine mutase catalyzes the chemical reaction 
alpha-D-glucosamine 1-phosphate to D-glucosamine 6- 
phosphate, which converts alpha-D-glucosamine 1-phosphate 
to D-glucosamine 6-phosphate. This enzyme is pheno-
menally the same as phosphomannomutase, which transfers 
a phosphate group within a molecule. The systematic name 
of phosphoglucosamine mutase is alpha-D-glucosamine 
1,6-phosphomutase. It participates in metabolism of amino 
sugars. Phosphoglucosamine mutase (GlmM) catalyzes the 
formation of glucosamine-1-phosphate from glucosamine- 
6-phosphate, an essential step in the pathway for UDP- 
N-acetylglucosamine biosynthesis in bacteria. This enzyme 
must be phosphorylated to be active and acts according to a 
ping-pong mechanism involving glucosamine-1,6-diphosphate 
as an intermediate [8]. The phosphoglucosamine mutase 
auto-phosphorylates in vitro in the presence of ATP. The same 
is pragmatic with phosphoglucosamine mutases from other 
bacterial species, yeast N-acetylglucosamine-phosphate 
mutase, and rabbit muscle phosphoglucomutase. Labeling 
of GlmM enzyme with ATP requires divalent cation. The label 
can be lost if it is incubated more vigorously with of its 
substrates. At glycosylation, the phosphomannomutase enzyme 
converts mannose-6-phosphate to mannose-1-phosphate [9]. 
Mannose-1-phosphate is converted into GDP-mannose 
which transfers mannose to the growing oligosaccharides 
chain. Congenital disorder type Iais is initiated by mutations 
in the PMM2 gene. Mutations alter the formation of 
phosphomannomutase enzyme that lead to the reduced 
enzyme activity and shortage of GDP mannose within cells. 
As there have no enough activated mannose, incorrect 
oligosaccharides are produced. Abnormal glycosylated 
proteins in organs and tissues regulate the signs and 
symptoms in CDG-Ia [10]. In addition, it participates in the 
metabolism of both fructose and mannose.

So, homology modeling will predict the desired function 
and possible disease treatment if needed because of its 
importance on cell metabolism systems. The present study is 
aimed to predict the three-dimensional (3D) structure of 
phosphoglucosamine mutase by means of homology modeling. 

Consequently, to depict its structural features and to 
comprehend the molecular function, the structural model 
for the desired protein was constructed.

Methods 
Sequence retrieval

The amino acid sequences of the enzyme phospho-
glucosamine mutase in L. pneumophilia (strain Paris) were 
retrieved from the UniProt Knowledge Base (UniProtKB) 
database, which is the foremost hub for the compilation of 
well-designed information on proteins, with consistent, 
accurate, and rich annotation. The accession ID of 
phosphoglucosamine mutase is Q5X1A3, and it contains 
455 amino acids.

Analysis of physico-chemical properties

ProtParam (http://web.expasy.org/protparam/), a tool of 
Expasy was used for the analysis of the physiological and 
chemical properties from the protein sequence. This tool can 
predict different physico-chemical properties, like the molec-
ular weight, isoelectric pH, aliphatic index, grand average of 
hydropathicity (GRAVY), and extinction coefficients.

Secondary structure prediction

Secondary structure was predicted by using the self- 
optimized prediction method with alignment (SOPMA) [11]. 
The protein’s secondary structure includes an  helix, 310 
helix, pi helix, beta bridge, extended strand, beta turns, bend 
region, random coil, ambiguous states, and other states. 
SOPMA predicts these properties by using homologous 
protein identification, sequence alignment, and conforma-
tional score determination method. Prediction accuracy was 
confirmed by correlation coefficient value. Plain text format 
data were inputted, and default parameters were set.

Protein-protein interaction networking 

Protein cooperates with other proteins to perform 
accurate functions. To identify protein-protein interactions, 
STRING was used. STRING is a biological database that is 
used to construct protein-protein interaction (PPI) networks 
for different known and predicted interactions. At present, 
the database covers up to 5,214,234 proteins from 1,133 
organisms [12].

Model building 

3D structure determination of a protein is the key step of 
structural genomics initiative [13]. To predict the 3D 
homology model of phosphoglucosamine mutase, Phyre2 
(Protein Homology/Analogy Recognition Engine) [14], the 
most popular online protein fold identification server, was 
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Table 1. Physicochemical properties of phosphoglucosamine mutase from Legionella pneumophila (strain Paris)

No. of
amino acids

Molecular 
weight pI Asp 

+ Glu
Arg 

+ Lys
Extinction 
coefficient

Aliphatic 
index 

Instability 
index 

Grand average of 
hydropathicity

455 48,343.6 6.27 48 45 23,295 108.00 27.68 0.059

used. Phyre2 uses a dataset of known proteins taken from 
different reliable databases, such as Structural Classification 
of Proteins (SCOP) database and Protein Data Bank (PDB). 
Through sequential steps, such as profile construction, 
similarity analysis, and structural properties, Phyre2 selects 
the best suited template and generates a protein model. To 
get an accurate model, intensive mode of protein modeling 
was selected. The input data of this enzyme were in FASTA 
format. In this respect, the intensive mode of protein 
modeling was selected in order to get an accurate model. 
After model building, it is necessary to further refine in quest 
of the best model generation.

Model refinement

Homology-based modeling often contains significant 
local distortions that render the structure models less useful 
for high-resolution functional analysis. To refine the 
predicted protein model, ModRefiner [15], an algorithm for 
atomic-level, high-resolution protein structure refinement, 
was used. Protein sequences were given in the FASTA 
format, and refinement was done for several times to get the 
most accurate structure.

Evaluation and validation of the model

The accuracy and stereo chemical quality of the predicted 
model were evaluated with PROCHECK [16, 17] by 
Ramachandran plot [18] analysis, which was done through 
“Protein structure and model assessment tools” of Swiss- 
model workspace; 2.5 Å resolution was selected for 
PROCHECK analysis. The best model was selected on the 
basis of overall G-factor, number of residues in the core, and 
allowed, generously allowed, and disallowed regions. ERRAT 
[19], Verify3D [20], and Qualitative Model Energy Analysis 
(QMEAN) [21] were used for further analysis of the selected 
model. The verified structure was visualized by Swiss-PDB 
Viewer [22].

Active site analysis

The active site is the specific region of the target protein 
responsible for its activity and is constructed of different 
amino acids. To identify the active site with the determined 
model, Computed Atlas of Surface Topography of proteins 
(CASTp) [23] server was used. This provides an online 
resource for locating, delineating, and measuring concave 

surface regions on three-dimensional structures of proteins, 
including pockets located on protein surfaces and voids 
buried in the interior of proteins.

Docking simulation study

Molecular docking is a computer simulation procedure to 
calculate the conformation of a receptor-ligand complex. It is 
used to identify the binding affinity and interaction energy of 
the molecules with the target protein. Docking analysis was 
performed by AutoDock Vina [24], which is an automated 
procedure for predicting the interaction of ligands with 
bio-macromolecular targets. Before initiating the docking 
stimulations, phosphoglucosamine mutase protein was 
modified by adding polar hydrogen, removing all the water 
molecules, and was also set with the grid box for its binding 
site, whereas all the torsional bonds of ligands were set free 
by the ligand module. To evaluate the binding energy on the 
macromolecule coordinate, a three-dimensional grid box 
(box size, 76 × 76 × 76 Å; box center, 11 × 90.5 × 57.5 for 
x, y, and z, respectively) was created using Auto Grid, which 
calculates the grid map. The combined binding with target 
protein phosphoglucosamine mutase and ligand, s- 
mercaptocysteine, was obtained by using PyMOL (The 
PyMOL Molecular Graphics System, version 1.5.0.4, 
Schrödinger, LLC) [25].

Results and Discussion

The UniProt Knowledge Base (UniProtKB) delivers an 
authoritative resource for protein sequences and functional 
information. Sequences of phosphoglucosamine mutase of 
Legionella pneumophilia (strain Paris) were obtained from 
UniProtKB. Manual annotation is the landmark of the 
SwissProt section of UniProtKB [26, 27]. The protein 
sequence was analyzed using the ProtParam server [28], 
which can predict the physical and chemical parameters for 
the protein. The parameters of this server are helpful for 
experimental handling of the protein, like biological analysis 
or extraction.

ProtParam results reveal that the protein has 23,295 
extinction coefficients, 27.68 instability index, 108.00 
aliphatic index, and 0.059 grand average of hydrophobicity, 
with more positively charged residues than negatively 
charged amino acids. The physico-chemical properties of 
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Fig. 2. Protein-protein interaction network of phosphoglucosamine
mutase.

Table 2. Calculated secondary structure elements of phospho-
glucosamine mutase of Legionella pneumophila by SOPMA

Secondary structure Residue (%)

Alpha helix (Hh) 194 (42.64)
310 helix (Gg) 0
Pi helix (Ii) 0
Beta bridge (Bb) 0
Extended strand (Ee) 81 (18.80)
Beta turn (Tt) 45 (9.89)
Bend region (Ss) 0
Random coil (Cc) 135 (29.69)
Ambigous states (?) 0
Other states 0

SOPMA, self-optimized prediction method with alignment.

Fig. 1. Predicted secondary structure 
of phosphoglucosamine mutase. Here,
helix is indicated by blue, while 
extended strands and beta turns are 
indicated by red and green, respectively.

Fig. 3. Refined model of the protein phosphoglucosamine mutase.

phosphoglucosamine mutase are tabulated in Table 1.
Secondary structure analysis is increasing day by day to 

predict protein function and structure. The secondary 
structure of phosphoglucosamine mutase was predicted by 
SOPMA with standard parameters. Secondary structure 
parameters of phosphoglucosamine mutase are presented in 
a tabulated form in Table 2, which shows it contains 42.64% 
alpha helix, 18.80% extended strand, 9.89% beta turn, and 
29.69% random coil. The graphical secondary structure of 
phosphoglucosamine mutase is shown in Fig. 1.

PPI network generation has become very important tool of 
the modern biomedical research arena for the understanding 
of complex molecular mechanisms and the detection of 
novel modulators of disease processes. These types of work 
have been shown to be very important in the study of a wide 
range of human diseases, as well as their signaling pathways 
[29-31]. PPI of phosphoglucosamine mutase was generated 
through STRING, presented in Fig. 2. STRING forecasts a 
confidence score and 3D structures of protein and protein 
domains. Confidence scores were generated on the basis of 
different parameters, like neighborhood, co-occurrence, 
coexpression, and homology. STRING utilizes references 
from UniProt and predicts functions of different interacting 
proteins. PPI network demonstrates that phosphogluco-
samine mutase interacts with 10 other proteins, such as mur 
E is hypothetical protein with a confidence score of 0.687; 
glmU is bifunctional N-acetylglucosamine-1-phosphate 
(Glc-N-1-P) uridyltransferase/glucosamine-1-phosphate N- 
acetyltransferase (UDP-GlcNAc), which catalyzes the last 
two sequential reactions in the de novo biosynthetic 
pathway for UDP-GlcNAc. It is also responsible for the 
acetylation of Glc-N-1-P to give GlcNAc-1-P and for the 
uridyl transfer from UTP to GlcNAc-1-P, which produces 
UDP-GlcNAc. This protein is closely related to glmM with the 
highest confidence score (0.998). The second highest confi-
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Fig. 4. Ramachandran plot analysis of predicted protein through 
Swiss model Workshop.

Table 3. Ramachandran plot statistics of phosphoglucosamine 
mutase from Legionella pneumophila (strain Paris)

Ramachandran plot statistics Residue (%)

Residues in the 
most favored regions [A, B, L]

355 (95.0)

Residues in the additional 
allowed regions [a, b, l, p]

17 (4.5)

Residues in the generously 
allowed regions [a, b, l, p]

2 (0.5)

Residues in the disallowed regions [xx] 0 
No. of non-glycine and 

non-proline residues
374 (100)

No. of end residues 
(exclusive of Gly and Pro)

2

No. of glycine residues 48
No. of proline residues 16
Total No. of residues 440

dence protein is glmS, glucosamine-fructose-6-phosphate 
aminotransferase, which catalyzes the first step in hexo-
samine metabolism, converting fructose-6P into glucosamine- 
6P using glutamine as a nitrogen source. Another important 
protein, murC (confidence score, 0.667), UDP-N-acetyl-
muramate-L-alanine ligase, works in cell wall formation.

Homology modeling of the unique and essential 
metabolic protein was done by using Phyre2 in order to 
obtain the 3D structure of them. 3D protein structures give 
important insights about the molecular basis of protein 
function and thereby allow an effective design of experi-
ments [32]. That is why, in the understanding and manipula-
tion of biochemical and cellular functions of proteins, the 
high-resolution 3D structure of a protein is the main key [19]. 
Phyre2 generated the best suited result, showing that the 
predicted structure had a 100% confidence level and uses the 
template c3pdkB. Secondary structure and disorder predic-
tion leads to a conclusion that phosphoglucosamine mutase 
has disordered region of 4%. To gain a more accurate model, 
refinement through ModRefiner was done.

After derivation by the ModRefiner, the refined model 
(Fig. 3) of the desired enzyme was analyzed for further 
advancement. In the initial model of phosphoglucosamine 
mutase, the percent of residues in the favored region in the 
Ramachandran plot was 84.0% versus 95.0% in the final 
model. The red, brown, and yellow colored regions are the 
symbol of the favored, allowed, and generously allowed 
regions, respectively, the same as defined by PROCHECK 
(Fig. 4). Parameters, such as residue in the favored, allowed, 
and generously allowed region and G-factor, are the 

determinants of a good model [33-35].
Subsequent to that, PROCHECK was used to measure the 

accuracy of protein models. Parameter comparisons of these 
proteins were made with well-refined structures that have 
similar resolution. Through PROCHECK analysis, specific 
information about the protein chains and their stereo-
chemical quality, like Ramachandran plot quality, peptide 
bond planarity, bad non-bonded interactions, main chain 
hydrogen bond energy, C alpha chirality, and overall G factor, 
and the side chain parameters like standard deviations of 
chi1 gauche minus, can be obtained [36]. Ramachandran 
plot statistics of phosphoglucosamine mutase revealed that 
most of the amino acid residues (above 90% of amino acid 
residues) were present in most favored regions (Table 3). 
Thus, the protein model was very good, seeing that all of the 
residues were within the limits of the Ramachandran plot.

Verification was also done by ERRAT, Verify3D, and 
QMEAN server. ERRAT uses a quadratic error function to 
characterize and differentiate between correctly and 
incorrectly determined regions of protein structures based 
on characteristic atomic interaction [37]. The overall quality 
of the model by ERRAT analysis was 89.791. The Verify3D 
graph value of the model is 0.71, which indicates that the 
environmental profile of phosphoglucosamine mutase is 
quite good [38-40]. On the basis of a linear combination of 
six structural descriptions, the QMEAN scoring function 
estimates the global quality of the models. The local 
geometry model analysis is done by a torsion angel potential 
over three consecutive amino acids, and the quality of the 
model can be compared to a reference structure of high 
resolution obtained from X-ray crystallography analysis 
through Z score. QMEAN Z-score provides an estimation of 
the “degree of nativeness” of the structural features observed 
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Table 4. Z-scores of QMEAN for individual component

Scoring function 
term

Z-score 
(phosphoglucosamine mutase)

C_ interaction energy 0.28
All atom pairwise energy 0.64
Solvation energy −1.03
Torsion angle energy −1.20
Secondary structure agreement 1.43
Solvent accessibility agreement 1.12
QMEAN6 score 1.11

QMEAN, Qualitative Model Energy Analysis.

Fig. 5. Active site determination of the phosphoglucosamine 
mutase protein. (A) The green region indicates the most potent 
active site. (B) The amino acid residues in the active site.

Table 5. Comparative docking study of the ligand to the target

Ligand Protein Dock score
(kcal/mol) RMSD (Å) No. of H

bonds Interacting residues

S-Mercaptocysteine Phophoglucosamine 
mutase

−4.0 0.000 4 Thr414, Val306, Asp308, Gly307, 
Thr9, Asp10, Ser412

Table 6. Description of the ligand molecule

Name S-Mercaptocysteine Chemical structure

Identifiers 3-Disulfanyl-L-alanine(2R)-2-amino-3-disulfanyl-propanoic acid
Formula C3 H7 N O2 S2

Molecular weight 153.22 g/mol
Type L-Peptide linking 

in a model and indicates that the model is of comparable 
quality to experimental structures [41].

The assessing of long-range interactions is carried 
through secondary structure specific distance-dependent 
pairwise residue level potential. A solvation potential 
describes the burial status of the residues. Secondary 
structure element and accessibility agreement ensures the 
quality assessment between the predicted and calculated 
secondary structure and solvent accessibility [21].

The respective values of Z-scores of C_ interaction 
energy, solvation energy, torsion angle energy, secondary 
structure, and solvent accessibility are 0.28, −1.03, −1.20, 
1.43, and 1.12 in the case of phosphoglucosamine mutase, as 
shown in Table 4. The overall QMEAN score for phospho-
glucosamine mutase is 1.11. QMEAN-generated results 
confer phosphoglucosamine mutase as a qualified model for 
further drug target scopes.

The active site of phosphoglucosamine mutase was 
predicted by using CASTp server. Further, in this study, we 
have also reported the best active site area of the experi-
mental enzyme, as well as the number of amino acids 
involved in it. Fig. 5 shows the interacting residues Arg419, 
Thr414, Ser412, and Thr9 with protein-ligand from the 

docking that had been suggested by CASTp which was found 
in the active site of phosphoglucosamine mutase.

In order to understand docking studies with phospho-
glucosamine mutase and s-mercaptocysteine, analysis of 
lowest docked energy value, calculated Root mean square 
deviation value, involvement of H bonds, and interacting 
residues was considered (Table 5). Least docked energy 
postulates a better docking result. Receptor-ligand analysis 
of our predicted protein shows the lowest energy of −4.0 
kcal/mol, as well as a root mean square distance of 0.000 Å, 
and it contains four hydrogen bonds. Thr414, Val306, 
Asp308, Gly307, Thr9, Asp10, and Ser412 are the 
interacting molecules where ligand interacts with the 
protein receptor. S-mercaptocysteine (3-disulfanyl-L-alanine 
(2R)-2-amino-3-disulfanyl-propanoic acid), which has a 
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Fig. 7. Graphical representation of docking study between S- 
mercaptocysteine and phosphoglucosamine mutase (yellow dashed
lines indicate hydrogen bonds). (A) Visualization of S-mercap-
tocysteine-phosphoglucosamine mutase. (B) Hydrogen bond de-
tection through PyMOL.

Fig. 6. The overall binding between the phosphoglucosamine
mutase and S-mercaptocysteine.

molecular weight of 153.22 g/mol (Table 6), was found to 
bind at the active site of phosphoglucosamine mutase with 
the lowest binding energy (Fig. 6). It has been clear that 
s-mercaptocysteine formed similar hydrogen bond interac-
tions with phosphoglucosamine mutase. From the active 
site analysis, 41 amino acid residues were found in the 
potent active site. The interaction between the active site 
residues and the ligand found in our present study is useful 
for perceiving the potential mechanism of residues and the 
drug binding. The hydrogen bonds play a significant role for 
the structure and function of biological molecules, and we 
found significant results. Among the 41 residues, Thr9, 
Arg246, Val306, Gly307, Asp308, Ser412, and Thr414 
interacted with the ligand; the others did not. Docking 
analysis with ligand identified specific residues—viz. 
Thr414, Ser412, and Thr9 (Fig. 7)−within the phos-
phoglucosamine mutase binding pocket to play an important 
role in ligand binding affinity, which further itself inhibits its 
function and exposes studies about new drug discovery.

The putative drug targets phosphoglucosamine mutase, 
phosphoglyceromutase, and phosphomannomutase for 
legionellosis have been reported as potential in the 
literature. That is why in our study, the 3D structure of 
phosphoglucosamine mutase from L. pneumophila (strain 
Paris) was predicted and validated by a variety of 
bioinformatics tools and software. Analyzing the results, it 
could be concluded that future characterization of phos-
phoglucosamine mutase from L. pneumophila (strain Paris) will 
be noteworthy for the regulation of legionellosis. The 
modeled 3D structure will provide a good-quality foundation 
for experimental development of the crystal structure, and the 

molecular docking study will assist efficient inhibitor design 
against legionellosis in the future. 
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