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Abstract

The pathogenesis of schizophrenia is considered to be multi-factorial, with likely gene-

environment interactions (GEI). Genetic and environmental risk factors are being identified with 

increasing frequency, yet their very number vastly increases the scope of possible GEI, making it 

difficult to identify them with certainty. Accumulating evidence suggests a dysregulated 

complement pathway among the pathogenic processes of schizophrenia. The complement pathway 

mediates innate and acquired immunity, and its activation drives the removal of damaged cells, 

autoantigens and environmentally-derived antigens. Abnormalities in complement functions occur 

in many infectious and auto-immune disorders that have been linked to schizophrenia. Many older 

reports indicate altered serum complement activity in schizophrenia, though the data are 

inconclusive. Compellingly, recent genome-wide association studies suggest repeat 

polymorphisms incorporating the complement 4A (C4A) and 4B (C4B) genes as risk factors for 

schizophrenia. The C4A/C4B genetic associations have re-ignited interest not only in 

inflammation-related models for schizophrenia pathogenesis, but also in neurodevelopmental 

theories, because rodent models indicate a role for complement proteins in synaptic pruning and 

neurodevelopment. Thus, the complement system could be used as one of the ‘staging posts’ for a 

variety of focused studies of schizophrenia pathogenesis. They include GEI studies of the 

C4A/C4B repeat polymorphisms in relation to inflammation-related or infectious processes, 

animal model studies and tests of hypotheses linked to auto-immune diseases that can co-segregate 

with schizophrenia. If they can be replicated, such studies would vastly improve our understanding 

of pathogenic processes in schizophrenia through GEI analyses and open new avenues for therapy.
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INTRODUCTION

The multi-factorial polygenic threshold model (MFPT) of schizophrenia posits a large 

number of genetic risk factors with discrete, cumulative, small effects and environmental 

factors that can act discretely or interact with the genetic risk factors.1 The MFPT model has 

been supported by recent genome wide association studies (GWAS).2 In parallel, many 

environmental risk factors have also been identified, including maternal infection, season of 

birth (winter excess), urban birth and residence, obstetric complications, maternal 

malnutrition, substance abuse (particularly cannabis use) and childhood trauma.3–11 Though 

the MFPT model provides a sound foundation for etiological research in schizophrenia, it 

challenges simplistic notions of causality. In particular, risk could increase through 

interactions between genetic and environmental risk factors.12 Initial GEI studies relied on 

familiality as a proxy for genetic risk.13, 14 As more DNA variant data were generated, the 

amount of data and the complexity of GEI analyses has increased.15–17 With the availability 

of GWAS data, the complexity has mushroomed.18–20 Using SNP-based GEI analyses, even 

if one analyzes the phenotype of schizophrenia as a syndrome, ignoring secondary features, 

simple ‘two hit’ models involving one genetic and one environmental risk factor can invoke 

several models of interactions, increasing the number of analyses and the likelihood of false 

positive results.21–23 For example, Avramopoulos et al19 evaluated multiple infections 

agents, as well as indices of inflammation in conjunction with genome-wide DNA variant 

data; interestingly, they found suggestive associations with cytomegalovirus infections, 

reminiscent of an earlier study by Borglum and colleagues.18, 19 Furthermore, typical case-

control designs can be confounded if a correlation exists between the genetic and 

environmental risk factors, or the risk variables confer risk through more than one 

pathway.22, 24–28 These complexities explain the difficulties in identifying GEI 

consistently.29, 30

What can be done in the face of the analytic challenges? One practical solution is a step-

wise progression, starting with well-accepted genetic risk factors that are paired with 

established or plausible environmental risk factors or pathogenic processes. We illustrate this 

approach with respect to the complement pathway. Recent GWAS analyses implicate 

complement gene variation in schizophrenia pathogenesis. The complement system is also 

dysfunctional in many other disorders linked to schizophrenia; thus it provides a nexus for 

numerous lines of enquiry, including GEI analyses. In the following sections, we initially 

provide an overview of the complement system and its roles in the immune system, as well 

as its recently discovered effects on the brain. We next review the putative links between the 

complement system and schizophrenia: through a possible role in aberrant 

neurodevelopment, through links to infectious risk factors and through auto-immune 

disorders that can segregate with schizophrenia. We conclude by suggesting avenues for 

future research.

The complement system in innate immunity

The complement system encompasses a dynamic, orchestrated array of soluble plasma 

factors, proteases, cleavage products, cell surface receptors and regulatory protein 

complexes, all of which serve immune protection of the host.31 This system is best known 

Nimgaonkar et al. Page 2

Mol Psychiatry. Author manuscript; available in PMC 2018 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



for its role in halting and destroying invading pathogens by augmenting the effects of 

antibodies and phagocytes on target antigens and microorganisms.32 The complement 

system can be activated via three pathways, namely the classical, lectin and alternative 

pathways, all of which converge on complement C3 (Figure 1). C3 and its activated products 

covalently bind to cell surface residues to localize the related innate immune inflammatory 

cascade to specific cellular and tissue sites. The classical pathway is primarily initiated after 

complement C1q binds to immune complexes composed of immunoglobulin antibodies 

bound to antigen. Activation of the classical pathway leads to the cleavage and activation 

products of C4 and C2, which fuse and drive amplification and cleavage of C3. C3 

amplification through C4 and C2 cleavage also follows activation of the lectin pathway that 

occurs when pattern recognition receptors such as mannose-binding lectin (MBL) and the 

ficolins recognize carbohydrate patterns on damaged cell surfaces or invading microbes. The 

third pathway, called the alternative pathway, is activated by spontaneous hydrolysis of C3 

which prompts a perpetual cycle of amplification that in turn also activates downstream 

components C5 through C8 and eventually the membrane attack complex. These pathways 

are intricately controlled, enabling amplification and suppression via complement inhibitors, 

binding proteins and factors, control genes and cell surface receptors. Thus the complement 

system maintains a critical role in immune surveillance with important ramifications for 

protection against infectious agents. Genetically encoded disruption/s could alter responses 

to environmentally-derived or endogenous antigens perceived as foreign (Figure 1).33–35 As 

such, susceptibility to infection and autoimmune disorders is increased when there are 

defects in the complement pathway.36

The complement system AND the brain

The role of complement proteins in synapse formation and elimination has been one of the 

most fascinating recent discoveries in neuroscience research.37 In the healthy brain, 

complement proteins are expressed at relatively low levels that vary with stages of 

maturation.37, 38 The complement proteins C1q, C3 and C4 are detectable on cell bodies, 

neuronal processes and synapses of discrete neuronal groups. Although neurons express 

complement proteins, microglia and astrocytes are the major sources of these proteins, 

suggesting diverse roles.37, 39, 40 In rodent models, the complement system is recruited for 

removing dysfunctional neuronal cells and dendritic processes.41–43 Through elegant 

experiments, Stevens and colleagues have suggested that the complement system could also 

be involved in sculpting neurons even during normal neurodevelopment. They reported that 

C1q and C3 proteins mediate activity-dependent synaptic elimination in the developing 

rodent brain, preferentially tagging less active synapses for later elimination by 

microglia.39, 44, 45 In support, C1q and C3 knockout mice have deficits in synapse 

elimination.37 As these landmark findings in rodents have invigorated the study of the 

complement system in neurodevelopment, they merit replications by independent 

laboratories. In particular, it is important to investigate whether similar processes also occur 

in other brain regions implicated in the pathogenesis of schizophrenia, e.g., the prefrontal 

and temporal regions.

Aging, as well as several human brain diseases associated with abnormalities in complement 

systems, usually stem from infectious or inflammatory pathology. They include Alzheimer’s 
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disease, Down syndrome, multiple sclerosis, amyotrophic lateral sclerosis, Huntington’s 

disease, Parkinson’s disease and Rett’s Syndrome.38, 46–48 In Alzheimer’s disease, for 

example, specific protein motifs found in amyloid plaques can trigger the activation of the 

classical complement pathway.38, 42, 49 A recent translational study in mice and humans 

documented the accumulation of C1q at synapses in aging animals, suggesting that age-

associated cognitive decline may be the result of synapse level vulnerability to extra-CNS 

and environmental insults. Triggers such as ischemia, trauma and infection could activate the 

complement cascade and result in inappropriate synapse loss at locations where C1q is over-

represented.50 Findings from this study as well as from Hong et al’s study of Alzheimer’s 

disease are important because of the links they suggest between synaptic C1q and cognitive 

decline - an indication that disorders like schizophrenia may also be impacted by similar 

processes.42 Indeed, as elaborated in the following section, Sekar et al suggested a similar 

synaptic role for C4 in schizophrenia, but with an exquisite genetic twist.40 In summary, 

components of the complement system could not only help to mold the brain during 

neurodevelopment39, 51 but also could contribute to dysfunction in the adult brain.

The complement system and the pathogenesis of schizophrenia

Early studies of the complement pathway in schizophrenia utilized the complement 

hemolytic activity assay to quantify activity of total complement and of specific component 

proteins in serum samples, based on the percentage of antibody-coated erythrocytes that 

were lysed in vitro following exposure to the serum (Spivak et al52, and reviewed by 

Mayilyan et al53). Results from these studies were varied, though altered complement 

activity was noted in schizophrenia by several investigators.54 Studies that specifically 

included C4 targets indicated significant elevations of hemolysis by serum from patients 

with schizophrenia55–58 and similar examinations of C1, C2, and C3 also demonstrated 

significant schizophrenia-associated complement abnormalities.56, 57 Using immunoassays 

to quantify serum or plasma concentrations of specific components, Maes and colleagues59 

reported higher levels of complement components C3C and C4 and Mayilyan et al58 

reported increased lectin-activated complement activation capacity. On the other hand, non-

significant case-control differences or even reduced complement activity were also 

reported.52, 60, 61 The enzymatic nature and varied half-lives of activated complement 

components likely contributed to difficulties in replicating associations.

A role for complement in schizophrenia could arguably be detected more reliably in the 

presence of infection or other environmentally-derived antigenic stimuli. For example, 

complement C1q-bound immune complexes containing food antigens were found at 

increased rates in individuals with schizophrenia compared with controls.62 Furthermore, 

elevated levels of complement C1q have been found in the mothers of infants who later 

developed schizophrenia63, suggesting a role for the complement pathway in early 

neurodevelopmental events associated with schizophrenia. Notably in this study of 

unselected mothers, levels of C1q-associated antibodies were significantly correlated with a 

number of viral antigens, including herpes simplex virus, type 2 (HSV-2) and adenovirus. 

Thus, the activation of maternal complement by external and intrinsic antigens during a 

critical period of synaptic pruning may represent an important risk factor for the future 
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development of schizophrenia. In a later section, we discuss more fully the complement 

system in relation to neurodevelopmental hypotheses of schizophrenia.

Several genetic association studies of complement gene polymorphisms have also been 

reported. The early studies utilized relatively small samples; unsurprisingly, they yielded 

inconsistent results.60, 64 Greater clarity has emerged from a recent GWAS. Through a 

collaborative effort, the Psychiatric Genomics Consortium (PGC) analyzed DNA from 

28,799 patients with schizophrenia and 35,986 controls to identify 108 uncorrelated single 

nucleotide polymorphisms (SNPs) that confer risk for schizophrenia.65 Among the most 

statistically significant risk variants were those in the human leukocyte antigen (HLA) 

region; like other schizophrenia-associated SNPs, the risk conferred by individual alleles 

was modest (odds ratios <2.0). Sekar and colleagues subsequently determined that variation 

at three uncorrelated loci could explain the observed associations in the HLA region 

(rs13194504, C4A and rs210133; localized to the distal extended HLA region, the HLA 

class III and the HLA class II regions, respectively).40 Further, they demonstrated that 

variation at a polymorphic copy number variant (CNV) spanning the C4A–C4B complement 

genes accounted for the risk in the HLA Class III region. The primary risk variants 

represented by the two other SNPs in the HLA region have not been identified yet.

To understand the genetic associations of C4 with schizophrenia, it is necessary to 

understand the functional impact of the CNV. The CNV cassette (denoted RCCX) comprises 

STK19 (RP1), C4 (C4A or C4B), CYP21A2, and TNXB.66 A recombination site at 

CYP21A2 leads to mono-, bi-, and trimodular cassettes with 1–3 functional copies of C4A 

or C4B, respectively, while retaining just one functional copy of the remaining genes (Figure 

2). The C4A and C4B genes, which have over 95% sequence homology, nevertheless encode 

proteins with different substrate affinities.67 Earlier studies indicated positive correlations 

between the gene copy number and serum protein concentrations for C4A and C4B.68 To 

add further complexity, the C4A and the C4B genes can be present in long or short forms, 

based on the insertion of a human endogenous retroviral (HERV) element. The HERV 

sequence insertions are associated with increased gene expression, but the mechanism is 

uncertain. The HERV sequence is present more frequently in the C4A genomic sequences 

and likely accounts for the observation that C4A expression levels are two to three times 

greater than expression levels of C4B, even after controlling for relative copy numbers in 

each genome.69 There is substantial ethnic variation in the distribution of alleles comprising 

the CNV.70, 71

Using an innovative droplet digital PCR (ddPCR) assay, Sekar and colleagues assayed the 

CNVs in a family-based sample and used this information in conjunction with SNP-based 

data to impute the number of copies of the C4A and the C4B genes in the PGC dataset. In 

post-mortem brain samples from the Stanley Medical Research Institute (SMRI) and the 

Genome Tissue Expression (GTEx) consortia, they showed that the levels of C4A and C4B 

mRNA increased proportionally with the number of copies of C4A and C4B, respectively. 

Separately, C4A was also expressed at significantly higher levels in five brain regions in 

post-mortem samples from patients with schizophrenia, a consistent result was reported with 

the larger CommonMind Consortium post-mortem dataset.72
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In sum, three lines of evidence support the involvement of complement C4A in the 

pathogenesis of schizophrenia: the early serological studies, the genetic association studies 

and the post-mortem brain expression analyses. Even though the magnitude of the risk 

conferred by C4A is similar to, or less than other well established risk factors, the 

independent lines of evidence lend credence in altering risk for schizophrenia.

Links between the complement system and the neurodevelopmental 

hypothesis of schizophrenia

Many risk factors for schizophrenia, such as obstetric complications, season of birth effects 

or nutritional deficiencies could be traced to prenatal maternal influences in utero. The 

maternal influences, in turn, suggest pathology during the early neurodevelopmental period 

(spanning prenatal to early postnatal life, when much neuronal proliferation and 

differentiation occurs). Other lines of evidence implicate the late neurodevelopmental 

period; i.e., until late adolescence to young adulthood, when synaptic pruning predominantly 

occurs.

Schizophrenia was proposed as a disorder of faulty programmed synaptic elimination by 

Feinberg (1982)73 based on convergent evidence from studies of sleep EEG, evoked 

response potential, brain metabolic rate, dendritic spine variations from new born through 

age 90 years, and patterns of onset of schizophrenia. These abnormalities were synthesized 

with evidence that indicated similar temporal patterns for onset of schizophrenia and known 

age related changes in synaptic density and dendritic spine density. Huttenlocher (1979)74 

showed that synaptic density in the middle frontal gyrus increases to a peak in early 

childhood, and subsequently decreases in late childhood and reaches a plateau in early 

adolescence, although the pruning continues during the third decade of life before stabilizing 

at adult level. In some regions that are critical to schizophrenia pathogenesis, e.g. 

dorsolateral prefrontal cortex, a protracted pruning is observed starting at age 9 years to 22 

years. However, different dendritic segments prune dendritic spines with different 

chronology, e.g. basal and proximal dendrites started to prune at 7–9 years but the distal 

dendrites do not begin until 17 years of age.75 In primates, substantial reduction in the 

dendritic spine density occurred in adolescence.76 Overall, the number of synapses decrease 

in an age-related manner in monkeys and humans77, 78 and these changes could underlie 

age-related gray matter reductions observed in neuroimaging studies of schizophrenia.79 The 

factors determining the type or timing of synaptic pruning are uncertain, though much 

research suggests that immature synapses or those showing lower levels of activity are more 

likely to be eliminated.80

Thus, the work of Stevens and colleagues37 regarding complement proteins C1q and C3 as 

mediators of synaptic sculpting in the developing visual system, has important implications 

for Feinberg’s hypotheses. From a neurodevelopmental perspective, the inappropriate 

activation of complement or the failure of complement to function correctly in the 

developing CNS could conceivably disrupt neuronal networks. Faulty complement activity 

could be generated through environmental factors (such as maternal infection). For example, 

in a rodent study, adult offspring of dams exposed to prenatal poly(I:C) had significantly 
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elevated expression of prefrontal cortical C1q compared with adult offspring of vehicle 

treated mothers.81 As discussed earlier, Sekar and colleagues have suggested that risk 

variants of the C4A CNV could also mediate accelerated synaptic pruning in schizophrenia, 

consistent with Feinberg’s hypothesis.40 However, there are important caveats: human C4A 
and C4B sequences do not occur in the mouse genome. Instead, there are two other forms of 

C4, namely C4 and Slp (sex limited protein).82 Insertion of a retroviral long-terminal repeat 

in the promoter region of Slp leads to restricted expression of C4 in the mouse.83 Future 

studies will also need to assay point mutations in C4A that can abrogate function.84, 85 In 

summary, Sekar’s hypothesis needs to be tested in humans, keeping genomic variations and 

variations related to brain region and chronological age in mind.

Links between the complement system and the possible role of infection 

and inflammation in the etiopathogenesis of schizophrenia

Can the C4A genetic associations inform infection as an environmental risk factor for the 

pathogenesis of schizophrenia or for some aspect of schizophrenia? The answer depends on 

the strength of evidence linking not only complement system dysfunction and infectious 

agents, but also the evidence linking infectious agents with schizophrenia.

Complement deficiencies are associated not only with increased levels of bacterial 

infections,86 but also with viral infections.87–98 Separately, a role for complement in the 

immune response to Toxoplasma gondii, a protozoan organism was first suggested based on 

an increased susceptibility of C5-deficient mice to Toxoplasma infection.99 It was 

subsequently reported that virulent strains of Toxoplasma have a diminished ability to 

activate the classical complement pathway though interactions with C3.100 In a rodent 

model, chronic Toxoplasma infection could lead to complement-induced changes in cell 

connectivity and synaptic pruning,101 as well as the generation of antibodies to the NMDA 

receptor.102 Thus, complement dysfunction is demonstrable in the pathogenesis of several 

types of infectious diseases.

With regard to the second question, it is challenging to determine etiological links between 

infectious agents and schizophrenia due to many technical limitations. Most infections in 

immune competent individuals result in viral replication for 3–14 days. Thus, evidence for 

active infection are not expected even in the premorbid period among individuals at high risk 

for schizophrenia. Hence, most studies of viral infections rely on the immune response to 

viral proteins, such as circulating antibody molecules or immunoglobulins, but they do not 

indicate the precise timing of the initial exposure. The difficulty in measuring antibodies 

within the central nervous system without the performance of cerebrospinal puncture is 

another substantial barrier. Still, there are several possible mechanisms linking infectious 

agents such as Toxoplasma gondii infection with schizophrenia.103–106 Conceptually, 

infectious agents could also elevate risk for certain features of a disorder. For example, 

several studies have linked the neurotropic herpes simplex virus, type 1 (HSV-1) with 

cognitive impairment, particularly among patients with schizophrenia107. In sum, proving a 

link between infections and schizophrenia is challenging; the bulk of evidence suggests 

several indirect effects.
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Several lines of investigation are needed to gain a better understanding of these mechanisms. 

It would be instructive to evaluate correlations between peripheral and central indices of 

complement function; e.g., through post-mortem or animal model studies. As it can be 

difficult to prove causality based on epidemiological studies alone, animal models could be 

invoked to test causal effects in the association between infection and schizophrenia-relevant 

brain dysfunctions, as reviewed by Kannan et al.108 The links between infections and 

complement activation also indicate an intriguing paradox. The genetic association studies 

of Sekar et al, as well as other studies suggest increased complement activity among patients 

with schizophrenia. On the other hand, reduced complement system activity facilitates 

infection and/or increases bacterial/viral loads, and infection or the infectious disease 

process is a putative risk factor for schizophrenia.109 Thus, it would be of interest to 

investigate whether individuals with deficiencies in complement system proteins have 

elevated risk for schizophrenia.

Links between the complement system, auto-immune diseases and 

schizophrenia

Dysfunction in the complement system can also predispose to well-recognized auto-immune 

diseases, such as systemic lupus erythematosus (SLE), systemic sclerosis, and rheumatoid 

arthritis (RA).110 Complete or partial C4 deficiency leads to increased risk of infection and 

autoimmune diseases, such as SLE.70 It is well-established that reduced concentrations of 

complement C4 protein or reduced serum complement activity occur with active disease in 

SLE.111 Though infrequent, absence of complement components C4A and C4B are strongly 

associated with risk for SLE or lupus-like disease, after controlling for HLA background and 

ethnicity. A review of 35 studies indicated that heterozygous and homozygous deficiencies 

of C4A were present in 40–60% of SLE patients from almost all ancestral groups 

investigated.111 Complement dysfunction has also been linked to other non-infectious 

diseases, including age-related macular degeneration.112, 113 The prevalence of several auto-

immune diseases, including SLE is increased among patients with schizophrenia and their 

relatives, whereas RA prevalence is reduced among schizophrenia patients and their 

relatives.114, 115 Systematic studies of complement levels among schizophrenia patients in 

relation to these auto-immune diseases are, therefore, needed.

The complement system as a PLATFORM for investigating schizophrenia 

pathogenesis

The application of current knowledge about the complement proteins to schizophrenia 

research could be fruitful in several directions. Examples include GEI analyses of C4A 
polymorphisms alongside infection exposure data. Similarly, neurodevelopmental processes 

in brain imaging studies could be combined with C4A polymorphism data. On a different 

plane, studies of Toxoplasma gondii infections could be paired with C1q, C3 and C5 levels 

in the serum. It would also be instructive to investigate whether abnormalities in the 

complement system, including alterations in levels of complement 4, explain the co-

morbidity of schizophrenia and auto-immune diseases.
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Most components of the human complement system have a characteristic domain structure; 

it is likely that the current complexity, exemplified by over 30 proteins, arose partly through 

multiple gene duplication events.116, 117 In a similar vein, the CNV bearing C4A and the 

HERV insertion provides a rich source of information about human population history.70, 71 

Those data, combined with haplotype analyses may enable future dissection of the origins 

and geographical variations of schizophrenia.

Such focused analyses, followed by replicative studies could identity pathologic processes 

for some aspects or sub-groups of schizophrenia, motivating focused therapeutics in the 

future. More broadly, this scheme could be extended to other genetic risk factors. Indeed, 

several SNPs identified through schizophrenia GWAS have been linked to immune 

regulation65 and other studies indicate that genetic factors play an important role in the 

control of infectious agents and the generation of the immune response to infection.118 The 

step-wise progression would begin with a single reproducible genetic risk factor - a choice 

that reflects the difficulty in establishing causal links conclusively for some non-genetic risk 

factors. Based on its known biological functions, plausible environmental risk factors for 

schizophrenia could be picked and analyzed next in relation to the selected genetic risk 

factor. The design and the samples for the joint analyses would be dictated by the biological 

question. For example, if genetic and environmental risk factors are independent, case only 

analyses are suitable.28, 119 In other contexts, such as tests of neurodevelopmental 

hypotheses, premorbid analyses in population-based cohorts may be needed. If plausible 

GEIs are detected, independent replications would be sought.

CONCLUSIONS

Consistent with the MFPT model of pathogenesis, recent genetic association studies 

indicated that a portion of the risk for schizophrenia is conferred by copy number variation 

in the C4A gene; it was also proposed that the pathogenic effects of C4A may be mediated 

through dysfunction in synaptic pruning. The complement pathway also mediates innate and 

acquired immunity, suggesting additional plausible mechanisms of pathogenesis and future 

opportunities for testing novel therapies for schizophrenia – a concept being considered for 

other diseases.120 We also advocate additional studies of complement function in 

complement deficient individuals, those with auto-immune disorders and carefully selected 

animal models studies, as well as post-mortem human samples.
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Figure 1. The complement pathway
The complement system can be activated along three major pathways. The classical pathway 

is initiated after C1q interacts with IgM and IgG class antibodies bound to antigen. The 

lectin pathway is activated by carbohydrate pattern recognition receptors such as mannose-

binding lectin (MBL) and the ficolins which are complexed with enzymes known as MBL-

associated serine proteases (MASPs). Both the classical and lectin pathways cleave C4 and 

C2, with subsequent activation of C3. Cleavage of C3 causes C3b to bind to the surface of 

pathogens and accelerate phagocytic activity. The alternative pathway is activated by 

spontaneous hydrolysis of C3 and functions as an amplification loop for the cleavage of C3; 

the generation of C3b involves interactions with the protease factors B and D. In addition to 

the covalent attachment of C3b to target surfaces, C3b can change substrate specificity of C3 

convertases to C5, which leads to assembly of the C5b-C9 membrane attack complex that 

can lyse targeted cells.

C3*: C3 in its hydrolyzed state.

(Adapted from96, 121).
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Figure 2. Copy number variation at the C4A and C4B loci
The figure illustrates the range of structural variation at the C4A and C4B loci, indicated as 

boxes. For clarity, flanking genes (RP1, RP2, CYP21A, CYP21B, TNXA, and TNXB) are 

not shown; nor are some variants that are less frequent in Caucasian ancestry samples. The 

gray bar labeled ‘HERV’ indicates a retroviral insertion that produces longer variants (C4A-

L or C4B-L, shown in ochre); its absence indicates shorter variants (C4A-S or C4B-S, 

shown in blue). Each individual can have 0–6 copies of C4A and 0–5 copies of C4B. L: long 

variant; S: short variant. Additional mutations that can yield non-functional ‘null alleles’ are 

not shown.
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Table 1

Genetic associations between copy number variants incorporating Complement 4A and Complement 4B genes 

and selected disorders/diseases.

Disease / disorder Genetic Associations Genotype assays References

Schizophrenia (SZ) Increased C4A copy number associated with risk for SZ Droplet digital PCR Sekar et al40

Behcet’s disease (BD) Increased C4A expression and IL-6 levels with 2 or >2 C4A 
copy number.

qPCR Hou S et al122

Systemic lupus 
erythematosus (SLE)

Deficiency - high risk for SLE; 0 or 1 copy of C4A - elevated 
risk for SLE; 3 or more copies of C4A - protective against 
SLE

PFGE of PmeI-Digested 
DNA
qPCR
qPCR

Yang et al123

Wu et al124

Yih et al125

Grave’s disease (GD) <2 copies of C4A associated with risk for vitiligo in patients 
with GD

qPCR Liu et al126

Crohn's disease (CD) CD patients have overall lower C4L and higher C4S copies 
compared to controls

qPCR Cleynen et al127

Type1 Diabetes Mellitus >2 copies of HERV-C4 in patients qPCR Mason et al66

Alzheimer’s disorder Overall increased copies of C4A or C4B in patients qPCR Zorzetto et al128

PCR – polymerase chain reaction; PFGE - Pulsed-field gel electrophoresis; qPCR – quantitative PCR.
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