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Abstract

Heavy veal calves (4–6 months old) are at risk of developing insulin resistance and dis-

turbed glucose homeostasis. Prolonged insulin resistance could lead to metabolic disorders

and impaired growth performance. Recently, we discovered that heavy Holstein-Friesian

calves raised on a high-lactose or high-fat diet did not differ in insulin sensitivity, that insulin

sensitivity was low and 50% of the calves could be considered insulin resistant. Understand-

ing the patho-physiological mechanisms underlying insulin resistance and discovering bio-

markers for early diagnosis would be useful for developing prevention strategies. Therefore,

we explored plasma metabolic profiling techniques to build models and discover potential

biomarkers and pathways that can distinguish between insulin resistant and moderately

insulin sensitive veal calves. The calves (n = 14) were classified as insulin resistant (IR) or

moderately insulin sensitive (MIS) based on results from a euglycemic-hyperinsulinemic

clamp, using a cut-off value (M/I-value <4.4) to identify insulin resistance. Metabolic profiles

of fasting plasma samples were analyzed using reversed phase (RP) and hydrophilic inter-

action (HILIC) liquid chromatography–mass spectrometry (LC-MS). Orthogonal partial least

square discriminant analysis was performed to compare metabolic profiles. Insulin sensitiv-

ity was on average 2.3x higher (P <0.001) in MIS than IR group. For both RP-LC-MS and

HILIC-LC-MS satisfactory models were build (R2Y >90% and Q2Y >66%), which allowed

discrimination between MIS and IR calves. A total of 7 and 20 metabolic features (for RP-

LC-MS and HILIC-LC-MS respectively) were most responsible for group separation. Of

these, 7 metabolites could putatively be identified that differed (P <0.05) between groups

(potential biomarkers). Pathway analysis indicated disturbances in glycerophospholipid and

sphingolipid metabolism, the glycine, serine and threonine metabolism, and primary bile

acid biosynthesis. These results demonstrate that plasma metabolic profiling can be used to

identify insulin resistance in veal calves and can lead to underlying mechanisms.
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Introduction

Veal calves are fed milk replacer (MR), roughage and concentrates. A large portion (60–70%)

of the digestible nutrient intake originates from MR. The MR contains large amounts of lactose

and fat, approximately 45% lactose and 20% fat on DM basis. Persistently high intakes of lac-

tose and fat may lead to dysregulations in glucose homeostasis, which are characterized by a

high incidence of hyperglycemia, hyperinsulinemia and glycosuria. These problems have been

identified in heavy (4–6 months old) veal calves [1–3]. In addition, a substantial decrease in

insulin sensitivity is observed in calves during the first months of life [4, 5]. In a recent study

with heavy veal calves raised on a high-fat or high-lactose MR diet we observed that insulin

sensitivity values were low (averaging 4.2 ± 0.5 x 10−2 [(mg/(kg�min))/(μU/mL)]), and 50% of

the calves develop insulin resistance (when comparing insulin sensitivity values with human

cut-off values for defining insulin resistance; [6]). In order to prevent the development of insu-

lin resistance, it is of importance to understand the patho-physiological mechanisms of insulin

resistance and to identify early biomarkers of decreased insulin sensitivity. By detecting

decreased insulin sensitivity at an early stage, management and feeding strategies could be

developed to prevent the development insulin resistance. Therefore, we investigated the appli-

cability of metabolomic profiling techniques to identify insulin resistance in veal calves.

Metabolomics focuses on the analysis of the metabolome together with pattern recognition

techniques to highlight and monitor metabolic changes related to disease status or nutritional

intervention [7, 8]. Its potential has been demonstrated in the diagnosis of several metabolic

diseases [9–11]. In the current exploratory study we applied metabolic profiling, to build mod-

els to discover potential biomarkers and pathways related to insulin resistance in veal calves.

Material and methods

Animals and housing

Sixteen male Holstein-Friesian calves (120 ± 2.8 kg BW; 99 ± 2.0 d old) were purchased and

housed at the experimental facilities of Wageningen University. During the first 6 weeks of the

13-week study, calves were housed in pens of 4 calves each (2 m2 per calf), which were fitted

with a wooden slatted floor and galvanized fencings. Then, calves were transferred to meta-

bolic cages (dimension: 0.80 x 1.8 m) for the next 7 weeks, during which whole-body insulin

sensitivity was measured (see experimental procedures). Ventilation occurred by ceiling fans,

and illumination by natural light and artificial (fluorescent lamps) light between 0700 and

1900 h. Temperature and humidity were controlled at 18˚C and 65% respectively.

The study was conducted in 2011. Experimental procedures complied with the Dutch Law

on Experimental Animals, and the ETS123 (Council of Europe 1985 and the 86/609/EEC

Directive) and were approved by the Animal Care and Use Committee of Wageningen

University.

Experimental design, diets and feeding

A detailed description of the experimental design, diets and feeding were described previously

[6]. Briefly, calves were assigned to either a high-lactose diet (HL; n = 8) or a high-fat diet (HF;

n = 8), and to 1 of 8 blocks (pairs of calves) with one HL calf and one HF calf per block. Due to

health problems in two HF calves, block seven consisted of two HL calves and block 8 (with

the two remaining HF calves) was not included in the whole-body insulin sensitivity and meta-

bolomic profiling measurements. Lactose and fat were exchanged iso-energetically between

treatments based on digestible energy. MR was fed on individual basis twice a day (0800 and

1630 h). In addition, solid feed was provided per pen when calves were housed in groups and
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per individual calf when housed separately on metabolic cages. Solid feed was provided once a

day. Calves had ad libitum access to drinking water throughout the study. At end of the study,

calves were euthanized by an intravenous injection of sodium pentobarbital.

Experimental procedures

A detailed description of the experimental procedures were given elsewhere [6]. In short,

whole-body insulin sensitivity was assessed by the euglycemic-hyperinsulinemic clamp tech-

nique in seven consecutive weeks (i.e. experimental week 7–13; 1 block per week). Semi-per-

manent catheters (Careflow, Becton Dickinson, Alphen aan den Rijn, The Netherlands) were

inserted in both jugular veins. Calves were fasted for 15 h (morning feed omitted) to achieve a

steady glucose turnover rate prior to the measurements. Before starting the 4-h clamp study,

three 5 mL blood samples were taken from -40 to -10 min (before infusion) to determine basal

plasma glucose concentrations. At start of the clamp, a priming dose of insulin of 2.1 mU/kg

BW/min (Actrapid 100 IE/mL, Novo Nordisk, Denmark) was infused into the left jugular vein

catheter, within 5 min, to rapidly increase the plasma insulin concentration. Then, the rate

of insulin infusion was decreased and maintained at 1 mU/kg BW/min for a period of 4 h

(plasma insulin levels ~135 mU/L). At t = 5 min glucose (20% glucose solution for intravenous

infusion; B. Braun, Melsungen, Germany) was continuously infused to maintain basal plasma

glucose concentration, hence the infusion rate was adjusted to the glucose clearance rate.

During the clamp study, 0.3 mL blood samples were taken from the catheter in 10-min and

15-min intervals during 0–2 hours and 2–4 hours respectively. In these samples, plasma glu-

cose concentrations were measured using Precision Xtra Plus test strips in combination with

the Precision Exceed Sensor (Abbott, Weesp, The Netherlands).

In addition, 5 mL blood samples were taken in 30-min intervals for the analysis of plasma

glucose and insulin concentrations. Blood was collected in sodium fluoride vacutainer tubes

for glucose and in heparin vacutainer tubes for insulin (BD diagnostics, Breda, The Nether-

lands). Samples were centrifuged (1,500 x g for 12 min) and plasma was harvested and stored

at -20˚C until analysis.

Plasma glucose was analyzed on an Architect ci8200 analyzer using the hexokinase method

(Abbott Laboratories, Chicago, IL, USA) and plasma insulin was analyzed using a Coat-a-

Count radioimmunoassay kit (Siemens Healthcare Diagnostics, Erlangen, Germany). The

within- and between-run coefficients of variation for glucose were�2%. The within- and

between-run coefficients of variation for insulin were�5% and�7%, respectively.

The glucose infusion rate (GIR) was adjusted (depending on the changes in plasma glucose

level) to maintain a constant, basal plasma glucose level during insulin infusion. Glucose dis-

posal (M-value) was defined as the average GIR at steady state divided by BW. Whole-body

insulin sensitivity was defined as the M-value divided by the average plasma insulin level at

steady state (M/I-value).

Metabolomic profiling

Plasma metabolic profiling was performed using reversed phase (RP) and hydrophilic interac-

tion (HILIC) liquid chromatography–mass spectrometry (LC-MS). These techniques are com-

plementary, with RP-LC-MS able to separate and detect nonpolar to weakly polar metabolites

and HILIC-LC-MS able to separate and detect weakly polar to polar metabolites. LC-MS was

performed using a UFLC Prominence system (Shimadzu, Kyoto, Japan) coupled to a high-res-

olution LTQ-Orbitrap XL mass spectrometer (Thermo Fisher Scientific, Bremen, Germany),

equipped with an Ion Max electrospray source. Analyses were performed in both positive and

negative ionization mode. Mass spectrometric data was acquired in the centroid mode over
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the range of 100–800 m/z at a resolution of 60,000 at m/z 400. Low-resolution collision

induced dissociation fragmentation data using the LTQ (MS/MS) was also acquired to facili-

tate compound identification in a TOP-n data dependent acquisition.

Sample preparation. Plasma samples were allowed to thaw at 4˚C for 6 hours. Then,

800 μL of a methanol/acetonitrile/acetone (1:1:1 v/v) solution was added to 200 μL plasma

each study sample. The mixture was gently vortexed at 4˚C for 15 min and centrifuged at

12,500 x g for 10 min at 4˚C. Then, 800 μL of the supernatant was evaporated to dryness under

a gentle stream of nitrogen at 30˚C. The residue was reconstituted in 100 μL methanol and

300 μL elution solvent A (see below for composition) for RP and in 400 μL elution solvent B

(see below for composition) for HILIC. In addition, a quality control (QC) sample and a blank

sample were prepared. The QC sample was prepared by mixing 100 μL of each study sample

(to represent the biochemical diversity of the study samples), and processed identical to the

study samples. For the blank sample Milli-Q water was used. Sample processing was identical

to the study samples.

Sequence of injection. The analytical run started with the blank sample (injected 3 times

for background subtraction), followed by the QC sample (injected 6 times for column condi-

tioning; not used for data analysis). Then, the study samples were injected in random order.

The QC sample was injected again after every 3 study samples (and at the end of the run) to

calculate the analytical precision for each metabolic feature.

Reversed-phase chromatography. For reversed-phase chromatography a Kinetex C18

column (100 mm × 2.1 mm, 2.6 μm particles) with a SecurityGuard column (2.1 mm × 2 mm,

2 μm particles) was used (Phenomenex, Torrance, CA, USA). The column temperature was set

at 35˚C and the autosampler temperature was 5˚C. The gradient elution solvents were A; 95:5

water-acetonitrile (v/v), containing 5 mM ammonium formate and 0.1% formic acid (v/v),

and B; 95:5 acetonitrile-water, containing 5 mM ammonium formate and 0.1% formic acid.

The gradient (A:B, v/v) was as follows: an isobaric period at 98:2 for 5 min, followed by a linear

gradient from 98:2 to 2:98 in 25 min, then held at 2:98 for 5 min, followed by a linear gradient

change from 2:98 to 98:2 in 1 min, then held at 98:2 for 5 min. The flow rate was 0.2 mL/min.

HILIC chromatography. For HILIC chromatography a Kinetex HILIC column (100

mm × 2.1 mm, 2.6 μm particles) with a SecurityGuard column (2.1 mm × 2 mm, 2 μm parti-

cles) was used (Phenomenex, Torrance, CA, USA). The column temperature was set at 35˚C

and the autosampler temperature was 5˚C. The gradient elution solvents were A; 95:5 water-

acetonitrile (v/v), containing 5 mM ammonium formate and 0.1% formic acid (v/v), and B;

95:5 acetonitrile-water, containing 5 mM ammonium formate and 0.1% formic acid. The gra-

dient (A:B, v/v) was as follows: an isobaric period at 5:95 for 5 min, followed by a linear gradi-

ent from 5:95 to 50:50 in 25 min, then held at 50:50 for 5 min, followed by a linear gradient

change from 50:50 to 5:95 in 1 min, then held at 5:95 for 5 min. The flow rate was 0.2 mL/min.

Mass spectrometry. The electrospray MS settings for both RP and HILIC were as fol-

lowed: spray voltage 4.5 kV for positive ionization mode (3 kV for negative mode) and the cap-

illary temperature was set at 250˚C for positive ionization mode (250˚C for negative mode).

Nitrogen sheath gas and auxiliary gas were set at 25 and 15 arbitrary units, respectively.

Data processing and statistical analysis

The raw LC-MS data were processed with Sieve 2.2 (Thermo Scientific) using the default set-

tings except for the minimal signal to noise ratio for peak detection, which was set at 5. Meta-

bolomic features with a coefficient of variation (of the normalized peak area) of the QC

samples >25% were excluded from the dataset. The spectral data was then exported to Excel

and results of the positive and negative mode analyzed with the same technique (i.e. RP or
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HILIC) were merged. After data processing, a multivariate analysis was conducted using SIM-

CA-P (Umetrics, Sweden). The data was pareto-scaled and subjected to orthogonal projection

to latent structures discriminant analysis (OPLS-DA). The quality and reliability of the models

were assessed by R2Y, representing the explained variation described by the model, and Q2Y,

representing the predictive power of the model (based on the default 7-round cross validation

procedure used in SIMCA-P). Permutation tests (n = 100) were performed to assess the

robustness of the models. Also, a CV-ANOVA was calculated to assess the reliability of the

models.

The variable importance in the projection (VIP) was used to identify the metabolic features

that most significantly contributed to the clustering of groups within the OPLS-DA models

[12]. Metabolic features with a VIP�2.0 were considered important. Also, an independent t-

test was performed (using SPSS version 22, IBM, SPSS Inc., Chicago, IL) on all metabolic fea-

tures with a VIP�2.0 to highlight which of these metabolic features also differ at univariate

level between groups. A P-value of�0.05 was considered significant. Metabolic features with

VIP�2.0 and P�0.05 were considered potential biomarkers.

Metabolite identification and pathway analysis

Metabolite identification was performed on the potential biomarkers, and was achieved by

comparing spectral data (exact mass and MS/MS) with data available from the human metabo-

lome database (http://hmdb.ca/) and the METLIN database (http://metlin.scripps.edu/).

When available, in-house, putative ID’s were confirmed by comparison with authentic stan-

dards (retention time, exact mass and MS/MS).

Pathway analysis was performed on the (putatively) identified biomarkers to highlight path-

ways that were disturbed due to the reduced insulin sensitivity. Metaboanalyst (version 2.0), a

web-based program that uses the KEGG (http://www.genome.jp/kegg/) pathway database [13]

was used for analysis. The Bos Taurus library was chosen for pathway analysis.

Results

Insulin sensitivity

Insulin sensitivity ranged from 1.5 to 8.3 x 10−2 (mg/(kg�min))/(μU/mL) between calves and

was not differentially affected by dietary treatment (P>0.05; [6]). 50% of all calves had an insu-

lin sensitivity (M/I-value) <4.4 and thus were considered insulin resistant (IR). Other calves

were classified as moderately insulin sensitive (MIS). Whole- body insulin sensitivity differed

substantially (P<0.001) between IR and MIS calves (Table 1) and ranged from 2.1–3.8 in IR

calves and 4.4–8.2 in MIS calves.

Metabolomic profiling

Metabolomic profiling of IR vs. MIS calves was performed on the fasting plasma samples col-

lected on the day of the clamp study. The models obtained using OPLS-DA are shown in Fig 1.

A total of 247 metabolic features were detected using the C18 RP LC-MS. The C18 model

clearly distinguished MIS calves from IR calves. The non-orthogonal component of this model

explained 92% of the variation (R2Y = 0.92). The predictive power of the model, measured by

seven-fold cross validation was 66% (Q2Y = 0.66). The CV-ANOVA P-value was 0.03, indicat-

ing that the differences between the two groups were significant. Furthermore, permutation

tests (n = 100) were performed to assess the robustness of the model. The validation plots con-

firmed that the model was valid and unlikely obtained by chance, as the permuted R2 and Q2

data were lower that original values, and Q2 had a negative intercept. A total of 625 metabolic
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features were detected using the HILIC LC-MS. The HILIC model could also distinguish MIS

calves from IR calves. This model explained 90% of the variation (R2Y = 0.90). The predictive

power was 73% (Q2Y = 0.73) and the CV-ANOVA P-value was 0.01. Permutation tests

(n = 100) confirmed that the model was valid and unlikely obtained by chance. Both the per-

muted R2 and Q2 data were lower that original values, and Q2 had a negative intercept.

A total of 7 and 20 metabolic features had a variable importance in the projection >2.0 in

the C18 and HILIC model, respectively (S1 Table). Of these metabolites, a total of 1 and 11

metabolic features differed (P<0.05) between insulin sensitivity groups in the C18 and HILIC

model, respectively (Table 2). Seven of these metabolic features decreased in IR calves and five

increased. A total of 7 metabolites could be (putatively) identified. The chromatographic

response of these metabolites (as a measure of the plasma concentration) is given in Fig 2.

Pathway analysis

Pathway analysis was performed on the 7 putatively identified metabolites using Metaboana-

lyst to highlight pathways possibly associated with insulin resistance in veal calves. The 7 puta-

tively identified metabolites are involved in 4 pathways; the glycerophospholipid metabolism,

sphingolipid metabolism, glycine, serine and threonine metabolism, and primary bile acid bio-

synthesis (Table 3).

Discussion

Plasma metabolic profiling techniques have been applied to build models to find biomarkers

and pathways that can identify insulin resistant veal calves and distinguish these calves from

moderately insulin sensitive calves. To the best of our knowledge, this is the first time that met-

abolic profiling has been applied on veal calves to study insulin resistance. Satisfactory models

(Q2Y = 66 and 73% for C18 and HILIC, respectively) were developed, that could clearly identify

insulin resistant veal calves, and which could possibly be used in early diagnosis. The predictive

powers of these models are slightly lower compared to human metabolic profiling studies

(Q2Y = 76–93%; [14, 15]). This might be attributed to multiple factors: 1] the small number of

calves used in this study 2] possible differences in the metabolic profiling techniques used, and

3] possible differences in degree of the experimental contrasts in insulin sensitivity between

human and calf studies. In veal calves, insulin sensitivity decreases substantially within the first

Table 1. Characteristics of insulin resistant (IR) vs. moderately insulin sensitive (MIS) veal calves.

IR MIS P-value4

High-Fat diet, n 4 2 -

High-Lactose diet, n 3 5 -

Age, days 169±10 165±15 0.750

BW, kg 248±7 241±6 0.483

Insulin1 (mU/L) 135±5 133±3 0.640

M-value2 (mg/BW/min) 3.4±0.3 7.7±0.6 <0.001

M/I-value3 x 10−2 [mg/(kg*min)) / (μU/ml)] 2.6±0.3 5.8±0.5 <0.001

1 Plasma insulin concentration at steady state during a euglycemic-hyperinsulinemic clamp.
2 M-value = glucose disposal derived from a euglycemic-hyperinsulinemic clamp.
3 M/I-value = insulin sensitivity derived from a euglycemic-hyperinsulinemic clamp. Calves with a M/I-value

<4.4 were considered insulin resistant. M/I-valuesIR ranged from 2.1–3.8 and M/I-valuesMIS ranged from

4.4–8.2; x 10−2 [mg/(kg*min)) / (μU/ml)].
4 P-value was calculated from independent T-test.

https://doi.org/10.1371/journal.pone.0179612.t001
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weeks of life [5], which leads to smaller contrasts in insulin sensitivity in later life. One possible

source of variation that can be excluded from subsequent studies is the use of multiple dietary

treatments. Despite the fact that insulin sensitivity was not differentially affected by the dietary

treatments (dietary treatments almost balanced out between classification groups), it could be

that certain metabolites that are more strongly affected by dietary treatment. Nonetheless, the

potential biomarkers found in this study were not affected by dietary treatment (as assessed by

independent t-test; P-values> 0.05). In subsequent studies, it might be beneficial to restrict

feeding to the standard (commercial) lactose MR diet. Another source of variation that can be

Fig 1. OPLS-DA score plots from plasma metabolic profiles of moderately insulin sensitive and

insulin resistant veal calves. The white triangles represent moderately insulin sensitive veal calves (n = 7)

and black triangles represent insulin resistant veal calves (n = 7). The models were obtained using C18

LC-MS (A) and HILIC LC-MS (B) blood plasma metabolic profiling. R2Y, which is the variation described by

the models was 92 and 90% for the C18 and HILIC model, respectively. Q2Y, which describes how accurately

the models can predict class membership, was 66 and 73% for the C18 and HILIC model, respectively.

https://doi.org/10.1371/journal.pone.0179612.g001
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excluded from subsequent studies is the possible effect of age on insulin sensitivity. In our

study, insulin sensitivity was measured within a period of 7 weeks (2 calves per week). The

possible effect of age on insulin sensitivity, however, was balanced out between classification

groups, as age did not differ between groups. In subsequent studies, insulin sensitivity should be

measured at the same time (day). Additionally, it would be interesting to measure insulin sensi-

tivity in time (i.e. with age) in the same set of calves to study the discovered biomarkers and

their association with the development of insulin resistance with age.

A M/I cut-off value of 4.4 was used to discriminate between insulin resistant and moder-

ately insulin sensitive calves. This value was based on cut-off values for defining insulin resis-

tance in humans, because cut-off values for calves are not established [6]. A different cut-off

value would have perhaps let to discovery of additional/other biomarkers (and pathways).

Nevertheless, the cut-off value used in this study let to clear discrimination between insulin

sensitivity groups (i.e. a low vs. moderate group). Therefore, the discovered biomarkers are

related to differences in insulin sensitivity levels.

In our study, not all potential biomarkers could be identified. This is a well-known bottle-

neck of untargeted MS metabolic profiling techniques [16, 17]. Future studies should also con-

sider including additional identification techniques such as nuclear magnetic resonance

spectroscopy.

Interestingly, pathway analysis of the putatively identified potential biomarkers revealed

multiple disturbances in the glycerophospholipid and the sphingolipid metabolism. To the

best of our knowledge, this is the first time that these pathways (and potential biomarkers)

have been associated with insulin resistance in veal calves. This demonstrates the power of

metabolic profiling in identifying markers and pathways that may be important in understand-

ing the development of insulin resistance in calves. In dairy cows, both pathways have recently

been associated with reduced insulin sensitivity [18]. In humans, these pathways have fre-

quently been associated with insulin resistance and type 2 diabetes [19–23]. A previous study

Table 2. Marker metabolites of insulin resistance found in OPLS-DA models of HILIC and C18 LC-MS plasma metabolic profiling of veal calves.

m/z VIP1 P-value2 Metabolites3 Chemical class Fold change (IR/MIS)6

520.339 8.274 0.005 Lysophosphatidylcholine (18:2) Lysophospholipids 1.45

703.574 5.474 0.013 Sphingomyelins 0.70

104.107 4.484 0.002 Choline Cholines 1.19

204.123 3.654 0.031 Acetylcarnitine Acyl carnitines 0.50

185.127 3.614 0.005 Sphingomyelins 1.15

813.682 3.574 0.002 Sphingomyelin (d18:1/24:1) Sphingomyelins 0.49

498.288 2.915 0.017 Taurochenodeoxycholic acid Bile acids 0.44

811.668 2.474 0.001 Sphingomyelins 0.56

258.110 2.464 0.041 Glycerophosphorylcholine Glycerophosphorylcholines 1.50

815.698 2.184 0.000 Sphingomyelin (d18:0/24:1) Sphingomyelins 0.33

787.668 2.104 0.001 Sphingomyelins 0.95

564.330 2.024 0.034 1.34

1 Variable importance in the projection (VIP) obtained from OPLS-DA models with a threshold of�2.0.
2 P-value was calculated from independent samples T-test. Threshold was set at P�0.05.
3 (Putative) identification based on human metabolome database and METLIN database search combined with MS/MS fragmentation analysis, and in some

cases, comparison with authentic standards (when available in house).
4 VIP obtained from the HILIC OPLS-DA model.
5 VIP obtained from the C18 OPLS-DA model.
6 IR = Insulin resistant calves. MIS = moderately insulin sensitive calves.

https://doi.org/10.1371/journal.pone.0179612.t002
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has shown that different sphingolipids associate either positively or negatively with insulin

resistance [19]. In human and rodents, sphingomyelins (a type of sphingolipid) patches on β-

cells and predicts insulin secretory capacity [24]. Decreased glucose tolerance and insulin

secretion have been observed in sphingomyelin synthase 1 knockout mice [25, 26]. Our data

Fig 2. Plasma response of the (putatively) identified biomarkers of insulin resistance in veal calves. The

chromatographic peak area is a measure of the blood plasma concentration. MIS = moderately insulin sensitive veal

calves (n = 7). IR = insulin resistant veal calves (n = 7). Further details of these two groups are given in Table 1. Error

bars represent SEM.

https://doi.org/10.1371/journal.pone.0179612.g002
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also show that not all sphingomyelins are negatively associated with insulin resistance. The

mechanisms behind the different associations warrant further study. Glycerophospholipids

have also been associated with insulin resistance and type 2 diabetes. In human studies, both

positive and negative associations have been found for metabolites related to glycerophospho-

lipid metabolism [27–30]. In our study a positive association was found. Glycerophospholipids

are major components of cell membranes. Disturbances in membrane glycerophospholipid

metabolism could influence insulin secretion via alteration of the physico-chemical properties

of the membrane [20]. However, clear mechanisms behind the associations of metabolites

related to glycerophospholipid metabolism have not been identified yet. Future (mechanistic)

studies on the development of insulin resistance in calves should apply a targeted lipidomic

approach that specifically focuses on metabolites related to the glycerophospholipid and the

sphingolipid metabolism.

Conclusion

Based on plasma metabolic profiling satisfactory models were developed that are capable of

distinguishing veal calves differing in insulin sensitivity (i.e. moderate vs. insulin resistant/

extremely low insulin sensitive calves). Several metabolic alterations (potential biomarkers)

were observed between the moderate and low insulin sensitive calves. These alterations were

related to the glycerophospholipid metabolism, sphingolipid metabolism, glycine, serine and

threonine metabolism, and primary bile acid biosynthesis. Future studies should be performed

to study these pathways and biomarkers in early life (i.e. neonatal calves) and their association

with the development of insulin resistance with age in veal calves.
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https://doi.org/10.1371/journal.pone.0179612.t003

Metabolic profiling to identify insulin resistance in veal calves

PLOS ONE | https://doi.org/10.1371/journal.pone.0179612 June 15, 2017 10 / 12

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0179612.s001
https://doi.org/10.1371/journal.pone.0179612.t003
https://doi.org/10.1371/journal.pone.0179612


Formal analysis: Andre J. Pantophlet, Marcel P. de Vries.

Funding acquisition: Walter J. J. Gerrits, Joost J. G. C. van den Borne, Roel J. Vonk.

Investigation: Andre J. Pantophlet, Marcel P. de Vries.

Methodology: Andre J. Pantophlet, Han Roelofsen, Roel J. Vonk.

Project administration: Andre J. Pantophlet.

Resources: Andre J. Pantophlet, Marcel P. de Vries.

Supervision: Han Roelofsen, Roel J. Vonk.

Validation: Andre J. Pantophlet, Marcel P. de Vries.

Visualization: Andre J. Pantophlet.

Writing – original draft: Andre J. Pantophlet.

Writing – review & editing: Andre J. Pantophlet, Han Roelofsen, Marcel P. de Vries, Walter J.

J. Gerrits, Joost J. G. C. van den Borne, Roel J. Vonk.

References
1. Hostettler-Allen RL, Tappy L, Blum JW. Insulin resistance, hyperglycemia, and glucosuria in intensively

milk-fed calves. J Anim Sci. 1994; 72(1):160–73. PMID: 8138485

2. Hugi D, Bruckmaier RM, Blum JW. Insulin resistance, hyperglycemia, glucosuria, and galactosuria in

intensively milk-fed calves: dependency on age and effects of high lactose intake. J Anim Sci. 1997; 75

(2):469–82. PMID: 9051471

3. Pantophlet AJ, Gilbert MS, van den Borne JJGC, Gerrits WJJ, Roelofsen H, Priebe MG, et al. Lactose in

milk replacer can partly be replaced by glucose, fructose or glycerol without affecting insulin sensitivity in

veal calves. J Dairy Sci. 2016; 99(4):3072–80. https://doi.org/10.3168/jds.2015-10277 PMID: 26805986

4. Stanley CC, Williams CC, Jenny BF, Fernandez JM, Bateman HG, Nipper WA, et al. Effects of feeding

milk replacer once versus twice daily on glucose metabolism in holstein and jersey calves. J Dairy Sci.

2002; 85(9):2335–43. https://doi.org/10.3168/jds.S0022-0302(02)74313-0 PMID: 12362466

5. Pantophlet AJ, Gilbert MS, van den Borne JJGC, Gerrits WJJ, Priebe MG, Vonk RJ. Insulin sensitivity

in calves decreases substantially during the first 3 months of life and is unaffected by weaning or fructo-

oligosaccharide supplementation. J Dairy Sci. 2016; 99(9):7602–10. https://doi.org/10.3168/jds.2016-

11084 PMID: 27289153

6. Pantophlet AJ, Gerrits WJJ, Vonk RJ, van den Borne JJGC. Substantial replacement of lactose with fat in

a high-lactose milk replacer diet increases liver fat accumulation but does not affect insulin sensitivity in

veal calves. J Dairy Sci. 2016; 99(12):10022–32. https://doi.org/10.3168/jds.2016-11524 PMID: 27720157

7. Berger RD. A review of applications of metabolomics in cancer. Metabolites. 2013; 3(3):552–74. https://

doi.org/10.3390/metabo3030552 PMID: 24958139

8. Pantophlet AJ, Wopereis S, Eelderink C, Vonk RJ, Stroeve JH, Bijlsma S, et al. Metabolic profiling

reveals differences in plasma concentrations of arabinose and xylose after consumption of fiber-rich

pasta and wheat bread with differential rates of systemic appearance of exogenous glucose in healthy

men. J Nutr. 2016;[Epub ahead of print].

9. Graham SF, Chevallier OP, Elliott CT, Hölscher C, Johnston J, McGuinness B, et al. Untargeted meta-

bolomic analysis of human plasma indicates differentially affected polyamine and L-arginine metabo-

lism in mild cognitive impairment subjects converting to Alzheimer’s disease. PLoS One. 2015; 10(4):

e0119452.

10. Gowda GAN, Zhang S, Gu H, Asiago V, Shanaiah N, Raftery D. Metabolomics-based methods for early

disease diagnostics: A review. Expert Rev Mol Diagn. 2008; 8(5):617–33. https://doi.org/10.1586/

14737159.8.5.617 PMID: 18785810

11. Zhang X, Xu L, Shen J, Cao B, Cheng T, Zhao T, et al. Metabolic signatures of esophageal cancer:

NMR-based metabolomics and UHPLC-based focused metabolomics of blood serum. Biochim Biophys

Acta. 2013; 1832(8):1207–16. https://doi.org/10.1016/j.bbadis.2013.03.009 PMID: 23524237

12. Xia J, Psychogios N, Young N, Wishart DS. MetaboAnalyst: a web server for metabolomic data analysis

and interpretation. Nucleic Acids Res. 2009; 37(Web Server issue):W652–W60. https://doi.org/10.

1093/nar/gkp356 PMID: 19429898

Metabolic profiling to identify insulin resistance in veal calves

PLOS ONE | https://doi.org/10.1371/journal.pone.0179612 June 15, 2017 11 / 12

http://www.ncbi.nlm.nih.gov/pubmed/8138485
http://www.ncbi.nlm.nih.gov/pubmed/9051471
https://doi.org/10.3168/jds.2015-10277
http://www.ncbi.nlm.nih.gov/pubmed/26805986
https://doi.org/10.3168/jds.S0022-0302(02)74313-0
http://www.ncbi.nlm.nih.gov/pubmed/12362466
https://doi.org/10.3168/jds.2016-11084
https://doi.org/10.3168/jds.2016-11084
http://www.ncbi.nlm.nih.gov/pubmed/27289153
https://doi.org/10.3168/jds.2016-11524
http://www.ncbi.nlm.nih.gov/pubmed/27720157
https://doi.org/10.3390/metabo3030552
https://doi.org/10.3390/metabo3030552
http://www.ncbi.nlm.nih.gov/pubmed/24958139
https://doi.org/10.1586/14737159.8.5.617
https://doi.org/10.1586/14737159.8.5.617
http://www.ncbi.nlm.nih.gov/pubmed/18785810
https://doi.org/10.1016/j.bbadis.2013.03.009
http://www.ncbi.nlm.nih.gov/pubmed/23524237
https://doi.org/10.1093/nar/gkp356
https://doi.org/10.1093/nar/gkp356
http://www.ncbi.nlm.nih.gov/pubmed/19429898
https://doi.org/10.1371/journal.pone.0179612


13. Xia J, Mandal R, Sinelnikov IV, Broadhurst D, Wishart DS. MetaboAnalyst 2.0—a comprehensive

server for metabolomic data analysis. Nucleic Acids Res. 2012; 40(Web Server issue):W127–W33.

https://doi.org/10.1093/nar/gks374 PMID: 22553367
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