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Activation of the nuclear receptor PPARδ is
neuroprotective in a transgenic mouse model of
Alzheimer’s disease through inhibition of
inflammation
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Abstract

Background: Alzheimer’s disease (AD) is a multifactorial disorder associated with the accumulation of soluble forms
of beta-amyloid (Aβ) and its subsequent deposition into plaques. One of the major contributors to neuronal death
is chronic and uncontrolled inflammatory activation of microglial cells around the plaques and their secretion of
neurotoxic molecules. A shift in microglial activation towards a phagocytic phenotype has been proposed to confer
benefit in models of AD. Peroxisome proliferator activator receptor δ (PPARδ) is a transcription factor with potent
anti-inflammatory activation properties and PPARδ agonism leads to reduction in brain Aβ levels in 5XFAD mice.
This study was carried out to elucidate the involvement of microglial activation in the PPARδ-mediated reduction of
Aβ burden and subsequent outcome to neuronal survival in a 5XFAD mouse model of AD.

Methods: 5XFAD mice were orally treated with the PPARδ agonist GW0742 for 2 weeks. The brain Aβ load, glial
activation, and neuronal survival were assessed by immunohistochemistry and quantitative PCR. In addition, the
ability of GW0742 to prevent direct neuronal death as well as inflammation-induced neuron death was analyzed
in vitro.

Results: Our results show for the first time that a short treatment period of 5XFAD mice was effective in reducing
the parenchymal Aβ load without affecting the levels of intraneuronal Aβ. This was concomitant with a decrease in
overall microglial activation and reduction in proinflammatory mediators. Instead, microglial immunoreactivity
around Aβ deposits was increased. Importantly, the reduction in the proinflammatory milieu elicited by GW0742
treatment resulted in attenuation of neuronal loss in vivo in the subiculum of 5XFAD mice. In addition, whereas
GW0742 failed to protect primary neurons against glutamate-induced cell death, it prevented inflammation-induced
neuronal death in microglia-neuron co-cultures in vitro.

Conclusions: This study demonstrates that GW0742 treatment has a prominent anti-inflammatory effect in 5XFAD
mice and suggests that PPARδ agonists may have therapeutic utility in treating AD.
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Introduction
Alzheimer’s disease (AD) is a severe multifactorial disorder
leading to progressive dementia and eventually death. One
of the major hallmarks of AD is the accumulation of sol-
uble beta-amyloid (Aβ) peptides within the brain and the
deposition of fibrillar forms of Aβ extracellularly [1]. The
accumulation of fibrillar Aβ-containing plaques leads to
the proinflammatory activation of microglia and astrocytes
that surround the deposits. The ineffective clearance of the
fibrillar Aβ deposits results in their chronic production of
cytotoxic factors that act to exacerbate AD-like pathology
and neuronal death [2,3].
Peroxisome proliferator-activated receptors (PPARs) are

ligand-activated transcription factors that regulate cellular
metabolism by binding to sequence-specific DNA elements.
There are 3 PPAR isoforms, α, β/δ (hereafter referred to as
PPARδ) and γ. In general, PPARs are lipid sensors and prin-
cipally regulate fatty acid and cholesterol metabolism [4,5].
Importantly, PPARs act to regulate inflammatory processes
in microglia and macrophages, suppressing the elaboration
of cytokines and other inflammatory mediators and pro-
moting tissue repair and phagocytosis [6,7]. PPARγ has
been intensively studied in mouse models of central ner-
vous system (CNS) diseases, including AD, in which its ac-
tivation has been shown to lead to improvement in
learning and memory and concomitant amelioration of
AD-like pathology [8-11]. However, PPARδ is far less stud-
ied in models of brain diseases. PPARδ agonists have been
shown to reduce the production of inflammatory mediators
[12] especially in peripheral immune cells. PPARδ ligands
have been shown to be neuroprotective in in vivo models of
Parkinson’s disease (PD) [13,14], brain ischemia [14,15],
spinal cord injury [16] and in streptozotocin-induced ex-
perimental diabetes [17]. Thus far, only a single study has
addressed the effects of PPARδ activation in a mouse model
of AD, showing that 1-month treatment of 5XFAD mice
with PPARδ agonist GW0742 led to reduction in brain Aβ
burden, reduced astrocytic activation and increased expres-
sion of Aβ-degrading enzymes [18]. Since the 5XFAD mice
exhibit age-related neuronal degeneration in specific brain
areas, we wished to dissect the protective effect PPARδ acti-
vation in 5XFAD mice in more detail, focusing especially
on inflammation and AD-related neuronal death. Here we
show that a 2-week oral treatment of 5XFAD mice with
GW0742 reduced the brain Aβ load and microglial activa-
tion without affecting the number of neurons containing
intracellular Aβ/amyloid precursor protein (APP). Import-
antly, we show for the first time that the treatment attenu-
ated the degeneration of neurons in the subiculum of the
5XFAD mice. GW0742 was effective in preventing lipopoly-
saccharide (LPS)-induced increase in inflammatory media-
tors in primary microglia in vitro. Whereas GW0742 alone
failed to prevent neuron loss against glutamate exposure, it
significantly increased neuronal survival in inflammation-
induced neuron death in vitro. Our data demonstrate that
GW0742 is a powerful anti-inflammatory agent with neuro-
protective properties and PPARδ agonism could be consid-
ered as a potential AD therapy.

Materials and methods
Animals and drug treatment
5XFAD male mice, originally described by Oakley et al.,
were a gift from Dr. Robert Vassar (Northwestern Uni-
versity) and B6SJL/F1 females were purchased from
Jackson Laboratories (Bar Harbor, ME, USA). A total of
32 mice, both males and females were used in this study.
The mice were randomized into study groups: wild type
(WT) vehicle- treated: 9 female and 5 male mice; trans-
genic (TG) vehicle-treated: 4 female and 5 male mice
and TG GW0742-treated: 5 female and 4 male mice.
GW0742 was provided by GlaxoSmithKline (Research
Triangle, NC, USA). GW0742 was given by oral gavage
at the dose of 30 mg/kg daily as a water suspension for 2
weeks starting at the age of 4.5 months. Vehicle-treated
mice received water only. The animals were sacrificed at
the end of the treatment period 6 hours after the last dose
of GW0742. All animal experimentation was done accord-
ing to the Case Western Reserve University Institutional
Animal Care and Use Committee guidelines.

Immunohistochemistry
At the end of the treatment period the mice were anes-
thetized with Avertin and transcardially perfused with
0.01 M, PBS pH 7.4. Brains were removed, and the right
hemisphere was immersion fixed with 4% PFA in 0.1 M
phosphate buffer (PB, pH 7.4) over night at 4°C. There-
after, the brains were cryoprotected with 10% sucrose
for 24 hours following incubation in 30% sucrose for 48
hours after which the brains were frozen and cut in
serial 10-μM sagittal sections. The sections were incu-
bated with antibodies to glial fibrillary acidic protein
(GFAP; 1:500 dilution, Dako, Carpinteria, CA, USA),
ionized calcium binding adaptor molecule 1 (Iba-1; 1:200
dilution, Wako Chemicals, Richmond, VA, USA), NeuN
(Aves Labs Inc, Tigard, Oregon, USA), complement com-
ponent 3 (C3) and C1qa (1:1,000 dilution, both from
Novus Biologicals, Littleton, CO, USA,), and 6E10
(BioLegend, Dedham, MA, USA) followed by incuba-
tion with appropriate Alexafluor 488 or 546 conjugated
secondary antibodies (Molecular Probes/Life Technologies,
Grand Island, NY, USA).
Images of the hippocampi were taken from 3 sections

per animal, approximately 1,200 μM apart and spanning
the hippocampi. Immunoreactivity was quantified by
using ImagePro Premium (Media Cybernetics, Rockville,
MD, USA) blinded to the study groups and presented as
percentage of positively-stained area in the hippocampi.
NeuN positive neurons were counted in the subiculum
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region of the hippocampi in two sections from each ani-
mal. The cell count data weres confirmed by quantifying
the percentage of NeuN immunoreactive area in the
subiculum area of the hippocampi. Cortical 6E10 immu-
noreactive neuronal bodies were counted and cortical
6E10 immunoreactivity was quantified from a total of 3
separate images taken from layer V in the cortex. Inten-
sity of the intraneuronal 6E10 immunoreactivity was
quantified using ImageJ by outlining 10 to 14 individual
6E10 immunopositive neurons from 3 separate images
of cortical layer V taken from 3 consecutive sections.

Primary cortical neuronal cultures
Primary neurons were cultivated as described previously
[19]. Briefly, cortices of embryonic day 15 C57BL/6J
pups were dissected and freed from their meninges.
After dissociation with 0.025% (w/v) trypsin in Krebs
buffer (0.126 M NaCl, 2.5 mM KCl, 25 mM NaHCO3,
1.2 mM NaH2PO4, 1.2 mM MgCl2, 2.5 mM CaCl2, pH
7.4) for 20 minutes at 37°C the tissues were treated with
0.008% w/v DNaseI and 0.026% w/v trypsin inhibitor
(Sigma, St. Louis, MO, USA) and centrifuged at 256 × g
for 3 minutes. The cell pellet was resuspended in 3 ml
of DNaseI/SBT1 (Sigma, St. Louis, MO, USA) in Krebs
solution and gently triturated through a blunt-ended
glass pipet. Seven milliliters of additional Krebs buffer
were added, the cell suspension centrifuged at 256 × g
for 3 minutes and the cells were resuspended in Neuro-
basal Medium (Gibco/Life Technologies, Grand Island,
NY, USA) supplemented with 0.2 mM L-glutamine
(Gibco, Grand Island, NY, USA), 0.01 mg/ml gentamicin
(Sigma, St. Louis, MO, USA) and B27 Supplement (Gibco,
Grand Island, NY, USA), filtered through a 200 μM nylon
mesh filter and counted using a hemocytometer. Primary
cortical neurons were plated onto poly-D-lysine (50 μg/ml
in water) and laminin (5 μg/ml water; Sigma, St. Louis,
MO, USA) 24-well plates at the density of 200,000 cells
per well. After 5 to 6 days in vitro the cells were pre-
exposed to 1 μM GW0742 for 6 hours followed by expos-
ure to 500 μM glutamate in the presence of 1 μM GW0742
for 24 hours. Cell viability was measured by MTTassay. To
assess the effect of 1 μM GW0742 in neuronal viability,
the cells were exposed to 1 μM GW0742 alone.

Primary microglia cultures
Primary microglia were cultivated as described previously
by using mild trypsinization [11]. Briefly, P0-P3 C57BL/6J
mouse pups were decapitated, the brains removed, rinsed
with PBS containing 1 g/l glucose, mechanically dissoci-
ated and digested with 0.5% trypsin-EDTA for 20 minutes
at 37°C. Thereafter, the tissue homogenate was resus-
pended in DMEM/F12 media (Gibco, Grand Island, NY,
USA) containing 10% heat-inactivated FBS (Gibco, Grand
Island, NY, USA) and 1% penicillin-streptomycin. After
trituration the cell suspension was plated onto 150 mm
culture dishes for 20 to 22 days at 37°C and 5% CO2. After
the plates were confluent, astrocytes were removed by in-
cubating the plates with 0.25% trypsin in Hank's Balanced
Salt Solution (HBSS) diluted in 1:4 serum-free DMEM/
F12 for 30 minutes to 1 hour at 37°C. After washing the
plates with PBS, microglia attached on the plates were re-
moved by trypsinization with 0.25% trypsin in PBS. The
action of trypsin was stopped with DMEM/F12 media/
10% heat-inactivated FBS, cells centrifuged and plated for
subsequent studies. To analyze the effect of GW0742 on
primary microglial viability, microglia cultures were ex-
posed to 1 μM GW0742 for 24 hours and cell survival
was analyzed by MTT assay.
Primary neuron-microglia co-cultures
Primary neuron-microglia co-cultures were prepared as
described by Gresa-Arribas et al. [20]. Briefly, primary
cortical neurons were plated onto 24-well plate. At 5 to
6 days in vitro primary microglia were isolated and
plated on the top of neurons in Neurobasal Medium
(Gibco, Grand Island, NY, USA) supplemented with 0.2
mM L-glutamine (Gibco, Grand Island, NY, USA), 0.01
mg/ml gentamicin (Sigma, St. Louis, MO, USA) and B27
Supplement (Gibco, Grand Island, NY, USA) at the
density of 1:2 (100,000 microglia per 200,000 neurons).
The next day the co-cultures were exposed to 1 μM
GW0742 for 6 hours after which they were exposed to
100 ng/ml LPS and 30 ng/ml interferon (IFN)γ (Prepro-
tech, Rocky Hill, NJ, USA) for 48 hours. The cells were
rinsed with PBS (pH 7.4), fixed with 4% PFA for 20 minutes,
permeabilized with 0.2% Triton-x in PBS for 10 minutes
and incubated with an anti-microtubule-associated protein
2 (MAP-2) antibody (Sigma, St. Louis, MO, USA) in 5%
NGS following incubation with Alexa-488 conjugated sec-
ondary antibody (Molecular Probes, Eugene, OR, USA).
Neuronal viability was evaluated by quantifying the
extent of MAP-2 immunoreactivity in the microglia-
neuron co-cultures. MAP-2 immunoreactivity reveals
any alterations both in the dendritic compartment and
the cell soma and is frequently used to assess neuronal
integrity and viability in co-culture systems [20].
Tissue dissection
At the time of sacrifice, the animals were terminally anes-
thetized with Avertin and perfused with PBS. Brains were
removed and cortices dissected out. Hemibrains were
homogenized in 800 μl of tissue homogenization buffer
(250 mM sucrose, 20 mM Tris, 1 mM ethylenediamine-
tetraacetic acid (EDTA), 1 mM ethylene glycol tetraace-
tic acid (EGTA) in diethylpyrocarbonate-treated water)
containing Protease Inhibitor Cocktail (1:100, Sigma, St.
Louis, MO, USA). The homogenates were centrifuged at
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5,000 × g for 10 minutes at 4°C and supernatants stored
at −80°C and used for Western blot analysis.

RT-PCR
For RT-PCR, primary microglia were plated at the dens-
ity of 1 × 106 cells per well and stimulated in serum-free
DMEM/12 (Gibco, Grand Island, NY, USA) for 24 hours
prior to stimulation with 1 μM GW0742 for 24 hours
followed by 10 ng/ml LPS (Sigma, St. Louis, MO, USA)
together with the GW0742 for 24 hours. Thereafter, the
plates were washed with PBS and mRNA isolated using
RNeasy Mini kit (Qiagen, Valencia, CA, USA) according
to the manufacturer’s instructions.
Cortical brain samples were homogenized in homo-

genization buffer and an equivalent amount of RNABee
(TelTest Inc, Friendwood, TX, USA) was added to the
samples. Thereafter, 0.2 ml of chloroform (Sigma, St.
Louis, MO, USA) were added, the samples centrifuged
for 15 minutes at 13,000 × g at 4°C, equal amount of
70% ethanol was added to the aqueous layer followed by
mRNA isolation using RNease Mini kit (Qiagen, Valencia,
CA, USA). mRNA concentration and purity was determined
using a NanoDrop 2000 (Thermo Scientific, Hudson, NH,
USA). Equivalent amounts of mRNA were reverse tran-
scribed using a QuantiTect Reverse Transcription kit
(Qiagen, Valencia, CA, USA) according to the manufac-
turer’s instructions. The procedure included elimin-
ation of genomic DNA. The cDNA was preamplified for
14 cycles using a TagMan PreAmp Master Mix for select
primer sets (Applied Biosystems/Life Technologies, Foster
City, CA, USA). Quantitive PCR was performed with the
StepOne Plus Real Time PCR system (Applied Biosystems,
Foster City, CA, USA) for 40 cycles. Analysis of gene
expression was performed using the comparative Ct

method (ΔΔCT) where the threshold cycle for the target
genes was normalized to glyceraldehyde 3-phosphate de-
hydrogenase (GAPDH) and rRNA internal housekeeping
gene controls (ΔCT). The mRNA expression was presented
as fold change and statistical analyses were performed on
ΔCT ± SEM for each target gene as described earlier [21].

Western blotting
Protein concentration of the brain lysates was determined
by BCA (Pierce, Rockford, IL, USA). Equal amounts of
protein were run on Bis-Tris 4 to 12% gels (Life Technolo-
gies, Foster City, CA, USA). The following antibodies were
used: anti-actin (Santa Cruz Biotechnology, Dallas, TX,
USA); anti-apolipoprotein E (ApoE) (Santa Cruz Biotech-
nology, Dallas, TX, USA); anti-β-actin (Santa Cruz Bio-
technology, Dallas, TX, USA); anti-ATP-binding cassette
transporter A1 (Abca1; Novus Biologicals, Littleton, CO,
USA) and G1 (Abcg1; Novus Biologicals, Littleton, CO,
USA) followed by incubation with horseradish peroxidase
(HRP)-conjugated secondary antibodies.
Results
Treatment of 5XFAD mice with GW0742 resulted in
significant decrease in brain 6E10 immunoreactivity
Two-week treatment of 4.5-month-old 5XFAD mice led
to significant decrease in the 6E10 immunoreactivity in
the subiculum and hippocampi (Figure 1A,B). It should
be noted that in the 5XFAD model the 6E10-reactive
species include full-length APP, C-terminal fragments
(CTFs) and a diverse range of smaller and modified Aβ
peptides [22-24]. Quantification of Iba-1 immunoreactiv-
ity revealed significant reduction of Iba-1 immunoreac-
tivity in the hippocampus (Figure 1F) and we observed a
trend toward lower levels in the subiculum that did not
reach significance (Figure 1E). Astrocytic activation, as
analyzed by quantification of GFAP immunoreactivity in
the subiculum (Figure 1I) and hippocampus (Figure 1J)
was not significantly altered by GW0742 treatment.

Treatment with GW0742 increased abundance of
microglia associated with 6E10 positive deposits
GW0742-treated animals had increased association of
Iba-1 positive microglia surrounding the 6E10 positive
Aβ deposits (Figure 2). The calculated ratio of Iba-1 and
6E10 immunoreactivity in GW0742-treated mice was
significantly higher compared to vehicle- treated mice
(Figure 2G). Moreover, quantification of Iba-1 immuno-
reactivity in the hippocampi in the areas between the
6E10 immunopositive plaques, and devoid of any 6E10
immunoreactivity revealed significantly reduced levels of
Iba-1 staining in GW0742-treated animals (Figure 2H).
The high magnification insets in the Figure 2I and J show
the areas quantified and example images of the Iba-1
immunoreactivity in areas outside the 6E10 immunoreac-
tivity in vehicle- and GW0742-treated mice, respectively.
These data indicate that PPARδ activation results in
recruitment of microglia to amyloid deposits, coincident
with the clearance of the plaques. The overall reduction in
Iba-1 positive microglia follows from clearance of plaques
from the brain.

GW0742 treatment did not reduce the number of
neurons with intraneuronal APP/Aβ
High levels of intraneuronal Aβ/APP accumulate princi-
pally in layer V cortical neurons and in the subiculum that
are clearly evident as early as 2 months of age [25]. By the
age of 5 months, when the mice were sacrificed, the accu-
mulation of intraneuronal Aβ in cortical layer V neurons is
significant with a majority of neurons exhibiting 6E10 im-
munoreactivity within the cell soma. To assess the effect of
GW0742 treatment on the extent of Aβ deposition in cor-
tex, we first quantified the levels of layer V total 6E10
immunoreactivity and found that 2 weeks of treatment of
4.5-month-old 5XFAD mice with GW0742 resulted in
significant reduction in the levels of 6E10 positive deposits
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Figure 1 GW0742 induced a significant decrease in brain 6E10 immunoreactivity. Two-week treatment of 4.5-month-old 5XFAD mice with
the PPARδ agonist GW0742 significantly reduced the 6E10 immunoreactivity in the subiculum (A) and hippocampus (B). Figures (C) and
(D) depict representative images of the 6E10 immunoreactivity in the hippocampal areas of vehicle and GW0742-treated mice, respectively. GW0742
failed to reduce Iba-1 immunoreactivity in the subiculum area of the hippocampi (E) but induced a significant reduction in microgliosis as measured
by Iba-1 immunoreactivity in the hippocampus (F). Figures (G) and (H) are representative images of Iba-1 immunoreactivity in hippocampal area in
vehicle- (G) and GW0742- (H) treated mice. GW0742 treatment did not alter astrogliosis as measured by glial fibrillary acidic protein (GFAP)
immunoreactivity in subiculum (I) or hippocampus (J). Figures (K) and (L) are representative images of GFAP immunoreactivity in vehicle- (K) and
GW0742- (L) treated mice. The dotted lines outline the quantified areas of the hippocampi and the subiculum. Results are presented as mean ± SEM.
VEH = vehicle- and GW0742 = GW0742-treated mice.*P < 0.05 and ***P < 0.001 as analyzed by Student’s t-test. n = 7 in vehicle- and n = 9 in GW0742-
treated group. Scale bar = 400 μm.
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(Figure 3A). To determine whether the GW0742 treatment
affected the extent of intraneuronal Aβ accumulation, we
then counted the number of 6E10 positive neuronal cell
bodies. We found no significant treatment effect on the
number of 6E10 positive neurons (Figure 3B). In addition,
the treatment did not affect the intensity of intraneuronal
6E10 immunoreactivity (Figure 3C). Since 6E10 detects
APP species, and its proteolytic products, we performed
Western analysis using 6E10 and quantified the relative
APP intensity. The quantification revealed that GW0742
did not significantly reduce the protein levels of full-length
APP (Figure 3F).

GW0742 treatment prevented the loss of NeuN positive
neurons in the subiculum
The 5XFAD mice exhibit significant loss in the number
of NeuN positive neurons in the subiculum between 2
and 6 months of age [25,26]. Quantitation and cell count
data confirmed that at the age of 5 months these mice
exhibit significantly decreased numbers of NeuN positive
neurons and NeuN immunoreactive areas in the subicu-
lum compared to non-transgenic mice (Figure 4). Remark-
ably, the 2-week treatment with GW0742 between 4.5 and
5 months of age significantly attenuated the loss of NeuN
immunoreactivity in the subiculum as measured by both
the number of NeuN immunopositive cells as well as
quantification of NeuN immunoreactivity (Figure 4).
These data provide clear evidence of the neuroprotective
effects of PPARδ activation.

Treatment with GW0742 did not alter the lipidated ApoE
levels
Since lipidated ApoE has been shown to be involved in
the nuclear receptor-mediated reduction of brain Aβ
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levels, we analyzed the levels of lipidated ApoE, the
total levels of ApoE and the main transporters involved
in the ApoE lipidation, Abca1 and Abcg1 from the ve-
hicle and GW0742-treated mouse brain homogenates.
Transgenic vehicle-treated mice did not exhibit altered
levels of Abca1 compared to WT vehicle-treated mice
(Figure 5A); however, the levels in Abcg1 were signifi-
cantly increased (Figure 5B). The levels of total ApoE
were unaltered in vehicle-treated TG mice compared to
their WT controls (Figure 5C). Treatment with GW0742
led to slight decrease in the levels of Abca1 reaching stat-
istical significance compared to WT vehicle-treated mice
(Figure 5A) and a significant decrease in the levels of Abcg1
compared to the TG vehicle-treated mice (Figure 5B).
The treatment had no significant effect on the levels
of total ApoE (Figure 5C). The levels of lipidated ApoE
were significantly increased in the brain homogenates
of TG vehicle-treated mice compared to their WT
controls but were unaffected by GW0742 treatment
(Figure 5E). These data argue that the salutary effects
of PPARδ activation do not arise from regulation of ApoE
levels or lipidation status and are thus distinct from the
actions of PPARγ and retinoid-X-receptor agonists.
GW0742-treated mice showed decreased expression
levels of brain proinflammatory mediators
Since GW0742 is known to be an effective anti-inflam-
matory agent in other tissues, the expression levels of a
panel of brain proinflammatory mediators were assessed
from the brain homogenates. Quantitative PCR revealed
a significant up-regulation in the expression levels of
C3 (Figure 6A), C1qa (Figure 6B), interleukin (IL)-6
(Figure 6C), tumor necrosis factor (TNF)α (Figure 6D),
chemokine (C-C motif ) ligand 2 (CCL2) (Figure 6E),
IFNγ (Figure 6F), CXC chemokine receptor 2 (CXCR2)
(Figure 6G) and IL-1β (Figure 6H) in the 5XFAD mice
compared to non-transgenic controls. Importantly,
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GW0742 treatment acted broadly to suppress the expres-
sion of C3, C1qa, IL-6, CCL2, CXCR2 and IL-1β.

GW0742-treated mice showed decreased levels of C1qa
and C3 immunoreactivity
Since the RNA expression levels of C1qa and C3 were de-
creased in GW0742-treated 5XFAD mice, we confirmed
the reduction of C1qa and C3 protein levels by immuno-
histochemistry. Both C1qa and C3 expression was dramat-
ically reduced upon GW0742 treatment and was mainly
co-localized with GFAP immunoreactivity (Figure 7).

Activation of PPARδ prevented the LPS-induced increase
in the expression levels of proinflammatory mediators in
primary microglia in vitro
To detect whether PPARδ activation shows anti-
inflammatory properties in vitro, primary microglia were
pre-exposed to GW0742 followed by exposure to 10 ng/ml
LPS in the presence of GW0742 or vehicle for 24 hours.
Analysis of mRNA expression levels by qPCR revealed
significant up-regulation in the levels of IL-6 (Figure 8A),
CCL2 (Figure 8B), IL-1β (Figure 8C), inducible nitric oxide
synthase (iNOS) (Figure 8D) and TNFα (Figure 8E) upon
LPS treatment. The levels of all of these proinflammatory
mediators were decreased in cultures treated with GW0742
(Figure 8A-E, respectively).
GW0742 treatment prevented inflammation-mediated
neuronal death in vitro
We first tested if cultured neurons could be protected
from the neurotoxic effects of glutamate by the PPARδ
agonist GW0742. Primary neurons were pre-exposed to
GW0742 followed by exposure to 500 μM glutamate in
the presence of GW0742 or vehicle for 24 hours. There
was no significant effect on neuronal survival by GW0742
on glutamate-induced neuronal death. GW0742 alone was
not toxic to neurons (data not shown).
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Microglia elaborate an array of cytotoxic products that
are postulated to contribute to neuronal death in AD. We
next employed tissue culture to assess whether GW0742
protects neurons against inflammation-induced neuronal
degeneration in neuron-microglia co-cultures. Primary
neurons were cultivated in the presence of primary micro-
glia and pre-exposed to GW0742 and, thereafter, exposed
to 100 ng/ml LPS and 30 μg/ml IFNγ for 48 hours in the
presence of GW0742 or vehicle. In the co-culture system
neuronal death cannot be assessed by MTT assay. There-
fore, the effect of GW0742 on neuronal survival against
inflammation-induced neuron loss was monitored by
MAP-2 staining. Quantification of MAP-2 immunoreac-
tivity revealed significant loss of MAP-2 immunoreactive
area in vehicle- treated cells compared to GW0742-
treated cells (Figure 9).

Discussion
Here we report that PPARδ activation in an animal
model of AD results in reduction in the extracellular
plaque burden that is associated with a robust reduction
in inflammation. Importantly, treatment with a PPARδ
agonist provided robust neuroprotection, with a signifi-
cant attenuation of the loss of neurons in the subiculum
of 5XFAD mice. Neuronal death is one of the main
pathological features in patients with AD. The current
study is thus far the only study linking PPARδ-mediated
reduction in the Aβ load with preservation of neurons in
a transgenic mouse model of AD. Importantly, our study
shows that the protection of the neurons was not associ-
ated with a reduction in intraneuronal Aβ by PPARδ ac-
tivation, but rather with a suppression of inflammation.
Of importance is that a significant reduction in the levels
of plaque-associated 6E10 immunoreactivity was achieved
with a brief 2-week treatment period. The fact that the
amount of Aβ-containing neurons and their 6E10 immu-
noreactivity was not altered upon GW0742 treatment sug-
gest that our GW0742 treatment paradigm had a direct
effect on microglia and did not affect the accumulation of
intraneuronal Aβ.
An earlier study showed that PPARδ activation led to

decreased levels of 6E10 immunoreactivity only in the
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subiculum of 5XFAD mice [18]. This is in accordance
with our data showing decreased levels of 6E10 immu-
noreactivity in the subiculum, but in addition we also
noted a significant decrease in the levels of Aβ deposits
in hippocampus and in cortical layer V. The reduction
was specific to extracellular deposits since the number
of 6E10 positive neurons remained unchanged upon
treatment. There are three major differences between
the current study and the study by Kalinin et al. First,
the age of the animals at the start of the treatment in
our study was 4.5 months compared to 2 or 3.5-month-
old mice used in the study by Kalinin et al. The second
is the treatment time, which was only 2-weeks in the
current study compared to 1-month period in the study
by Kalinin et al. Lastly, we administered the drug by oral
gavage once a day, whereas Kalinin et al. provided the
drug in chow. Our study shows that PPARδ agonist
GW0742 is very effective in reducing the levels of extra-
cellular Aβ deposits over a relatively short treatment
period. In contrast to Kalinin et al., the mechanism
underlying the clearance of Aβ was not mediated
through increased neprilysin (NEP) or insulin-degrading
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(See figure on previous page.)
Figure 6 GW0742 treatment decreased the expression levels of proinflammatory mediators in the brains of 5XFAD mice. The expression
levels of C3 (A), C1qa (B), IL-6 (C),TNFα (D), CCL2 (E), INFγ (F), CXCR2 (G) and IL-1β (H) in the brain of the 5XFAD mice were analyzed by qPCR.
Results are presented as mean ± SEM. VEH = vehicle- and GW0742 = GW0742-treated mice. **P < 0.01 ***P < 0.001 as analyzed by 1-way ANOVA
followed by Tukey’s post hoc test. n = 10 in WT vehicle-treated group, n = 9 in TG vehicle- and n = 9 in TG GW0742-treated group.
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enzyme (IDE) expression, as we were unable to detect
GW0742-stimulated mRNA expression levels of NEP
and IDE (data not shown). Instead, we postulate that the
reduction is due to enhanced microglial-mediated clear-
ance of Aβ.
A large body of evidence suggests that ApoE is one of

the main mechanisms underlying soluble Aβ clearance
within the interstitial fluid in the AD brain [9,10] and is
involved in microglia-mediated degradation of soluble
Aβ [8-11,27]. Since some studies have suggested that
PPARδ agonists induce the expression of Abca1 [28,29],
we wanted to analyze whether the reduction in the Aβ
deposition was due to increased expression of Abca1 or
Abcg1 and subsequent increase in ApoE lipidation. Our
results show that GW0742 treatment unexpectedly re-
duced the protein expression levels of these proteins.
Whilst this may be attributed to differences in the
models used in previous studies [28,29], it is important
C1qa  G

tg VEH

tg GW0742

tg VEH

tg GW0742

C3  

A B

ED

G H

KJ

Figure 7 The expression levels of C1qa and C3 were reduced in GW0
Immunohistochemistry against C1qa and C3 revealed a staining pattern as
immunoreactivity. Figures (A) and (B) show typical example images of C1q
and figure (C) is the overlay of C1qa and GFAP. Figures (D-F) show examp
mice. Figures (G-H) show C3 and GFAP immunoreactivities in vehicle-trea
depict example images of corresponding immunoreactivities in GW0742-
and C3 staining pattern resembling astrocytes. Scale bar = 200 μm.
to note that the levels of total ApoE and lipidated ApoE
were not altered by GW0742 suggesting that the effect
of GW0742 is not mediated through induction of ApoE
lipidation. This is consistent with published literature as
no data showing elevation in the levels of ApoE upon
PPARδ activation have been reported to date in this con-
text, nor are predicted from the sequence of the nuclear
receptor response element in the ApoE promoter.
In the current study GW0742 treatment reduced the

expression levels of several cytokines both in vitro in pri-
mary microglia and in vivo in TG mouse brain. This
strongly supports the hypothesis that PPARδ treatment
leads to reduced cytokine expression profile in multiple
proinflammatory cytokines, which has beneficial effects
on microglial activation and induces concomitant reduc-
tion in the brain Aβ burden. The fact that we detected
similar changes both in primary microglia in vitro and in
5XFAD mouse brain supports the contribution of
FAP  C1qa/GFAP 

GFAP  C3/GFAP  

C

F

I

L

742-treated mouse brain as analyzed by immunohistochemistry.
sociated predominantly with glial fibrillary acidic protein (GFAP)
a and GFAP immunoreactivities in vehicle-treated TG mice, respectively
le images of corresponding immunoreactivities in GW0742-treated TG
ted TG mice and figure (I) the overlay of C3 and GFAP. Figure (J-L)
treated TG mice. The high magnification insets show typical C1qa
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Figure 8 GW0742 prevented the lipopolysaccharide (LPS)-induced increase in the expression levels of proinflammatory mediators
in vitro. Microglia were exposed to vehicle or GW0742 for 24 hours after which the cells were exposed 10 ng/ml LPS for 24 hours. The expression
levels of IL-6, (A), CCL2 (B), IL-1β (C), iNOS (D) and TNFα (E) were analyzed by qPCR. Results are presented as mean ± SEM. VEH = vehicle- and
GW0742 = GW0742-treated mice. **P < 0.01 ***P < 0.001 as analyzed by 1-way ANOVA followed by Tukey’s post hoc test. n = 3 to 4 per group derived
from individual experiments and values are normalized to VEH + LPS.
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microglia in the observed effects. A large number of cy-
tokines and their corresponding receptors have been
shown to be elevated in AD brain and the increased
levels of many, such as IL-1β have detrimental effects on
neuronal survival [30]. CCL2 and CXCR2 are amongst
inflammatory mediators the levels of which have been
shown to be linked to neurodegeneration [31-34]. Simi-
lar to our study, different treatment paradigms in animal
models of AD have demonstrated the link between re-
duction in the levels of CCL2 or CXCR2 and decreases
in brain Aβ [35-38]. The fact that GW0742 induced a
significant reduction in several measured cytokines im-
plies that the potency of the drug relies on reducing the
inflammatory milieu and inducing the concomitant
beneficial actions in AD-like pathology.
In the current study the expression levels of C1qa and

C3 were significantly elevated in the brains of 5XFAD
mice and were reduced by GW0742 treatment. Most of
the C1qa and C3 immunoreactivity was associated with
GFAP immunoreactivity suggesting that although the
level of astrocytic activation was not reduced, astrocytic
expression of C1qa and C3 was diminished. The human
AD brain has been shown to have increased expression
of complement proteins [39]. Aβ has been shown to dir-
ectly activate the complement pathway [40-43] prompt-
ing the hypothesis that the activation of the complement
pathway is detrimental in AD. Whereas microglial ex-
pression of complement proteins C1qa and C3 may en-
hance the Aβ phagocytic capacity [44-46], increased
expression of these proteins has also been shown to lead
to neuronal degeneration and death [47-49]. The overall
decrease in C3 and C1qa in the current study may
reflect a decrease in the brain inflammatory milieu. This
may be beneficial for neuronal survival.
An important finding in our study is that treatment of

AD mice with GW0742 not only reduced the brain
inflammatory milieu but also prevented the loss in NeuN
immunoreactivity in a specific brain area in 5XFAD mice
that is susceptible to robust neuronal death [25,26]. We
confirmed this finding in vitro by using primary neuron-
microglia co-cultures where GW0742 preserved MAP-2
immunoreactivity against inflammation-induced neuronal
death. Although NeuN may not be a confirmative marker
for neuronal death [50] and our data do not represent
absolute neuronal counts, our data are supported by studies
showing the neuroprotective effect of PPARδ agonists in
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Figure 9 GW0742 prevented the inflammation-induced neuron death in vitro. Neurons were cultivated in the presence of microglia and
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Malm et al. Journal of Neuroinflammation  (2015) 12:7 Page 13 of 15
various models of neurodegenerative diseases [13,15-17,51]
mainly via reducing inflammation and oxidative stress. It is
noteworthy that GW0742 alone was not neuroprotective
against glutamate exposure at the concentrations used in
this study. The ability of GW0742 to provide direct neuro-
protection in vitro has yielded some contradictory results
and may vary depending on treatment times, exposure con-
centrations and cellular models used and direct neuropro-
tection may require very high concentrations of PPARδ
agonists [13,52,53]. Our data imply that rather than provid-
ing direct neuroprotection against glutamate-induced neur-
onal death, GW0742 protects primary neurons from
inflammation-induced neuronal death at the concentrations
of GW0742 used in the study.
Our study shows for the first time that enhancement

of PPARδ activity with a relatively short time window of
only 2 weeks resulted in significant decrease in the
amount of Aβ deposits and, importantly, it induced an
overall decrease in the proinflammatory milieu slowing
down the neuronal deterioration of 5XFAD mice. Our
data warrant the activation of PPARδ as a potential
therapeutic strategy to combat AD.
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