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Alzheimer’s disease is pathologically characterized by abnormal accumulation of amyloid-
beta plaques, neurofibrillary tangles, oxidative stress, neuroinflammation, and
neurodegeneration. Metal dysregulation, including excessive zinc released by
presynaptic neurons, plays an important role in tau pathology and oxidase activation.
The activities of mammalian target of rapamycin (mTOR)/ribosomal S6 protein kinase
(p70S6K) are elevated in the brains of patients with Alzheimer’s disease. Zinc induces tau
hyperphosphorylation via mTOR/P70S6K activation in vitro. However, the involvement of
the mTOR/P70S6K pathway in zinc-induced oxidative stress, tau degeneration, and
synaptic and cognitive impairment has not been fully elucidated in vivo. Here, we assessed
the effect of pathological zinc concentrations in SH-SY5Y cells by using biochemical
assays and immunofluorescence staining. Rats (n = 18, male) were laterally ventricularly
injected with zinc, treated with rapamycin (intraperitoneal injection) for 1 week, and
assessed using the Morris water maze. Evaluation of oxidative stress, tau
phosphorylation, and synaptic impairment was performed using the hippocampal tissue
of the rats by biochemical assays and immunofluorescence staining. The results from the
Morris water maze showed that the capacity of spatial memory was impaired in zinc-
treated rats. Zinc sulfate significantly increased the levels of P-mTOR Ser2448, P-p70S6K
Thr389, and P-tau Ser356 and decreased the levels of nuclear factor erythroid 2-related
factor-2 (Nrf2) and heme oxygenase-1 (HO-1) in SH-SY5Y cells and in zinc-treated rats
compared with the control groups. Increased expression of reactive oxygen species was
observed in zinc sulfate-induced SH-SY5Y cells and in the hippocampus of zinc-injected
rats. Rapamycin, an inhibitor of mTOR, rescued zinc-induced increases in mTOR/p70S6K
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activation, tau phosphorylation, and oxidative stress, and Nrf2/HO-1 inactivation,
cognitive impairment, and synaptic impairment reduced the expression of synapse-
related proteins in zinc-injected rats. In conclusion, our findings imply that rapamycin
prevents zinc-induced cognitive impairment and protects neurons from tau pathology,
oxidative stress, and synaptic impairment by decreasing mTOR/p70S6K hyperactivity and
increasing Nrf2/HO-1 activity.
Keywords: animal model, tau hyperphosphorylation, mTOR/p70S6K pathway, Nrf2/HO-1 (nuclear factor erythroid
2-related factor-2/heme oxygenase-1), oxidative stress, rapamycin, zinc, cognitive deficit
INTRODUCTION

Alzheimer’s disease (AD) is pathologically characterized by
abnormal accumulation of amyloid-beta (Ab) plaques,
neurofibrillary tangles (NFTs), neuroinflammation, oxidative
stress, synaptic impairment, and neurodegeneration (1).
Pathological changes lead to cognitive decline and impairment
in patients and in animal models. The microtubule-associated
protein tau is abnormally hyperphosphorylated and mainly
aggregates into paired helical filaments (PHFs) in the brains of
patients with AD (2, 3). Tau hyperphosphorylation is mediated
by protein kinases or phosphatases, which are involved in AD
neurofibrillary degeneration (4, 5). The mammalian target of
rapamycin (mTOR) and ribosomal S6 protein kinase (p70S6K)
are serine/threonine kinases that play key roles in the regulation
of protein synthesis and degradation, age-dependent cognitive
decline, and pathogenesis of AD (6–8). Accumulating evidence has
demonstrated that abnormal mTOR signaling in the brain affects
several pathways inAD that are associatedwithmetabolism, insulin
signaling, protein aggregation, mitochondrial function, and
oxidative stress (9). Increased expression of mTOR and P70S6K
colocalizes with NFT andmediates tau phosphorylation (6, 7, 10 8,
11). Rapamycin, a well-known inhibitor of mTOR, plays an
important role in autophagy and insulin signaling (12, 13) and
regulates tau phosphorylation (11, 14, 15). However, the upstream
or downstream effectors controlled by mTOR that contribute to
changes in neuronal functions and cognitive decline have not been
fully elucidated.

Metal dysregulation, particularly iron, copper, and zinc, is
implicated in the development of AD at an early stage (16–18
19–22). Higher levels of cerebral zinc are observed in
postmortem brain tissue from patients with AD (reaching 200–
300 mM) than in healthy controls (23, 24). Zinc is the second
most abundant essential trace metal in the brain and is critical for
maintaining brain homeostasis (22, 24, 25). Under pathological
conditions, the excessive zinc released from synaptic vesicle
activation promotes tau hyperphosphorylation (22, 23, 26, 27)
in cells (11, 28) and liquid–liquid phase separation of tau protein
(29). In addition, previous studies have demonstrated that zinc
firmly binds to Ab and was detected inside Ab plaques (30–33).
In the AD brain, presynaptic neurons release excessive zinc,
which causes oxidase activation in neurons and exacerbates
pathological development, leading to neuronal death (26, 27,
35, 38).
org 2
Oxidative stress is an early event in AD and plays an
important role in AD pathogenesis (38). Elevated levels of
reactive oxygen species (ROS) were detected in postmortem
brain tissues from AD patients and animal models of AD (22,
36, 37). Activation of the nuclear factor erythroid 2-related
factor-2 (Nrf2)/heme oxygenase-1 (HO-1) pathway inhibits the
progression of inflammation and reduces ROS production and
thus has been a potential therapeutic target for AD (39–42).
There is a vicious cycle formed by excessive zinc, tau, and
oxidative stress: elevated levels of zinc raise the production of
ROS in mitochondria. Oxidative stress increases zinc
concentration and tau hyperphosphorylation. In addition,
excessive zinc and hyperphosphorylated tau cause oxidative
stress and neurotoxicity. Hyperphosphorylated tau damages
microtubule function and induces oxidative stress (43, 44).
Increased oxidative stress has been indicated to cause tau
hyperphosphorylation (45, 46) and aggravate neuronal death (47).
Oxidative stress has been previously shown to be the underlying
mechanism for the activation of mTOR in AD (48). However, the
underlying mechanism of how excessive zinc links to tau
degeneration remains unclear.

In the current study, we hypothesized that pathological
concentrations of zinc could disturb the rapamycin-dependent
mTOR/P70S6K and Nrf2/HO‐1 pathways, leading to detrimental
effects on oxidative stress, tau hyperphosphorylation, and synaptic
and cognitive impairment. To this end, we assessed the effect of
rapamycin treatment on zinc sulfate (300 mM)-treated SH-SY5Y
cells and lateral ventrally injected rats.
MATERIALS AND METHODS

Materials and Antibodies
Zinc sul fa te , rapamycin , tr isaminomethane (Tris) ,
radioimmunoprecipitation assay (RIPA), sodium dodecyl sulfate
(SDS) buffer, and protease inhibitor cocktail were obtained from
Sigma Aldrich Co. (St. Louis, MO, USA). A Bradford kit was
purchased from Bio-Rad (CA, USA). For the primary antibodies
employed in the present study, please refer toSupplementaryTable 1.

Cell Culture and Treatment
The cell culture was prepared as described previously (11, 49).
Human SH-SY5Y neuroblastoma cells were grown to 70%–80%
confluence in 75-cm2 plastic culture flasks (Corning, China) in a
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mixture of 5% CO2 and 95% air at 37°C, employing Dulbecco’s
modified Eagle’s medium (DMEM)/F12 medium (1:1)
supplemented with 10% fetal bovine serum (FBS), 100 units/ml
penicillin, and 100 mg/ml streptomycin. Prior to treating SH-
SY5Y cells with 300 mM zinc sulfate, the cultures were kept in
free serummedia. Zinc sulfate (300 mM) was chosen based on the
results and protocol established in our previous study (49). SH-
SY5Y neuroblastoma cells were pretreated with 20 ng/ml
rapamycin for 1 h and then incubated with 300 mM zinc
sulfate for 4 h.

For the generation of tau knockout cell line, the SH-SY5Y
cells (5 × 105) were seeded per well in a 6-well culture plate in a
medium containing DMEM/F12, 10% FBS. The cells were grown
until they reached 70%–80% confluence. We used SiRNA
reagents (Invitrogen) to silence human Tau genes in the SH-
SY5Y cells, following manufacturer’s instructions. The targeted
RNA sequences that we used for Tau were: 5′CAUCCAU
CAUAAACCAGGATT3′ (sense) and 5′UCCUGGUUUAUGA
UGGAUGTT3′ (antisense).

Animals
Eighteen Sprague–Dawley (SD) rats were included in this study
(male, weight 250–300 g, 12 months of age, Guizhou
Experimental Animal Center in China). All rats were housed
in ventilated cages in a climate-controlled room (temperature:
22°C ± 2°C, humidity: 50% ± 5%, 12 h light–dark cycle with
lights on at 8:00 a.m.). Food (safe, sterilized) and water (softened,
sterilized) were provided ad libitum. Poplar wood shavings were
placed in cages for environmental enrichment. All experimental
protocols were approved by the Guiyang Regional Animal Care
Center and Ethics Committee.

Surgery and Treatment
The timeline of the surgery, treatment, and behavior testing are
shown in Supplementary Figure 1. All rats were randomly
assigned into three groups (control group, zinc group, and zinc
+rapamycin group; n = 6 each group). Rats were deeply
anesthetized with an initial dose of 5% isoflurane in an
oxygen/air mixture (1:4, 1 L/min) and were maintained at
1.5% isoflurane in an oxygen/air mixture (1:4, 0.6 L/min).
Anesthetized rats were placed on a stereotaxic apparatus
(RWD Life Science, Shenzhen, China), and the coordinates
for injection were 0.8 mm posterior and 1.5 mm lateral and 3.6
mm ventral from bregma. Zinc sulfate (25 mM, 2 ml) was
injected slowly into the right lateral ventricle in rats from both
the Zn and Zn+rapamycin groups (Figure 1A). Rats in the
control group underwent the same surgical procedures and
were injected with phosphate-buffered saline (PBS; pH 7.4) of
the same volume. The body temperature and respiratory rate of
the rats were monitored during surgery. The body temperature
of the animal was maintained at 36.5°C ± 0.5°C throughout the
procedure using a warming pad. Lidocaine ointment was wiped
locally to the scalp to reduce pain. One day after the surgery,
rats in the zinc+rapamycin group were administered rapamycin
(1.5 mg/kg body weight, intraperitoneal injection (i.p.), three
times for 1 week, alternate day indicated in Supplementary
Figure 1). The rats in the control and Zn groups were injected
Frontiers in Immunology | www.frontiersin.org 3
with 0.9% citrate buffer of the same volume (i.p.). Behavioral
tests were subsequently performed after the rapamycin
treatment period.

Behavioral Testing
Morris water maze (MWM) was used to assess the hippocampal
spatial learning function of the rats (50). The circular pool
(160 cm diameter and 50 cm height) was filled to a depth of
30 cm with water (25°C ± 1°C) in this study. Visual cues were
positioned above the water level, and extra maze cues were
blocked with a dark curtain. During MWM training, all rats
were subjected to 4 training trials daily for 6 consecutive days. In
each trial, rats were trained to find a hidden platform (20-cm
diameter) submerged 1 cm under the water surface for 60 s.
Afterward, the rats were kept on the platform for 20 s. If these
rats could not seek the platform within 60 s, they were guided to
the platform within 60 s and kept on the platform for 20 s
afterward. On day 7, a spatial probe trial was executed, where the
platform was removed. The escape latency, the total time spent in
the target quadrant, the number of platform crossings, and
swimming speed were monitored by video tracking software
(ANY-maze, USA).

After the behavioral tests, all rats were then sacrificed under
deep anesthesia with pentobarbital sodium (50 mg/kg body
weight) and transcardially perfused with PBS (pH 7.4). Brains
were removed from the skull afterward. The left hemisphere brain
tissue was saved for Western blot and stored at -80°C. The right
hemisphere rat brain tissue was fixed in 4% paraformaldehyde in
1× PBS (pH 7.4) for 24 h and saved in 1× PBS (pH 7.4) at 4°C (51).
For immunofluorescent staining, the fixed right brain hemisphere
tissues were dehydrated using a vacuum infiltration processor
(Leica ASP200S, Germany) and embedded in paraffin using an
Arcadia H heated embedding workstation (Leica, Germany).

Protein Extraction and Western Blotting
SH-SY5Y cells (n = 3 cell samples in each group) and the
hippocampus of rats (n = 6 in each group) were lysed in RIPA
buffer with a 0.1% protease inhibitor cocktail on ice. Protein
concentration was measured by a Bradford kit (Bio-Rad). The
proteins were analyzed by Western blotting as described earlier
(11). The lysates were separated on a 7.5%–15% Sodium
dodecyl sulfate polyacrylamide (SDS–PAGE) gel, and the
bands were transferred onto 0.22/0.45-mm polyvinylidene
difluoride (PVDF) membranes . After blocking the
membranes with 5% milk, the membranes were incubated
with primary antibodies (Supplementary Table S1) at 4°C
overnight. The PVDF membranes were washed and then
incubated with secondary peroxidase-coupled anti-mouse or
anti-rabbit antibodies (1:5,000) at room temperature for 1 h
(11). Immunoreactive bands were visualized by Immobilon
Western horseradish peroxidase substrate luminol reagent
(Millipore) using a ChemiDoc™ MP imaging system (Bio-
Rad, USA).

DCFH-DA Staining
ROS generation was measured via 2’-7’dichlorofluorescin
diacetate (DCFH-DA) staining to detect intracellular hydrogen
February 2022 | Volume 13 | Article 782434
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peroxide and oxidative stress (Beyotime, China). Following
treatment and washing with PBS, the SH-SY5Y cells were
incubated with DCFH-DA probes at 37°C for 30 min. The
intracellular accumulation of fluorescent DCF was imaged
using confocal microscopy (Leica, SP8, Germany). For each
cell, the total area corresponding to DCF fluorescence was
calculated. The experiments were repeated three times, and a
total of 40–60 cells from each group were analyzed.

Immunofluorescent Staining and
Confocal Imaging
After treatment, SH-SY5Y cells were plated on coverslips, rinsed
with PBS, and then fixed in 4% paraformaldehyde for 30 min. Cells
were permeabilized in 0.1% Triton X-100 in Tris-buffered saline
(TBS) for 10 min. The nonspecific binding sites were blocked with
blocking solution (5% bovine serum albumin, 0.1% Triton X-100 in
TBS) for 1 h. Cells were incubated with primary antibodies, anti-4-
hydroxynonenal (4-HNE), anti-8-hydroxy-2’-deoxyguanosine (8-
OHdG), and TOMM20, at 4°C overnight. After washing with TBS,
bound antibody was detected by incubation for 1 h with Alexa Fluor
546-IgGs or Alexa Fluor 488-IgGs (1:200 for both, Invitrogen,
USA). The fluorescence intensity was imaged using a Leica SP8
confocal microscope at 40× or 100×magnification. For each cell, the
total area corresponding to 4-HNE- and 8-OHdG-related
Frontiers in Immunology | www.frontiersin.org 4
fluorescence was calculated. The experiments were repeated three
times, and a total of 40–60 cells from each group were analyzed.

Coronal sections of the rat brains were cut at 6 mm using a
microtome (Leica RM2245, Germany). Dewaxed and rehydrated
hippocampal sections were blocked in TBST (TBS with Tween 20)
with 5% bovine serum albumin for 1 h and then incubated with
primary antibodies against 8-OHdG and NeuN at 4°C overnight.
After washing, the sections were incubated with Alexa Fluor488
anti-mouse IgGs (1:200, Invitrogen, USA) for 1 h. After washing
with TBS, the sections and coverslips were mounted with vector
anti-fading mounting medium (Vector Laboratories, Burlingame,
CA, USA). The fluorescence intensity was imaged using a Leica SP8
confocal microscope at 100× magnification. For each cell, the total
area corresponding to 8-OHdG-related fluorescence was quantified
using ImageJ 1.49 V software (NIH, USA). Neuronal Nuclei/4',6-
diamidino-2-phenylindole (NeuN/DAPI) double-positive cells were
counted and analyzed as a percentage of total DAPI+ cells. The
experiments were from 6 sections, and a total of 30 cells from each
group were analyzed.

Cell Viability Assay
Cell viabilitywas determined byCellCountingKit-8 (CCK-8, #G3581;
Promega) according to themanufacturer’s instructions.Nearly 5 × 104

cellswereseeded into96-wellplates.Afterbeing treated,20ml ofCCK-8
A B C D

E F G H

FIGURE 1 | Effects of rapamycin on the expression of mammalian target of rapamycin (mTOR)/ribosomal S6 protein kinase (P70S6K) and nuclear factor erythroid
2-related factor-2 (Nrf2)/heme oxygenase-1 (HO-1) signaling pathways in zinc-treated SH-SY5Y cells and rats. (A, B) Representative blots and quantification of the
expression ratio of p-mTOR S2448/T-mTOR and p-P70S6K T389/T-P70S6K in SH-SY5Y cells of the control, zinc, and zinc+rapamycin groups. n = 3 cell
experiments per group. (C, D) Representative blots and quantification of the expression levels of HO-1 and Nrf2 were detected in cells of the control, zinc, and zinc
+rapamycin groups. n = 3 cell experiments per group. (E, F) Representative blots and quantification of the expression ratio of p-mTOR S2448/T-mTOR and p-
P70S6K T389/T-P70S6K in rats in the control, zinc, and zinc+rapamycin groups. n = 4 rats per group in the same membrane. (G, H) Representative blots and
quantification of the expression levels of HO-1 and Nrf2 in rats in the control, zinc, and zinc+rapamycin groups. n = 4 rats per group in the same membrane.
Quantifications of the blots were normalized to b-tubulin. *p < 0.05, **p < 0.01, ***p < 0.001 vs. control group; #p < 0.05, ###p < 0.001 vs. zinc+rapamycin
treatment.
February 2022 | Volume 13 | Article 782434
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was added to each well, and then they were incubated for 4 h at 37°C.
Finally, the absorption (450 nm) was measured using a Thermo
Scientific Multiskan FCMicroplate Reader.

Statistical Analysis
Statistical analysis was executed using SPSS software (version
23.0) or GraphPad Prism 8.0 software. The results were
presented as mean ± SEM. MWM behavior data were assessed
by two-way repeated-measures ANOVA. The other parameters
were executed using one-way ANOVA followed by Least
significance difference (LSD)’s post-hoc test for multiple
comparisons. Significance was set at p < 0.05.
RESULTS

Downregulation of mTOR/P70S6K and
Upregulation of Nrf2/HO‐1 Pathways Are
Involved in the Protective Effects of
Rapamycin Against the Toxic Effects
of Zinc Sulfate Both in SH-SY5Y Cells
and in Rats
First, we assessed the potential involvement of the mTOR/P70S6K
pathway in zinc sulfate-induced alterations in SH-SY5Y cells and
zinc sulfate-injected rats. Zinc sulfate significantly elevated the ratio
of phosphorylated mTOR (S2448)/total mTOR by approximately
20%andphosphorylatedP70S6K (T389)/total P70S6K inSH-SY5Y
cells (p = 0.046 and p = 0.002, respectively) compared to the control
group (Figures 1A, B). Pretreatment with rapamycin (20 ng/ml)
abolished the effect of zinc sulfate on the phosphorylated levels of
mTOR (S2448) and phosphorylated P70S6K (T389) in SH‐SY5Y
cells, p = 0.029 and p = 0.001, respectively, in the zinc-treated group
compared to the zinc+rapamycin-treated group (Figures 1A, B).

Zinc sulfate significantly elevated the ratio of phosphorylated
mTOR (S2448)/total mTOR and phosphorylated P70S6K
(T389)/total P70S6K by 44% and 38%, respectively, in the
hippocampus of zinc-injected rats compared to control rats
(p = 0.025 and p = 0.006, respectively) (Figures 1E, F).
Rapamycin treatment attenuated the effect of zinc sulfate on
mTOR (S2448) and phosphorylated P70S6K (T389) in rats, p =
0.02 and p = 0.029, respectively (zinc vs. zinc+rapamycin group)
(Figures 1E, F).

Next, we assessed the potential involvement of the Nrf2 and
HO‐1 pathways in zinc-induced alterations using SH-SY5Y cells
and zinc-induced rats (Figures 1C, D, G, H). Zinc sulfate (300
mM) significantly reduced the levels of Nrf2 by approximately
70% and HO‐1 by 30% in SH‐SY5Y cells (p = 0.0003 and p =
0.016) (Figures 1C, D). Pretreatment with rapamycin (20 ng/ml)
attenuated the effect of zinc sulfate on the levels of Nrf2 and HO‐
1 (p = 0.001 and p = 0.043, respectively) in SH‐SY5Y cells treated
with zinc compared to the zinc+rapamycin-treated group
(Figures 1C, D).

In the hippocampus of zinc-injected rats, zinc sulfate (300mM)
significantly reduced the levels ofNrf2 andHO‐1 by approximately
20% and 30%, p = 0.031 and p = 0.04, respectively, zinc injected vs.
zinc+rapamycin group (Figures 1G, H). Rapamycin treatment
Frontiers in Immunology | www.frontiersin.org 5
abolished the effect of zinc sulfate on the levels of Nrf2 and HO‐1
(p = 0.04 and p = 0.04, respectively) in rats in the zinc-injected
vs. zinc+rapamycin group (Figures 1G, H). Hence, the
neuroprotective effects of rapamycin were linked to inactivation
of mTOR/P70S6K and activation of the Nrf2/HO‐1 signaling
pathways as defensive responses to oxidative stress.

Rapamycin Ameliorates Tau
Hyperphosphorylation in Zinc-Induced
SH-SY5Y Cells and Rats
Next, we assessed the potential rapamycin protection against zinc-
induced tau hyperphosphorylation using SH-SY5Y cells and zinc-
injected rats. We found that zinc treatment led to an increased
ratio of hyperphosphorylated tau at Ser356 to total tau in zinc-
treated SH-SY5Y cells compared to the control (p = 0.002).
Rapamycin treatment completely restored the ratio of
phosphorylated tau S356/total tau in SH-SY5Y cells, p = 0.001,
zinc-treated compared to zinc+rapamycin-treated group
(Figures 2A, B).

Moreover, zinc led to a 50% increase in the ratio of
hyperphosphorylated tau at Ser356/total tau in the hippocampus
of zinc-injected rats (p = 0.003) (Figures 2C, D). Rapamycin
treatment decreased the ratio of phosphorylated tau S356/total
tau by 30% in zinc-injected rats compared to the zinc+rapamycin
group (p = 0.018). The total tau levels showed no change in the
presence of zinc or zinc+rapamycin in rats (Figures 2C, D).

Rapamycin Attenuates Oxidative Stress
Damage in SH-SY5Y Cells and in the
Hippocampus of Zinc-Induced Rats
Next, we assessed oxidative stress by immunofluorescence
staining using DCFH-DA, 4‐HNE (lipid peroxidation), and 8‐
OHdG (oxidation of DNA) in SH-SY5Y cells. Following
exposure to zinc sulfate, the fluorescence intensities of DCFH-
DA, 4‐HNE, and 8‐OHdG were elevated in the zinc-treated
group compared to the control group in SH-SY5Y cells (p =
0.0001, p = 0.001, p = 0.0001, respectively) (Figures 3A, B; 4A,
B; 5A, B). Prior treatment with rapamycin neutralized the zinc-
induced increase in fluorescence intensity of DCFH-DA, 4‐HNE,
and 8‐OHdG, zinc-treated group compared to zinc+rapamycin
group in SH-SY5Y cells, p = 0.0004, p = 0.008, p = 0.0001,
respectively (Figures 3A, B; 4A, B; 5A, B). Furthermore, the
expression of 8-OHdG was predominantly localized to the
cytoplasm and had a significant colocalization with a
mitochondrial marker (anti-TOMM20).

To determine oxidative stress damage induced by zinc in vivo
in rats, we measured the levels of 4-HNE in hippocampal brain
tissue homogenates from rats by using Western blotting. Zinc led
to an increased level of 4-HNE in the hippocampus of zinc-
injected rats (p = 0.005) compared to the control group
(Figures 4C, D). Rapamycin treatment decreased the level of
4-HNE in zinc-injected rats compared to the zinc+rapamycin
group (p = 0.04) (Figures 4C, D). We further measured the levels
of 8-OHdG products by immunofluorescence staining in
hippocampal brain tissue slices from rats. Zinc led to an
increased level of 8-OHdG in the hippocampus of zinc-injected
February 2022 | Volume 13 | Article 782434
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rats (p = 0.001) compared to the control group (Figures 5C, D).
Rapamycin treatment decreased the levels of 4-HNE and 8-
OHdG in zinc-injected rats compared to the zinc+rapamycin
group, %, p = 0.013 (Figures 5C, D).
Rapamycin Rescued Impaired Learning
and Memory in Zinc-Induced Rats
The spatial learning and memory function of the rats were
assessed by using the MWM test. The escape latency
significantly increased in the zinc-injected rats compared to the
control on Day 5 and Day 6 (p = 0.031, p =0.024, respectively)
(Figure 6A). On day 7, the time spent in the target quadrant and
the number of platform location crossings both decreased by
approximately 50% in zinc-induced rats compared to the control
group (p = 0.027 and p = 0.039) (Figures 6B, D).

Treatment with rapamycin led to a reduced escape latency in
zinc+rapamycin rats compared to zinc-injected rats on Day 5
and Day 6 (p = 0.021, p = 0.033, respectively). On day 7, the time
spent in the target quadrant and the number of platform location
crossings were increased compared to zinc-injected rats (p =
0.044, p = 0.044) (Figures 6B, D). To study whether zinc could
affect the motion ability of rats, the swimming speed of rats was
recorded. No differences were observed among the three groups
(Figure 6C), implying that treatment with rapamycin and zinc
did not radically affect the motion ability of rats.
Frontiers in Immunology | www.frontiersin.org 6
Rapamycin Protected Synapses in Zinc-
Induced SH-SY5Y Cells and in Rats and
Rescued Hippocampal Neuronal Death in
Zinc-Induced Rats
Next, we assessed the potential effect of rapamycin on zinc-
induced synaptic impairment and cell death using SH-SY5Y cells
and zinc-induced rats. The expression levels of presynaptic
proteins [Synaptosomal-associated 25 kDa protein (SNAP) 25
and synaptophysin] and postsynaptic density protein-95 (PSD-
95) are indicators of synaptic function. We found that zinc
treatment led to reduced levels of SNAP 25, synaptophysin,
and PSD-95 in SH-SY5Y cells treated with zinc compared to the
control (p = 0.039, p = 0.004, and p = 0.04, respectively).
Rapamycin treatment reversed the zinc-induced reduction in
the levels of SNAP 25, synaptophysin, and PSD-95 in SH-SY5Y
cells (p = 0.03, p = 0.0001, and p = 0.035) (zinc-treated group
compared to zinc+rapamycin group) (Figures 7A, B). To assess
cell death by performing CCK-8 assays, we found that at least
20% cell death was induced by 100 or 300 µM zinc sulfate for 4 h
in SH-SY5Y cells, but rapamycin treatment did not affect cell
death in SH-SY5Y cells (Figure 7C).

Moreover, zinc injection led to reduced levels of SNAP 25,
synaptophysin, and PSD-95 in the hippocampus of zinc-injected
rats (p = 0.001, p = 0.04, p = 0.013, respectively) (Figures 7C, D).
Rapamycin treatment decreased the levels of SNAP 25,
synaptophysin, and PSD-95 in zinc-injected rats compared to the
C D

A B

FIGURE 2 | Rapamycin decreases the expression ratio of p-tau S356/T-tau in SH-SY5Y cells. (A, B) Representative blots and quantification of the expression ratio
of p-Tau S356/T-tau (tau5) proteins in SH-SY5Y cells of the control, zinc, and zinc+rapamycin groups. n = 3 experiments per group. (C, D) Representative blots and
quantification of the protein expression ratio of p-Tau S356/T-tau (tau5) in rats in the control, zinc, and zinc+rapamycin groups. n = 4 rats per group in the same
membrane. **p < 0.01 vs. control group; ###p < 0.001 vs. rapamycin treatment.
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zinc+rapamycin group (p = 0.038, p = 0.006, p = 0.009, respectively)
(Figures 7D, E). NeuN (green) staining showed that zinc resulted in
extensive neuronal loss in hippocampal CA1 neurons in zinc-treated
rats compared with control rats (p = 0.0067), and rapamycin
treatment partially rescued hippocampal CA1 neuronal death in
rats (zinc-treated group compared to zinc+rapamycin group) (p =
0.038) (Figure 7F).

To determine the extent to which tau phosphorylation is
related to the presynaptic impairment, we quantified the protein
expression levels of SNAP25, synaptophysin, PSD-95, and Total-
tau in SH-SY5Y cells in the control and Tau siRNA groups (tau
knockout cell line). We showed that reduced tau is beneficial for
maintaining synaptic function in SH-SY5Y cells to a certain
extent (Supplementary Figures 2A, B).
DISCUSSION

Our data reveal that zinc leads to tau hyperphosphorylation,
oxidative stress, and synaptic impairment involving mTOR/
P70S6K activation and Nrf2/HO‐1 inactivation. Rapamycin
ameliorates zinc-induced tau hyperphosphorylation, oxidative
stress damage, and synaptic impairment and rescues spatial
learning deficits by downregulating mTOR/P70S6K activities
and upregulating Nrf2/HO‐1 activities.

Zinc has been closely related to cognitive function and plays an
important role under physiological conditions. Elevated levels of zinc
ions were found in AD brains, notably in the hippocampus, cortex,
and amygdala, which are severely affected by NFTs (22, 52–54).
Frontiers in Immunology | www.frontiersin.org 7
Accumulating evidence has shown a tight relationship of zinc with
tau degeneration and cognitive impairment in human patients (55).
Dietary zinc supplementation treatment in 3xTg-ADmice has been
shown to increase Brain-derived neurotrophic factor (BDNF) levels
and prevent cognitive deficits and mitochondrial dysfunction (56).
The pathological level of zinc promotes tau tangle pathology in the
brains of hAPP/htau (57) and taumousemodels (58). Tau transgenic
mice are featured by synaptic dysfunction, neuronal loss,
neuroinflammation, and impairment in white matter integrity
associated with tau accumulation (59–64). Abnormal accumulation
of targeting metals has been shown to rescue the pathology and
phenotype of transgenic mouse models of tauopathy (65).

In the present study, we found that excessive zinc could induce
mTOR(S2448)-P70S6K(T389)-dependent phosphorylation and tau
hyperphosphorylation in cultured neuroblastoma SH-SY5Y cells.
Rapamycin suppresses mTOR (S2448)/P70S6K (T389)
phosphorylation and ameliorates tau pathology. We found that
lateral ventricular injection of zinc sulfate could induce persistent
mTOR(S2448)-P70S6K(T389) phosphorylation in the rat
hippocampus and that rapamycin reversed both mTOR(S2448) and
P70S6K(T389) phosphorylation and reduced the level of tau
hyperphosphorylation. These results implied that zinc played a
crucial role in tau pathology by regulating the mTOR/P70S6K
pathway and that rapamycin exerted a beneficial effect on
tau pathology.

Zinc sulfate (300 uM) treatment has been shown inducing cell
death. An et al. (28) showed that exposure to 100 mM zinc sulfate
for 4 or 8 h caused a 20% reduction in SH-SY5Y cell viability. An
et al. (28) and our previous studies have reported that zinc could
A

B

FIGURE 3 | Rapamycin suppressed reactive oxygen species (ROS) generation caused by zinc in SH-SY5Y cells. (A, B) Representative fluorescent staining and
quantification of the fluorescence intensity of ROS determined by 2’-7’dichlorofluorescin diacetate (DCFH-DA) staining in SH-SY5Y cells of the control, zinc, and zinc
+rapamycin groups. Scale bar = 250 mm. n = 3 cell experiments per group, all confocal images represented as fold change relative to control cells. ***p < 0.001 vs.
the control group; ###p < 0.001 vs. zinc+rapamycin treatment.
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induce increased phosphorylated p70S6K, p-PKB, and p-mTOR,
and these kinases could induce tau phosphorylation (10, 11). Our
results in the current study were in line with a previous finding:
300 mM zinc sulfate treatment induced more than 20% cell
death (Figure 7C).

mTOR or P70S6K is one of the most important serine/
threonine kinases in eukaryotic cells and plays a prominent
role in the regulation of protein synthesis, phosphorylation,
and autophagy (8, 66–70). We have previously shown
increased expression of p-mTOR (S2448) and p-P70S6K
(T389) in postmortem AD brains, which is associated with the
accumulation of hyperphosphorylated tau in AD (10, 11, 71).
This suggests that phosphorylation of mTOR at S2448 and
P70S6K at T389 is a vital target for disease intervention. Zinc
has been indicated to be involved in the mechanisms of mTOR/
P70S6K activation in AD. We have previously shown that zinc
treatment (300 mM) promoted tau phosphorylation in vitro in
cell cultures (11). Another study demonstrated that synaptic zinc
Frontiers in Immunology | www.frontiersin.org 8
promoted tau hyperphosphorylation (27) and accelerated the
fibrillization of mutant DK280 of full-length human tau, inducing
apoptosis and toxicity in SH-SY5Y cells by bridging Cys-291 and
Cys-322 (72). In addition, zinc binds to protein phosphatase 2A
and induces its inactivation and tau hyperphosphorylation
through Src-dependent PP2A (tyrosine 307) phosphorylation
(73). In ApoE4 transgenic mice, tau hyperphosphorylation is
associated with activation of extracellular signal-regulated kinase
modulated by zinc (74).

Oxidative stress has been recognized as a causative factor in
various neurodegenerative diseases (36, 37, 41, 42). Excessive zinc
triggers oxidase activation and further generates oxidative products
in neurons (22, 24). Pathological tau damages mitochondrial
function, resulting in increased ROS products and causing
oxidative stress (23, 24, 75, 76). Increased production of ROS
causes lipid peroxidation and DNA damage and, in turn, could
affect the hyperphosphorylation of tau, leading to a vicious cycle (37,
45, 76–78). Here, we investigated the mechanism of zinc-mediated
A

B

C D

FIGURE 4 | Rapamycin attenuated the zinc-induced increase in the expression of 4-hydroxynonenal (4-HNE) both in vitro and in vivo. (A, B) Representative confocal
images and quantification of the fluorescence intensity for immunofluorescence staining using anti-4-HNE antibody (red) in SH-SY5Y cells in the control, zinc, and zinc
+rapamycin groups, scale bar = 50 mm. Nuclei were counterstained with DAPI (blue). All confocal images are presented as the fold change relative to control cells. (C,
D) Representative blots and quantification of the expression levels of 4-HNE in rats in the control, zinc, and zinc+rapamycin groups. n = 4 rats per group in the same
membrane. **p < 0.01 vs. control group; #p < 0.05, ##p < 0.01 vs. rapamycin treatment. Quantifications of the blots were normalized to b-tubulin.
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tau pathology in AD and whether excessive zinc could exacerbate
the vicious cycle through the mTOR/P70S6K pathway. The levels of
oxidative products were assessed by immunostaining or Western
blot in the present study. We found an increasing level of ROS
accumulation in zinc-treated SH-SY5Y cells andmarkedly increased
expression of lipid peroxidation product (4-HNE) and nucleic
peroxidation product (8-OHdG) in both zinc-induced SH-SY5Y
cells and zinc-injected rats. After rapamycin preadministration, the
levels of ROS, 4-HNE, and 8-OHdG were decreased in zinc-treated
SH-SY5Y cells and zinc-injected rats. Furthermore, we found that
increased expression of 8-OHdG, a biomarker of DNA oxidative
damage, was significantly colocalized with a mitochondrial marker
(TOMM20) in zinc-treated SH-SY5Y cells. The increased
expression of 8-OHdG was observed predominantly in the
cytoplasm of SH-SY5Y cells, suggesting that zinc induced
mitochondrial DNA (mtDNA) oxidative damage in SH-SY5Y
Frontiers in Immunology | www.frontiersin.org 9
cells. Mecocci et al. (79) reported that a small amount of DNA
significantly increased oxidative damage to nuclear DNA (nDNA)
and a highly significant 3-fold increase in oxidative damage to
mtDNA in AD compared with age-matched controls. These
findings indicate that zinc may induce mtDNA oxidative damage
through the Nrf2/HO-1 pathway and that Nrf2/HO-1 pathway-
associated ROS generation may play an essential role in the
neurodegenerative process (79–82).

Nrf2 is a transcription factor that negatively regulates the level
of ROS to protect against oxidative stress damage. Ramsey et al.
(83) reported a significant decline in the level of Nrf2 in the
brains of patients with AD. Several natural compounds have
been shown to reduce oxidative stress in AD models through the
Nrf2/HO-1 pathway (84, 85). We found that rapamycin reversed
the reduced level of Nrf2/HO-1 in zinc-induced SH-SY5Y cells
and rats, in line with previous observations (86). Rapamycin also
A

B

FIGURE 5 | Rapamycin prevents the DNA oxidation caused by zinc in SH-SY5Y cells and rats. (A, B) Representative confocal images and quantification of the
fluorescence intensity for immunofluorescence staining using anti-8-hydroxy-2’-deoxyguanosine (8-OHdG) antibody (green) and anti-TOMM20 (red) in SH-SY5Y cells
in the control, zinc, and zinc+rapamycin groups. Scale bar = 10 mm; nuclei were counterstained with DAPI (blue). Quantification of the fluorescence intensity of 8-
OHdG staining in the SH-SY5Y cells of the control, zinc, and zinc+rapamycin groups. n = 3 cell experiments per group. A total of 40–60 cells from each group were
analyzed, and all confocal images are presented as the fold change relative to control cells. (C, D) Representative confocal images and quantification of the
fluorescence intensity for immunofluorescence staining using anti-8-OHdG antibody (green) in the CA1 areas of the brains of the rats in the control, zinc, and zinc
+rapamycin groups. Nuclei were counterstained with DAPI (blue). Scale bar = 10 mm; n = 6 rats per group. All confocal images represent the fold change relative to
control rats. **p < 0.01, ***p < 0.001 vs. control group; #p < 0.05, ###p < 0.001 vs. zinc+rapamycin treatment.
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rescued oxidative stress caused by tau hyperphosphorylation
associated with inactive mTOR/P70S6K signaling pathway and
active Nrf2/HO-1 signaling pathway.

Altered mTOR or P70S6K has been directly correlated with
learning and memory in animal models (13, 87–89). Caccamo
et al. (90, 91) found that inhibition of mTOR by rapamycin
could improve learning and memory and reduce Ab and tau
pathology in 3×Tg-ADmice. Chronic treatment with rapamycin
enhances learning and memory in young adult mice and
improves age-related cognitive decline in older mice, possibly
by activating major monoamine pathways in the brain (92). In
the present study, we showed increased mTOR/P70S6K
signaling in the hippocampus of rats. Rapamycin treatment
rescued abnormal mTOR/P70S6K signaling and improved
spatial learning in rats. Moreover, we showed that rapamycin
treatment reversed the decreased expression levels of synaptic
proteins SNAP 25, synaptophysin, and PSD-95 both in cell
culture and in rats. Accumulating evidence has shown that
rapamycin improves cognitive decline in a mouse model of
Down syndrome (13, 93, 94), amyloidosis (J20) (95–98), and
tauopathy (14, 99, 100). Given the coincident zinc accumulation
and mTOR/P70S6K activation in damaged neurons in AD, we
confirmed that pathological concentrations of zinc induced cell
death and that rapamycin partially recued neuronal death in
rats. Thus, rapamycin could exert an early intervention of zinc
increases, and mTOR/P70S6K phosphorylation is a promising
therapeutic strategy in the treatment of AD. Despite its
compelling preclinical record, no clinical trials have tested
rapamycin in patients with AD (101, 102).

Manczak and Reddy (103) found that mRNA expression levels
were increased in synaptophysin (1.8-fold), synapsin 1 (2.2-fold),
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and synapsin 2 (2.0-fold) in siRNA-Tau cells relative to SHSY5Y
cells, while the mRNA expression levels of synaptopodin (1.6-fold)
and PSD-95 (1.3-fold) were increased but not significantly. We
investigated whether tau phosphorylation is the major cause of
presynaptic impairment through the generation of a tau knockout
cell line. We showed that the protein levels of SNAP 25,
synaptophysin, and PSD-95 in the tau siRNA of SH-SY5Y cells
were not significantly increased (p = 0.248, p = 0.0071, p= 0.5105)
(Supplementary Figure 2). These findings suggest that reduced tau
is beneficial for maintaining synaptic function in SH-SY5Y cells,
but the relation is not causal, since the absence of tau would be
compensated by microtubule-associated protein 2 (MAP2) (104).
Furthermore, Zhou et al. (105) showed that FTDP-17 mutant Tau
mislocalized to presynaptic terminals in fly neurons, where it
banded synaptic vesicles to elicit presynaptic dysfunction. Di et al.
(106) found that in an inducible pseudophosphorylated tau
(pathological human tau, PH-Tau) mouse model, low basal levels
of PH-Tau (4% of endogenous tau) resulted in significant cognitive
deficits, a decrease in the number of synapses in the CA1 region, a
reduction in synaptic proteins, and localization to the nucleus.

There are several limitations in the study. First, only the
MWM test was used to assess the spatial learning function of the
rats. Further study using a panel of behavior tests will provide
comprehensive insights into the effect of rapamycin on zinc-
induced cognitive impairment. Second, we focused on the
involvement of the mTOR/p70S6K and Nrf2/HO-1 pathways
in the current study, while many other pathways have been
implicated in the effect elicited by zinc and rapamycin. Moreover,
the acute effects of zinc and rapamycin treatment were
investigated in the current study. The effect of chronic or
environmental zinc exposure and treatment using rapamycin
A B

C D

FIGURE 6 | The effect of rapamycin on the performance of the Morris water maze (MWM) in zinc-induced rats. (A) Escape latency of the rats in all three groups
[control (red), zinc-injected (gray), zinc+rapamycin treatment (green)] in the MWM test of each training day. (B) Representative number of platform crossings on day
7. (C) Representative time spent in the target quadrant on day 7. (D) Swimming speed in the MWM on day 7. n = 6 rats per group, *p < 0.05 vs. control group;
#p < 0.05 vs. rapamycin treatment.
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via oral intake remains to be investigated. Advances in
noninvasive imaging have enabled the detection of metal
accumulation in vivo by using magnetic resonance imaging
(107). A longitudinal study using in vivo imaging of the
treatment effect on tau, neuroinflammation, and ROS in an
animal model will provide further systematic insights (19,
108–110).
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CONCLUSIONS

In conclusion, zinc treatment induces mTOR/p70S6K activation and
Nrf2/HO-1 inactivation, tau hyperphosphorylation, oxidative stress
damage in SH-SY5Y cells and spatial learning impairment in rats.
Rapamycin attenuated mTOR/p70S6k, increased Nrf2/HO-1 activity,
and attenuated tau pathology, oxidative stress, and cognitive deficits
A B

D

F

E

C

FIGURE 7 | Rapamycin improved synaptic impairment caused by zinc in both SH-SY5Y cells and rats and partially rescued cell death in zinc-induced rats.
(A, B) Representative blots and quantification of the protein expression levels of SNAP25, synaptophysin, and PSD-95 in SH-SY5Y cells in the control, zinc, and zinc
+rapamycin groups. n = 3 cell experiments per group. (C) Cell viability was assessed using the Cell Counting Kit-8 (CCK‐8) assay. Cells were pretreated with
rapamycin for 1 h and then treated with 100 or 300 µM zinc sulfate for an additional 4 h. (D, E) Representative blots and quantification of the protein expression
levels of SNAP25, synaptophysin, and postsynaptic density protein-95 (PSD-95) in rats in the control, zinc, and zinc+rapamycin groups. n = 4 rats per group in the
same membrane. (F) Representative NeuN immunostaining (green) image of the CA1 areas of the brains of the rats in the control, zinc, and zinc+rapamycin groups.
DAPI staining showed the nuclei. NeuN/DAPI double-positive cells were counted and analyzed as a percentage of total DAPI+ cells. Scale bar = 10 mm; n = 6 rats
per group, *p < 0.05, **p < 0.01, ***p < 0.001 vs. control group; #p < 0.05, ##p < 0.01, ####p < 0.0001 vs. zinc+rapamycin treatment. Quantifications of the blots
were normalized to b-tubulin.
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induced by zinc in a rat model. Rapamycin might be a viable
treatment for zinc-related neuronal and synaptic damage.
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