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Abstract: The diverse utilization of pyrolysis liquid is closely related to its chemical compositions. Several
factors affect PA compositions during the preparation. In this study, multivariate statistical analysis was
conducted to assess PA compositions data obtained from published paper and experimental data. Results
showed the chemical constituents were not significantly different in different feedstock materials. Acids
and phenolics contents were 31.96% (CI: 25.30–38.62) and 26.50% (CI: 21.43–31.57), respectively, accounting
for 58.46% (CI: 46.72–70.19) of the total relative contents. When pyrolysis temperatures range increased
to above 350 ◦C, acids and ketones contents decreased by more than 5.2-fold and 1.53-fold, respectively,
whereas phenolics content increased by more than 2.1-fold, and acetic acid content was the highest,
reaching 34.16% (CI: 25.55–42.78). Correlation analysis demonstrated a significantly negative correlation
between acids and phenolics (r2 = −0.43, p < 0.001) and significantly positive correlation between ketones
and alcohols (r2 = 0.26, p < 0.05). The pyrolysis temperatures had a negative linear relationship with acids
(slope = −0.07, r2 = 0.16, p < 0.001) and aldehydes (slope = −0.02, r2 = 0.09, p < 0.05) and positive linear
relationship with phenolics (slope = 0.04, r2 = 0.07, p < 0.05). This study provides a theoretical reference of
PA application.

Keywords: pyrolysis liquid; acetic acids; phenolics; pyrolysis temperature; multivariate statistical
analysis

1. Introduction

Thermal pyrolysis is one of the most promising ways for the conversion of abundant
biomass residues into the biochar, pyrolysis liquid and various volatile gases [1,2].

Pyrolysis liquid (PA), also named pyroligneous acid, is a crude condensate gener-
ated from the distillation of smoke produced during biomass pyrolysis, and is highly
oxygenated organic smoke liquid, comprising organic acids, phenolics, aldehydes, ketones
and alcohols [3,4]. PA can be used as antimicrobial and antioxidant agents to improve
plant growth and enhance soil nutrient health conditions because of its advantageous
physical and chemical properties [5,6]. The application of PA is attributable to its chemical
compositions directly [7–9].

The chemical compositions of PA depend on multiple factors influencing pyrolysis
(e.g., feedstocks and pyrolysis conditions). When pyrolysis temperatures increased from
300 ◦C to 600 ◦C, acids and aldehydes content decreased, whereas phenolics and ketones
obtained from giant reeds increased [10]. Wei et al. [11] reported that the PA components
were prepared by pyrolyzing walnut shells within three temperatures ranges. The results
from their study indicated that the acids content at 151–310 ◦C was 4-fold higher than that
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observed at 311–550 ◦C, whereas the phenolics content was the highest at 151–310 ◦C, 2-fold
higher than that observed at 90–150 ◦C. The decomposition of wheat straw at 350 ◦C and
450 ◦C was studied using the Py-GC/MS technique in a helium atmosphere to determine
the gaseous compounds, and the results indicated the formation of compounds classified
as phenolic compounds [12].

Furthermore, the chemical compositions of different raw materials PA was different
at the identical pyrolysis temperatures. The previous studies have demonstrated that
the contents and types of phenolics, acids, aldehydes, lipids and ketones in five kinds
of PA obtained from agriculture and forestry wastes were different when carbonization
was performed at temperatures of 400–600 ◦C [13]. Phenolics and acids were the main
components in the Spina date seed and peanut shell PA when the carbonization temperature
was performed at temperatures of 170–400 ◦C [14]. Multivariate data analysis methods
were widely conducted to summarize the process dataset and reduce high-dimension
systems [15]. The PCA method can separate the variables to obtain main components for
explaining detailed data analysis and it can reveal the inner positive or negative related
connections among variables [16]. Correlation analysis refers to the analysis of two or
more variables with correlation relationships [17]. However, comprehensive scientific data
regarding PA components obtained by multivariate statistics analysis are scarce.

Thus, the aim of this study was to explore the differences in PA components in
different feedstocks materials and under different pyrolysis temperatures. Multivariate
statistical analysis was conducted using PA compositions data from 42 published papers
from 1996 to 2022 along with our experimental study data. This study could contribute to
improved guidance on PA preparation, benefiting the comprehensive use of biomass waste
via pyrolysis.

2. Results and Discussion
2.1. Effect of the Feedstock on PA Components

To explore the PA composition difference in the different feedstocks, PCA was not
obviously clustered (PC1 variance = 26.72%, PC2 variance = 20.79%) (Figure 1).
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The types with the most components, including acids, phenolics, ketones, aldehydes,
lipids and others were identified from a total of 20 feedstocks. The relative content of
acids and phenolics (the mean and 95% CI) accounted for 58.46% (CI: 46.72–70.19) of the
total PA components, which were 31.96% (CI: 25.30–38.62) and 26.50% (CI: 21.43–31.57),
respectively, and the relative contents of aldehydes, ketones, alcohols and esters were 6.67%
(CI: 4.29–9.05), 7.69% (CI: 6.62–8.77), 5.86% (CI: 4.65–7.06), 3.74% (CI: 0.47–7.00), respectively
(Figure 2). Acids production might be ascribed to the decomposition of hemicellulose,
cellulose and lignin during the pyrolysis process [18]. Phenolics are produced from lignin
decomposition, and acids are generated from hemicellulose and cellulose degradation
during pyrolysis [19], ketones are derived from the polysaccharides depolymerization and
the monosaccharides isomerization in hemicellulose, and alcohols are attributed to the side
chain of aliphatic alcohol hydroxyl breakage in lignin. Lignin, hemicellulose and cellulose
decomposition could form aldehydes during the pyrolysis process [20,21]. Wu et al. [22]
found that the higher hemicellulose content in bamboo contributed to the highest acids
content in bamboo PA, while the lowest acids content in Chinese fir PA was due to its lower
hemicellulose content.

Molecules 2022, 27, x FOR PEER REVIEW 3 of 14 
 

 

 
Figure 1. Principal components analysis plot demonstrated pyrolysis liquid from different feed-
stock. 

 

Figure 2. Different feedstock pyrolysis liquid compositions content. The color bar indicated the
contents distribution of each pyrolysis liquid compositions (%).



Molecules 2022, 27, 5656 4 of 15

2.2. Effect of Pyrolysis Temperatures on PA Components

The PA composition difference in two temperatures ranges (below and above 350 ◦C)
was performed by PLS-DA analysis. The PA compositions (PLS1 variance = 27.7%, PLS2
variance = 12.9%) exhibited a significant clustering (Figure 3A). The PLS1 axis could mostly
separate two temperatures ranges (below and above 350 ◦C) of the PA sample. Moreover,
the results of the ANOSIM analysis showed that there was significant difference of PA
components at two different temperatures ranges (p < 0.05). The relative content of acids
(43.30%; CI: 34.71–51.89) at below 350 ◦C was 5.2-fold higher than that at above 350 ◦C
(8.31%; CI: 4.51–12.12); The relative content of phenolics increased by more than 2.1-fold
when temperatures ranges increased from below 350 ◦C to above 350 ◦C, which were
17.20% (CI: 13.06–21.34) and 36.14% (CI: 26.22–46.06), respectively, while ketones content
decreased by more than 1.53-fold from below 350 ◦C (9.75%; CI: 7.82–11.68) to above 350 ◦C
(6.37%; CI: 3.78–8.97) (Figure 3C). Furthermore, the results of RF models also demonstrated
that acids and phenolics were an important predictor in PA constitutes, which was viewed
as dominant composition (Figure 3B). In our experimental study, the relative contents of
acids in the temperatures ranges 240–270 ◦C was 2.89-fold higher than that temperatures
ranges 400–420 ◦C, the relative content of phenolic in the temperatures ranges 400–420
◦C was 2.29-fold higher than that of temperatures ranges 240–270 ◦C in the Eucalyptus
PA compositions. Therefore, this experimental study result was in agreement with the
results concluded by data from scientific papers that acids and phenolic contents decreased
and increased, respectively, when the pyrolysis temperatures ranges increased from below
350 ◦C to above 350 ◦C (Figure 3A). Hemicellulose started to decompose at the lower
pyrolysis temperature range (200–320 ◦C), followed by cellulose degradation at 240–350
◦C and lignin at 350–600 ◦C [23,24]. Lignin decomposition is main source for generating
phenolics compounds, whereas the formation of acids, aldehydes and ketones mainly
depends on cellulose and hemicellulose decomposition. Therefore, 350 ◦C was adopted as
a demarcation point of the pyrolysis temperature for this study.
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Figure 3. Effect of pyrolysis temperatures on PA components. (A) PLS-DA analysis of pyrolysis
liquid compositions from different pyrolysis temperatures. (B) relative importance of pyrolysis
liquid compositions in different pyrolysis temperatures. * indicated p < 0.05, ** indicate p < 0.01.
The out-of-bag error rate of RF model was 12.5%. (C) The distribution of phenolics, acids, ketones,
alcohols, lipids, aldehydes and others relative content at different pyrolysis temperatures. p < 0.05.
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2.3. PA Compounds Generated during Pyrolysis

A total of 152 chemical compounds were identified in this study of the eucalyptus
pyrolysis liquid (Figure 4). In the case of 32 acid compounds, the highest relative content
of acetic acid (34.16%; CI: 25.55–42.78) increased by an average of 9.75-fold compared
with propionic acid (3.50%; CI: 2.52–4.50). The production of acetic acid is ascribed to the
breakdown of the acetyl groups attached to xylan units, resulting from the hemicelluloses
dehydration reaction [25]. Acetic acid was formed by the elimination of the carbonyl and
O-methyl groups from 4-O-methylglucuronic, the propionic acid formation is attributed to
the elimination of the acetaldehyde from the O-acetylxylan unit during the hemicellulose
pyrolysis process [26]. The formation pathway of acetic acid was predominant, as acetyl
groups accounted for a larger proportion of the feedstock material [27].
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The identified phenolics compounds (relative content > 5%) among a total of 35 phe-
nolics compounds were 2,6-methoxyphenol (6.50%; CI: 4.63–8.35), 2-methoxyphenol (7.41%;
CI: 4.67–10.15), 2-methlyphenol (5.04%; CI: 3.56–6.52) and phenol (9.34%; CI: 4.57–14.12). The
formation of 2,6-methoxyphenol and 2-methoxyphenol are attributed to the vigorous decom-
position of the lignin-containing methoxy group [28,29]. The emergence of radical-induced
rearrangement and the homolysis of aromatics O–CH3 bonds in guaiacyl and syringyl aro-
matic compounds formed 2-methoxyphenol and 2,6-methoxyphenol [30]. During the further
pyrolysis, 2-methoxyphenol and 2,6-methoxyphenol could be susceptible to converted to
catechol and phenol, and phenol could be produced from free radical-induced rearrangement
reaction as well as from 2-methoxyphenol demethylation [31]. Liu et al. [32] proposed that
catechol was transformed by the further guaiacol degradations due to rearrangement and
hemolysis, with the methoxy group converting into O-hydroxyphenoxy radical.

A total of 60 ketones compounds were obtained, which was the highest in the PA
compounds number in this study. The compounds (relative content > 2%) were 1-hydroxy-
2-acetone (3.77%; CI: 2.66–4.87) and 3-methyl-1,2-cyclopentenone (2.94%; CI: 2.28–3.60). The
production of ketones is ascribed to the decomposition of hemicellulose and cellulose. First,
cellulose tended to depolymerize into active cellulose, in which intermediate products
(e.g., levoglucosan) could be produced by the cleavage of β-1,4 glycosidic bonds and
intramolecular rearrangement, then the levoglucosan further decomposes to open the furan
ring and the cleavage of the C–C bond, followed by1-hydroxy-2-acetone formation [33].
Mansur et al. [34] found that 1-hydroxy-2-acetone could be susceptible to convert into
acetone through ketonization. When the temperature increased from 250 ◦C and 300 ◦C,
hemicellulose initiated polysaccharide chains depolymerization to form oligosaccharides,
followed by the cleavage of the xylan chain in the glycosidic linkage to generate 3-methyl-
1,2-cyclopentenone.

In this study of the eucalyptus pyrolysis liquid, the furfural (4.30%; CI: 2.76–5.82) and
5-methyl furfural (1.26%; CI: 0.65–1.87) were abundant among the 12 aldehyde compounds.
The production of furfural occurs due to the xylose structural unit of the hemicellulose
structure, in which hemicellulose undergoes a ring-opening reaction by breaking the
bond [35,36].

A total of 23 alcohol compounds were identified in the eucalyptus pyrolysis liquid
with the relative content of furfuryl alcohol (2.68%; CI: 1.46–3.89) being the highest. During
the pyrolysis process, some C–C bonds in the pyranose ring of glycosides in cellulose were
broken and furfuryl alcohol thus could be generated through dehydration reaction [37,38].

2.4. Correlation Relationship of PA Compositions

Phenolics, acids, aldehydes, ketones, alcohols, lipids and others were assessed by the
correlation analysis. The results demonstrated a significantly negative correlation between
acids and phenolics (r2 = −0.43, p < 0.001) and a significantly positive correlation between
acids and lipids (r2 = 0.28, p < 0.05). In addition, ketones significantly positively correlated
with alcohols (r2 = 0.26, p < 0.05) (Figure 5A).

Acetic acid negatively correlated with 2,6-methoxyphenol and positively correlated
with 1-hydroxy-2-acetone. Catechol was positive correlation with 2,6-methoxyphenol.
Furfural was positively correlated with 5-methy furfural and 2-methy propanoic acid
(Figure 5B).
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analysis for the relative content of PA compounds for top 20 (relative content ≥ 1%), correlation
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2.5. Linear Relationship between PA Compositions and Pyrolysis Temperatures

The regression analysis showed that pyrolysis temperatures had a significantly neg-
ative linear relationship with acids (slope = −0.07, r2 = 0.162, p = 0.0001) and aldehydes
(slope = −0.02, r2 = 0.09, p = 0.01) and a significantly positive linear relationship with
phenolics (slope = 0.04, r2 = 0.07, p = 0.01) (Figure 6A). Meanwhile, pyrolysis temperatures
also had a significantly negative linear relationship with the PA compounds of acetic acids
(slope = −0.05, r2 = 0.12, p = 0.005) and furfurals (slope = −0.01, r2 = 0.06, p = 0.03) and
a significantly negative linear relationship with phenols (slope = 0.03, r2 = 0.09, p = 0.01)
(Figure 6B). These results indicated that pyrolysis liquids components were affected by
pyrolysis temperatures during the pyrolysis.
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To our best knowledge, this is the first research combining the data from scientific
papers from a period of 26 years and using experimental study data to evaluate the effect
of temperature and feedstocks to PA components. This study found that temperature
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significantly impacts PA types and relative content (Figures 3 and 5). In order to better verify
this conclusions, we determined eucalyptus PA compositions at two different temperatures
ranges (240–270 ◦C and 400–420 ◦C) in the experiments. The results showed that there was
a significant difference in the PA component at two different temperature ranges when
using statistical analysis (Figures 2 and 3). Nevertheless, there were a number of sources of
uncertainty and parameters that were not taken into account in this study, mostly due to
a lack of data; specifically, oven design, metal ions, heating rate (fast and slow), catalyst,
pressure, residence time, different chromatographic conditions (stationary phase, column
dimensions, mass spectra identification version, split ratio, etc.) and feedstocks moisture
contents. However, these are not insignificant factors to consider when assessing the
influencing factors on PA composition. PA was produced in different pyrolysis conditions
during data collection in scientific papers. Therefore, these multivariate variable need to be
normalized to two variables (temperature and feedstocks) for analysis. These factors may
cause partial overlapping to occur in the PA samples (Figure 3A). In this study, PLS-DA
analysis was aimed at identifying PA component differences in two groups (below 350 ◦C
and above 350 ◦C). To further quantitative analysis, random forest (RF) models showed
that acids and phenolics were dominant in the composition (Figure 3B).

Lu et al. [39] found that acid content decreased after pretreatments with inorganic
acids and increased after pretreatments with organic acids and alkaline compounds, in-
dicating that chemical pretreatment could influence PA components during the biomass
pyrolysis. In addition, PA components were influenced by the presence of alkaline metal
ions during the pyrolysis. The presence of the metal magnesium impurities likely inhibited
the production of ketones. Moreover, GC–MS and mass spectra identification of the chemi-
cal compounds was able to influence the peak area of the identified PA components. PA
components were different using GC–MS analysis with the capillary column of DB-17MS,
AB-FFAP and HP-5MS and different temperature programs [40–44]. Moreover, the box-
plots showed that there were significant differences between phenolics, ketones and acids
content in two temperatures ranges groups (p < 0.05). Previous research aimed to establish
the equivalent relationship by replacing high temperature with short residence time in
order to explore the influence of residence time on organic components in pyrolysis [45],
as pyrolysis liquid components during the pyrolysis reaction are affected by residence
time [46]. Due to multiple factors influencing the components during the PA prepara-
tion [47]. Interestingly, it is worth pointing out that acetic acid negatively correlated with
2,6-methoxyphenol and positively correlated with 1-hydroxy-2-acetone, while catechol pos-
itively correlated with 2,6-methoxyphenol and furfural positively correlated with 5-methy
furfural (Figure 5). Hydroxy-2-acetone and acetic acid started to form due to hemicellulose,
and cellulose started to decompose at the lower pyrolysis temperature range, followed by
lignin degradation at 350–600 ◦C, while catechol and 2,6-methoxyphenol content increased.
Lignin decomposition is the main source for generating phenolic compounds, whereas the
formation of acids, aldehydes and ketones mainly depends on cellulose and hemicellulose
decomposition. The relative content of the acids decreases and phenolics increases as the
temperature increases, and ketone content increases first but decreases gradually with the
increasing pyrolysis temperature.

3. Materials and Methods
3.1. Data Collection

A scientific paper search of peer-reviewed articles published within a range of 26 years
(from 1996 to 2022) was conducted using the following seven databases: Web of Science,
Scopus, Science Direct, Wiley, SpringerLink, ProQuest and PubMed. The search key words
used were wood vinegar, pyroligneous acid, smoke liquid, and pyrolysis liquid. Meanwhile,
scientific papers were also searched to prevent omissions, and the research standard
included research papers and excluded review articles and book chapters. The scientific
papers search strategy was as follows: first, a total of 120,080 documents were screened
from seven databases using the four keywords. The initial screening was conducted by
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reading the title and abstract and resulted in 138 studies. Then, 30 duplicates were removed
and further detail screening was performed through the full text. At the end of the process,
the initial document list was narrowed to 42 studies.

In our experimental data, the pyrolysis liquid was produced from eucalyptus with
a traditional black charcoal kiln and collected by using running water through a shuttle,
to condense the smoke, PA were collected from a temperatures range at two different
temperatures ranges (240–270 ◦C and 400–420 ◦C). The GC–MS analysis of the PA sample
was conducted by Shimadzu GCMS-QP2010 Plus (Shimadzu, Japan) at an ionization
voltage of 70 eV and an electron multiplier and transfer line temperature of 220 ◦C on an
HP5-MS capillary column (100 m × 0.25 mm i.d, 0.25 µm film thickness). The temperature
program was as follows: 40 ◦C for 2 min, then increased at a rate of 1 ◦C/min to 70 ◦C
and held for 10 min, was further increased at a rate of 5 ◦C/min to 260 ◦C, and was then
held constant at 260 ◦C for 8 min. Other detailed GC–MS parameters were as follows:
injection temperature, 200 ◦C; ion source temperature, 200 ◦C, carrier gas, Helium at
1.0 mL/min; injection volume 1.0 µL; and mass range m/z 40–500. The identification of
chemical organic compounds was based on the comparison of the experimental data with
the NIST library database. A flow chart of pyrolysis liquid data from the scientific databases
and experimental data, respectively, is depicted in Figure 7.
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3.2. Data Processing

The PA components data extraction criteria covered included feedstock materials,
pyrolysis temperatures, constituent compounds, and relative content (%) according to the
final 42 selected studies. The mean value was calculated when the pyrolysis temperature
range was present in the data collection. Based on the abovementioned criteria, a list of
162 PA chemical compounds, 20 kinds of feedstock materials and 88 pyrolysis temperature
data were generated in total for multivariate statistical analysis. A total of 162 chemical
compounds were divided into the seven categories: phenolics, acids, aldehydes, alcohols,
lipids, ketones and others. Data for the 88 pyrolysis temperatures data (35–627 ◦C) were
categorized into two groups, with temperature ranges of 35–349 ◦C and 350–627 ◦C named
as below 350 ◦C and above 350 ◦C, respectively, which included 34 sets below 350 ◦C data
and 54 sets above 350 ◦C data (Tables S1 and S2).
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3.3. Multivariate Statistical Analysis
3.3.1. Principal Component Analysis

Principal component analysis (PCA) is one of the most popular methods in statistical
analysis and provides a window into any typical latent structure in a large dataset [48]. The
central idea of PCA is to identify a small number of standard or principal components that
adequately summarized a large part of the variation of the data and the dimensionality
of the problem [49]. PCA, in this study, was used to identify PA component differences at
below 350 ◦C and above 350 ◦C and of different raw materials. PCA was performed using
the software R (3.6.1) with the ggplot2 and vegan packages.

3.3.2. Random Forest Model

Random forest (RF) is a machine learning-based method enabling classification and
regression analysis [50], considered to be more accurate classifiers [51]. The importance of
the predictor variable was determined by assessing the mean decrease accuracy (MDA) and
the mean decrease Gini (MDGini) [52]. In this study, RF classification was used to identify
the dominant PA composition between the temperatures ranges above and below 350 ◦C.
The PA composition with significant MDA and MDGini (p < 0.05) was assessed by the
rfpermute package and were defined as the dominant component. In contrast, insignificant
MDA and MDGini (p > 0.05) were defined as minor components.

3.4. Statistical Analysis

A nonparametric Wilcoxon test was used to determine the PA composition difference
between the temperature categories of below 350 ◦C and above 350 ◦C. Correlation analysis
was conducted using R (3.6.1) with the corrplot package, which is based on the Pearson
coefficient. ANOSIM similarity analysis aimed to determine the significance of PA com-
ponent differences in the temperature categories of below 350 ◦C and above 350 ◦C and
was conducted using R (3.6.1) with the vegan package. The linear relationship between
the pyrolysis temperatures and the PA components were determined by R (3.6.1) with the
‘lm’ function. The relative contents of the PA composition were used to calculate means
and 95% confidence intervals (CI) by SPSS 25.0. The heat map was created using R with a
heatmap package. PLS-DA (partial least squares discrimination) analysis was conducted
using R (3.6.1) with the mixomics package.

4. Conclusions

The multivariate statistical analysis of existing published data and our experimental
study data showed that the chemical constituents were not significantly different in PA
prepared from different feedstock materials. There is a significant linear relationship
between the temperature and PA components. There was negative correlation between
acids and phenolics substance. Acid and phenolic contents were decreased and increased,
respectively, when the pyrolysis temperature range increased from below 350 ◦C to above
350 ◦C. Acetic acids were the predominant compounds in the PA chemical compounds.
This research provides useful information for PA application in the fields of medicine, food
safety and preservation.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27175656/s1. Supplementary File (Table S1; Table
S2, [53–84]).
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