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Abstract: The surface of a glassy carbon (GC) electrode was modified with reduced 

graphene oxide (rGO) to evaluate the electrochemical response of the modified GC 

electrodes to hydrogen peroxide (H2O2) and hydrazine. The electrode potential of the GC 

electrode was repeatedly scanned from −1.5 to 0.6 V in an aqueous dispersion of graphene 

oxide (GO) to deposit rGO on the surface of the GC electrode. The surface morphology of 

the modified GC electrode was characterized by scanning electron microscopy (SEM) and 

atomic force microscopy (AFM). SEM and AFM observations revealed that aggregated 

rGO was deposited on the GC electrode, forming a rather rough surface. The  

rGO-modified electrodes exhibited significantly higher responses in redox reactions of 

H2O2 as compared with the response of an unmodified GC electrode. In addition, the 

electrocatalytic activity of the rGO-modified electrode to hydrazine oxidation was also 

higher than that of the unmodified GC electrode. The response of the  

rGO-modified electrode was rationalized based on the higher catalytic activity of rGO to 

the redox reactions of H2O2 and hydrazine. The results suggest that rGO-modified 

electrodes are useful for constructing electrochemical sensors.  
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1. Introduction 

A variety of functional materials have been utilized to modify the surface of electrodes for 

constructing electrochemical devices, which include catalysts [1,2], redox mediators [3,4], 

polymers [5–8], proteins [9–11], and DNA [12,13]. Recently, carbon nanomaterials have been widely 

employed for this purpose because of their high catalytic activity in redox reactions [14–22]. In this 

context, we have studied the catalytic activity of carbon nanotubes (CNTs) deposited on the surface of 

metal and carbon electrodes, and demonstrated high catalytic activity of CNTs in the oxidation of 

hydrogen peroxide (H2O2) [20]. CNT-modified electrodes have successfully been used to construct 

choline and lactate biosensors by combining the electrodes with enzymes [21,22]. In some cases, 

carbon CNTs have been combined with other functional materials to enhance catalytic activity [23,24]. 

Recently, graphene has attracted considerable attention from diverse fields in science and 

technology because of its excellent electrical and mechanical properties [25–30]. Graphene is a  

two-dimensional nanosheet consisting of sp2-hybridized carbon atoms arranged in a honeycomb 

structure. Graphene materials exhibit many advantages over CNTs, including higher surface area, 

structural simplicity, higher conductivity, and lower production cost. Thus, graphene materials have 

been applied to the development of optical and electrochemical sensors [31–34], energy 

storage [35,36], fuel cells [37], controlled release [38–40], and so forth. In the present study, we have 

prepared reduced grapheme oxide (rGO)-modified glassy carbon (GC) electrodes and have evaluated 

their catalytic activity with respect to redox reactions of H2O2 and hydrazine. rGO-modified electrodes 

were prepared by electrodeposition of graphene oxide (GO), in which GO was electrochemically 

reduced to form a thin layer of insoluble rGO on the surface of the GC electrode. The rGO-modified 

GC electrodes exhibited high catalytic activity to oxidation of H2O2 and hydrazine. We discuss the 

possible use of rGO-modified electrodes for constructing electrochemical sensors. 

2. Experimental Section  

2.1. Reagents  

Graphite powder was obtained from Nakarai Co. (Kyoto, Japan). Hydrogen peroxide (30% aqueous 

solution) and hydrazine monohydrate were purchased from Santoku Chemical Co. (Tokyo, Japan) and 

Tokyo Kasei Co. (Tokyo, Japan), respectively. All other reagents were of the highest grade available 

and were used without further purification. We synthesized GO in accordance with the Hammers 

method [41]. 

2.2. Apparatus  

We used atomic force microscopy (AFM, SPM-9600, Shimadzu Co., Kyoto, Japan) and scanning 

electron microscopy (SEM, S-3200N, Hitachi Co., Tokyo, Japan) for imaging GO and the surface of 

rGO-modified electrodes. All electrochemical measurements were performed using an electrochemical 

analyzer (Model 660B, ALS Co., Tokyo, Japan).  
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2.3. Deposition of rGO on the Surface of a GC Electrode  

We deposited GO on the surface of a GC disk electrode (3-mm diameter) in accordance with a 

published procedure with slight modifications [42]. Briefly, the GC electrode was immersed in a 

dispersion of GO (0.3 mg/mL) in 0.7 mM pH 9 phosphate buffer. We then repeatedly scanned the 

electrode potential from −1.5 to 0.6 V (vs. Ag/AgCl electrode) at 10 mV s−1 with gentle stirring under 

a nitrogen atmosphere (~20 °C). The modified GC electrode thus prepared was rinsed thoroughly in 

working buffer before use.  

2.4. AFM and SEM imaging  

AFM images of GO were recorded in air at room temperature (~20 °C) using a SPM-9600 

instrument operating in dynamic (tapping) mode. The sample for AFM observation was prepared on a 

mica surface. We obtained SEM images of the deposited rGO for platinum-sputtered samples 

(prepared on a GC plate) with an S-3200N instrument operating at 15 kV. AFM was also employed to 

study the surface morphology of the rGO-deposited GC plate. 

2.5. Electrochemical Measurements  

We measured the electrochemical response of rGO-modified and unmodified GC electrodes in a 

glass cell using the GC electrode as the working electrode, a platinum wire as the counter electrode, 

and a Ag/AgCl electrode (3.3 M KCl) as the reference electrode. All measurements were performed in 

air at room temperature (~20 °C). 

3. Results and Discussion 

3.1. Preparation of rGO-Modified GC Electrode  

Prior to depositing rGO on the surface of a GC electrode, we characterized the synthesized GO 

using AFM. Figure 1 shows a typical AFM image and height profile of a GO sheet deposited onto a 

mica substrate from an aqueous dispersion. The AFM image demonstrates that the GO sheet has a 

thickness of 1.0–1.5 nm and a length in the range of several micrometers. The observed thickness of 

the GO sheet agrees well with the reported average thickness of fully exfoliated GO sheets [43,44]. 

We electrochemically deposited the GO sheets on the surface of a GC electrode. GO is converted to 

rGO during electrodeposition [42]. The surface morphology of the modified GC electrode was studied 

by SEM and AFM. Figure 2 shows SEM images of the surface of an rGO-modified GC electrode. The 

surface of the GC electrode was covered with an rGO layer containing large aggregates 10–30 μm in 

length (Figure 2B). Figure 3 shows AFM images and a height profile of the rGO aggregate, 

demonstrating that the rGO aggregate has a height of >500 nm. The SEM and AFM images clearly 

show that the surface of an rGO-modified GC electrode is rather rough, which is attributable to rGO 

aggregate formation. It is likely that, during electrodeposition, GO was electrochemically reduced to 

form highly hydrophobic rGO when the electrode potential was negatively scanned, which resulted in 

deposition of aggregated rGO on the electrode surface. 
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Figure 1. Atomic force microscopy (AFM) image of graphene oxide (GO) and its 

height profile. 

 

Figure 2. Scanning electron microscopy (SEM) images of the surface of an rGO-modified 

glassy carbon (GC) electrode. 

 

3.2. Redox Reactions of H2O2 and Hydrazine on an rGO-Modified Electrode 

The rGO-modified electrode may exhibit high catalytic activity in redox reactions because a large 

quantity of rGO was deposited on the GC electrode. Edge-plane-like defective sites on rGO facilitate 

electron transfer to molecules in solution [45]. To evaluate the catalytic activity of rGO-modified GC 

electrodes, we recorded cyclic voltammograms (CVs) of H2O2 (Figure 4). The CV of H2O2 on an  

rGO-modified GC electrode exhibited oxidation and reduction currents, the onset potentials of which 

were 0.4 and 0.1 V, respectively, whereas the unmodified GC electrode exhibited virtually no redox 
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response to H2O2 in the potential range tested. Thus, the rGO-modified GC electrode exhibited a 

significantly higher response to H2O2 than the unmodified electrode. These results suggest that an 

rGO-modified electrode can be used for amperometric quantitation of H2O2. 

Figure 3. AFM images of rGO aggregates deposited on a GC electrode and its height profile. 

 

Figure 4. Cyclic voltammograms (CVs) of 3 mM H2O2 on (a) unmodified GC and 

(b) rGO-modified electrodes in 0.1 M pH 7.4 phosphate buffer. Scan rate: 0.1 V·s−1. 

 

Figure 5A depicts the amperometric response of rGO-modified and unmodified GC electrodes at 

0.6 V. The oxidation current of H2O2 increased with increasing H2O2 concentration, whereas the 

response of the unmodified GC electrode was negligible. The rGO-modified electrode can also be 

operated at −0.1 V to detect a reduction current of H2O2 (Figure 5B). The reduction current increased 

in accordance with the concentration of H2O2. Yang and coworkers have recently reported that GC 

electrodes modified with GO-Ag composite exhibit amperometric response to 0.0016–9.0 mM 

H2O2 [46]. These results suggest that an rGO-modified electrode can be used for constructing 
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biosensors by combining oxidase enzymes, such as glucose oxidase, lactate oxidase, and cholesterol 

oxidase, because these enzymes generate H2O2 as reaction products. 

Figure 5. Amperometric responses of (a) unmodified and (b) rGO-modified GC electrodes 

to H2O2, recorded at (A) 0.6 V and (B) −0.1 V. 

 

We also studied the redox reaction of hydrazine on an rGO-modified electrode. Figure 6 shows CVs 

of hydrazine recorded on rGO-modified and unmodified GC electrodes at pH 5.0, 7.0, and 9.0. The 

unmodified GC electrode exhibited no redox peak over the potential range of 0–0.8 V under the 

present experimental conditions, although the oxidation current slightly increased at 0.6–0.8 V in pH 

9.0 medium. In contrast, we observed well-defined oxidation peaks in CVs at 0.35–0.4 V in pH 7.0 and 

9.0 solutions on an rGO-modified electrode. No reduction peak was observed in the CVs during the 

reverse scan, demonstrating that the redox process was irreversible. We did not observe an oxidation 

peak at pH 5.0 in the potential range of 0–0.8 V, although the oxidation current gradually increased at 

0.4–0.8 V. The oxidation current in CVs recorded at pH 7.0 and 9.0 was remarkably high. In this 

context, Wang and coworkers also reported an enhanced redox response of hydrazine on GC electrodes 

modified with polymer-coated graphene [47]. Electrocatalytic oxidation of hydrazine was  

pH-dependent, that is, higher in neutral or basic solutions [48], in accordance with the pH-dependent 

response of hydrazine on the rGO-modified electrode. 

Figure 6. CVs of 3 mM hydrazine recorded on (a) unmodified GC and (b) rGO-modified 

electrodes at (A) pH 5.0; (B) 7.0; and (C) 9.0. 
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Figure 6. Cont. 

 

It is interesting to evaluate the amperometric response of rGO-modified GC electrodes to hydrazine. 

Figure 7 shows the amperometric response of the rGO-modified GC electrodes to 0.01–0.1 mM 

hydrazine in solution at pH 7.0.  

Figure 7. Amperometric responses of (a) unmodified and (b–d) rGO-modified electrodes 

to hydrazine, recorded at 0.4 V in 0.1 M pH 7.0 phosphate buffer. The rGO-modified 

electrodes were prepared by scanning electrode potential (b) six; (c) seven; and  

(d) eight times. 

 

In this experiment, we used three types of rGO-modified electrodes, in which the quantity of rGO 

loaded on the electrode surface was regulated by changing the number of scans of electrode potential 

upon electrode position of rGO. The quantity of the deposited rGO on an electrode depends on the 

number of scans during electrodeposition [42]. Higher quantities of rGO can be deposited on the 

electrode surface by increasing the number of potential scans. Thus, we fabricated three different types 

of rGO-modified GC electrodes by changing the number of potential scans (i.e., six, seven, and eight) 

during electrodeposition. The rGO-modified electrode prepared by scanning the electrode potential 

eight times exhibited the highest response among the modified electrodes tested. The response of the 
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modified electrode prepared by scanning six times was significantly lower than that of the other 

electrodes, suggesting that scanning the electrode potential seven or eight times is required for 

depositing an adequate quantity of rGO on the electrode surface. The results show that rGO-modified 

electrodes are sensitive to hydrazine in the concentration range of 0.01–0.1 mM. In a separate 

measurement, we have confirmed that the modified electrodes also exhibit an amperometric response 

to hydrazine in a higher concentration range, 0.1–1.0 mM (data not shown). Figure 8 shows calibration 

graphs of the electrodes to hydrazine in the concentration range of 0.01–0.1 and 0.1–1.0 mM. The 

results suggest a possible use of rGO-modified GC electrodes for quantitating hydrazine at 

submillimolar concentrations. Recently, electrochemical oxidation of hydrazine on GC electrodes 

modified with metal nanoparticle-rGO composite has been reported [49]. 

Figure 8. Calibration graphs of (a) unmodified and (b–d) rGO-modified electrodes to 

hydrazine, recorded at 0.4 V in 0.1 M pH 7.0 phosphate buffer. Hydrazine concentration: 

(A) 0.01–0.1 mM; (B) 0.1–1 mM.  

 

4. Conclusions  

We have demonstrated that rGO-modified GC electrodes can be prepared by electrodeposition of 

GO by scanning the electrode potential. The rGO-modified GC electrodes exhibited high sensitivity in 

voltammetric and amperometric measurements of H2O2 and hydrazine. The sensitivity of the modified 

electrodes can be tuned by regulating the loading of rGO on the electrode surface. Therefore, the  

rGO-modified GC electrodes are promising with respect to electrochemical sensor development. 

Further research for improving the performance characteristics of rGO-modified GC electrodes is now 

in progress in our laboratory. 
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