
Received: September 9, 2018; Revised: December 7, 2018; Accepted: December 19, 2018

186

© The Author(s) 2018. Published by Oxford University Press on behalf of CINP.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://
creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, 
provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

Regular Research Article

Peripheral Biomarkers in Schizophrenia:  
A Meta-Analysis of Microarray Gene Expression 
Datasets
Ignazio S. Piras, Mirko Manchia, Matthew J. Huentelman, Federica Pinna, 
Clement C. Zai, James L. Kennedy, Bernardo Carpiniello

Neurogenomic Division, Translational Genomic Research Institute, Phoenix, Arizona (Drs Piras and 
Huentelman); Section of Psychiatry, Department of Medical Sciences and Public Health, University of 
Cagliari, Cagliari, Italy (Drs Manchia, Pinna, and Carpiniello); Department of Pharmacology, Dalhousie 
University, Halifax, Nova Scotia, Canada (Dr Manchia); Neurogenetics Section, Campbell Family Mental Health 
Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada (Drs Zai and Kennedy); 
Department of Psychiatry, Institute of Medical Science (Drs Zai and Kennedy), and Laboratory Medicine and 
Pathobiology (Drs Zai and Kennedy), University of Toronto, Toronto, Ontario, Canada.

I.S.P. and M.M. contributed equally to this work.

Correspondence: Mirko Manchia, MD, PhD, Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Via Liguria,  
13 - 09127 Cagliari, Italy (mirkomanchia@unica.it and Mirko.Manchia@dal.ca).

Abstract

Background: Schizophrenia is a severe psychiatric disorder with a complex pathophysiology. Given its prevalence, high risk 
of mortality, early onset, and high levels of disability, researchers have attempted to develop early detection strategies for 
facilitating timely pharmacological and/or nonpharmacological interventions. Here, we performed a meta-analysis of publicly 
available gene expression datasets in peripheral tissues in schizophrenia and healthy controls to detect consistent patterns 
of illness-associated gene expression. We also tested whether our earlier finding of a downregulation of NPTX2 expression in 
the brain of schizophrenia patients replicated in peripheral tissues.
Methods: We conducted a systematic search in the Gene Expression Omnibus repository (https://www.ncbi.nlm.nih.gov/gds/) and 
identified 3 datasets matching our inclusion criteria: GSE62333, GSE18312, and GSE27383. After quality controls, the total sample size 
was: schizophrenia (n = 71) and healthy controls (n = 57) (schizophrenia range: n = 12–40; healthy controls range: n = 8–29).
Results: The results of the meta-analysis conducted with the GeneMeta package revealed 2 genes with a false discovery rate  < 0.05: 
atlastin GTPase 3 (ATL3) (upregulated) and arachidonate 15-lipoxygenase, type B (ALOX15B) (downregulated). The result for ATL3 
was confirmed using the weighted Z test method, whereas we found a suggestive signal for ALOX15B (false discovery rate < 0.10).
Conclusions: These data point to alterations of peripheral expression of ATL3 in schizophrenia, but did not confirm the 
significant association signal found for NPTX2 in postmortem brain samples. These findings await replication in newly 
recruited schizophrenia samples as well as complementary analysis of their encoded peptides in blood.
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Background
Schizophrenia (SCZ) is a severe psychiatric disorder affecting 
about 0.5% of the population worldwide (Saha et al., 2005). The 
incidence rate of SCZ has been estimated at around 0.015%, 
with peaks during the second and third decades of life (McGrath 
et al., 2004). The diagnosis of SCZ has a high prospective stability 
(Fusar-Poli et al., 2016), and affected individuals face a remain-
ing lifespan of chronic active illness substantially impacted by 
high levels of disability (Świtaj et al., 2012), high rates of medical 
(Hert et al., 2011) and psychiatric comorbidities (Buckley et al., 
2009), and an increased risk of mortality (Saha et al., 2007)—with 
about 14.5 years of life lost on average (Hjorthoj et al., 2017)—
compared with the general population. On top of this, one-third 
of cases show unresponsiveness to psychopharmacological 
treatments (Meltzer, 1997), resulting in an even higher burden 
on the public healthcare system as well as on the entire society.

Thus, researchers have attempted to develop early detection 
strategies for facilitating early pharmacological and/or non-
pharmacological interventions, possibly even in the early stages 
of SCZ (Sommer et al., 2016). These approaches have been based 
on the identification of clinical (behavioral, motor, neurocogni-
tive, and psychopathological) (Welham et al., 2009), and neuro-
biological (Millan et al., 2016) antecedents and have led to the 
formulation of staging hypothesis in SCZ.

Ideally, predictive models of the longitudinal trajectory of 
SCZ should be based on readily and easily obtainable markers 
such as those detectable through a blood sample. Genetic mark-
ers pertain to this group. For instance, polygenic risk scores for 
SCZ, derived from genome-wide association studies, were asso-
ciated with the manifestation of negative symptoms and anxi-
ety in a large cohort of adolescent followed-up from the age of 
12 to 18 years (Jones et al., 2016). Another strategy consists in 
the analysis of peripheral gene and/or protein expression lev-
els with the aim to develop panels of markers that might dis-
tinguish, for instance, unaffected individuals from patients at 
clinical risk for SCZ (Chan et al., 2015). Although promising, this 
approach should rely on markers for which association with ill-
ness status is statistically significant, biologically validated, and 
consistently replicated, a scenario at the moment nonexistent 
in SCZ (Belbasis et al., 2018).

In this context, the exploratory analysis of publicly avail-
able datasets can lead to the identification of molecular targets 
testable in vivo. Using a rigorous meta-analytical methodology, 
we have shown the consistent and highly statistically signifi-
cant downregulation of neuronal pentraxin 2 (NPTX2) gene in 
datasets from human-induced pluripotent stem cell-derived 
neurons and postmortem brain tissue of SCZ patients com-
pared with healthy controls (HC) (Manchia et al., 2017). Of inter-
est, this gene was recently implicated in the pathogenesis of 
Alzheimer’s disease (Cummings et al., 2017) and anxiety (Chang 
et al., 2018).

In light of these considerations, here we aimed at performing 
a meta-analysis of publicly available dataset gene expression in 
peripheral tissues in SCZ and HC to detect consistent patterns 
of illness-associated gene expression. As an aside, we tested 
whether our finding of a down-regulation of NPTX2 expression 
in the brain of SCZ patients was replicated in peripheral tissues.

Methods

Systematic Search of Microarray Expression Profiling 
Datasets From Peripheral Tissues

We conducted a systematic search in the Gene Expression 
Omnibus (GEO) repository (https://www.ncbi.nlm.nih.gov/gds/) 
using the following search terms: filters were “Homo sapi-
ens” and “Expression profiling by array” and keywords were 
“Schizophrenia” and “Blood.” We obtained a total of 23 datasets. 
A dataset was incorporated in the analysis if the following inclu-
sion and exclusion criteria were satisfied: (1) used a case-control 
study design; (2) obtained with a noncustom Affymetrix micro-
array platform; (3) derived from blood or other peripheral tis-
sues; (4) associated with a reference published in Medline; (5) 
excluded cases with specific genomic rearrangements or vari-
ants. After each dataset was checked independently by 2 authors 
(ISP and MM), we obtained a final list of 3 datasets, which were 
included in the meta-analysis.

Datasets Included in the Meta-Analysis

We downloaded raw data of the 3 different microarray RNA 
expression profiling datasets selected: 1 of skin-derived fibro-
blasts (GSE62333) and 2 including expression profiling from 
peripheral blood samples matching the inclusion and exclu-
sion criteria (GSE18312 and GSE27383), all publicly available in 
the GEO repository (https://www.ncbi.nlm.nih.gov/gds/). The 
dataset GSE62333 (Cattane et al., 2015) consisted of RNA expres-
sion profiling obtained with the Affymetrix Human Gene 1.1 
ST array of skin-derived fibroblasts from 20 SCZ subjects and 
20 HC. The patients from this study were unrelated, Caucasian 
and with Italian descent for at least 2 generations. They satis-
fied the DSM-IV (APA, 2000) criteria for SCZ, and diagnoses 
were confirmed using the Structured Clinical Interview for 
DSM-IV Axis I Disorders (First, 1997). The control samples were 
unrelated healthy volunteers screened for DSM-IV Axis I  dis-
orders by expert psychologists using the Mini-International 
Neuropsychiatric Interview (Sheehan et  al., 1998). Further 
details are reported in the original study (Cattane et al., 2015).

The dataset GSE18312 (Bousman et  al., 2010) consisted of 
RNA expression profiling obtained with the Affymetrix Human 
Exon 1.0 ST array of peripheral blood from 13 SCZ subjects and 8 

Significance Statement
Schizophrenia is a severe psychiatric disorder caused by the interplay of genetic and nongenetic (environmental) factors. 
Typically, individuals become ill in the late teens to early twenties, and most of them spend their remaining lifespan with severe 
clinical symptoms that cause a significant decline in their functioning. Thus, it is key to identify at-risk subjects before the illness 
manifests entirely. In this study, we take advantage of sophisticated bioinformatics approaches to put together publicly available 
data on the expression of genes in peripheral tissues of individuals with schizophrenia. We found that the expression of a gene, 
the atlastin GTPase 3 (ATL3), was increased in schizophrenic subjects compared with healthy controls. These findings, although 
encouraging, should be considered as preliminary and await replication in larger samples and newly recruited patients.
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HC. The patients and controls were recruited from the University 
of California, San Diego and diagnosed using the Diagnostic 
Interview for Genetic Studies (Nurnberger et al., 1994). All details 
about exclusion and inclusion criteria are reported in Bousman 
et al. (2010).

The dataset GSE27383 (van Beveren et  al., 2012) consisted 
of RNA expression profiles obtained with Affymetrix Human 
Genome U133 Plus 2.0 Array of peripheral blood from 43 SCZ 
subjects and 29 HC. The patients were all males and recruited 
at the Department of Psychiatry of the Erasmus University 
Medical Center, Rotterdam, the Netherlands. They were recent 
onset patients (<5 years) and aged between >15 and <36 years, 
diagnosed according to DSM-IV criteria after a Comprehensive 
Assessment of Symptoms and History interview (Andreasen 
et  al., 1992) and by consensus between 2 senior psychiatrists 
who were blind to the expression results at the time of diagno-
sis. Clinical symptom severity was assessed with the Positive 
and Negative Syndrome Scale (Kay et  al., 1989). The controls 
were also recruited at the ECM. Further details about the inclu-
sion and exclusion criteria for cases and controls are reported in 
van Beveren et al. (2012).

Quality Control

For all datasets, the following analytical framework was applied. 
Raw intensity signals (*.CEL files) were normalized using the 
Robust Multi-Array Average algorithm (Irizarry et al., 2003) using 
the R-package affy (Gautier et al., 2004). Quality controls (QC) were 
conducted using the R-package ArrayQualityMetrics (Kauffmann 
et al., 2009), inspecting heatmaps of inter-array expression dis-
tances, Principal Component Analysis, and MAplot, the latest 
including the log-intensity ratios (M-values) vs log-intensity 
averages (A-values). Samples classified as outliers in 2 of the 3 
metrics in the first round of QC runs were removed from the 
dataset. Then, the raw data without outliers were normalized 
again and used for the downstream analysis. The datasets were 
annotated with the R Bioconductor packages hgu133plus2.db, 
hugene10sttranscriptcluster.db, and hgu133a.db, depending to the 
platform. Filtering was performed using the GeneFilter R-package 
(Gentleman et al., 2018). We excluded nonannotated and dupli-
cated probes, and low expressed probes using the interquartile 
method (variance cutoff = 0.50).

Microarray Gene Expression Meta-Analysis

We used 2 different meta-analytic approaches. The main 
method was developed by Choi et  al. (2003), where an overall 
ranked gene list is produced based on the false discovery rate 
(FDR) of each gene. The second method is based on the P value 
combination from the differential expression analyses using the 
Fisher Z weighted test (Zaykin, 2011).

When we applied the method of Choi et al. (2003), the input 
consisted of the matrix of Robust Multi-Array Average normal-
ized expression values for the common genes. The analysis was 
conducted with the R package GeneMeta (Lusa et al., 2018) using 
the Random Effect Model to account for heterogeneity among 
studies as implemented in the function “Zscore.” The FDR for 
each gene was obtained with the function “ZscoreFDR” using 
100 000 permutations. The genes were considered significant for 
FDR < 0.05.

Further corroboration of our findings came from the method 
based on P values combination (Zaykin, 2011). In this case, the 
input consisted of the P values obtained from the differential 
expression analysis. We conducted the differential expression 

analysis for the 3 datasets separately, using a linear model 
as implemented in the R-package Limma (Ritchie et  al., 2015), 
including sex and age as covariates (when available) to mini-
mize the sources of variability among studies. The significance 
was assessed with the moderated t test and the P values were 
corrected for multiple testing using the FDR method (Benjamini 
and Hochberg, 1995). Since the Fisher Z weighted test assumes 
1-tailed P values, we converted the 2-tailed nominal P value 
to 1-tailed P value using the following formula when the Log2 
fold change was >0: P1Tailed = P2-Tailed/2. Otherwise, we used the 
following formula: P1Tailed = 1 −(P2Tailed/2). The uncorrected P values 
were weighted using the sample sizes of the 3 datasets and 
combined using the combine.test function with the “Z.method” 
option included in the R-package survcomp (Schroder et  al., 
2011). Finally, the combined 1-tailed P values were converted in 
2-tailed P values and corrected with the FDR method.

We compared the results between this meta-analysis and our 
previous study (Manchia et al., 2017) computing the Spearman 
correlation coefficient between overlapping genes detected 
in both studies (using the Zscore from the GeneMeta results). 
Moreover, we investigated the relationship of the same genes 
across different tissues using the RNA sequencing data avail-
able in the Genotype-Tissue Expression (GTEx) database (GTEx 
Consortium, 2015) from whole blood and brain cortex. We used 
the transcript per million counts, with a log2 transformation 
for both graphical representation and analysis. We computed 
the Spearman correlation coefficient between whole blood and 
brain areas, and the expression levels were compared using the 
Mann–Whitney U test.

Pathway-Based Microarray Meta-Analysis

We conducted a meta-analysis for pathway enrichment (MAPE) 
using the method developed by Shen and Tseng implemented 
in the R-Package Metapath (Shen and Tseng, 2010). We used 
the integrated method (MAPE_I), which combines and exploits 
the advantages of the meta-analytic approach at the gene level 
(MAPE_G) with the meta-analytic approach after pathway analy-
sis (MAPE_P). The input for the analysis consisted of the complete 
microarray datasets, including overlapping and nonoverlapping 
genes. We conducted the analysis using the conservative statis-
tics maxp to identify consistent biomarkers across the different 
studies, and the Kolmogorov-Smirnov statistics for the enrich-
ment (Shen and Tseng, 2010). The results were corrected using 
the FDR method (Benjamini and Hochberg, 1995). As a reference 
database for the enrichment, we used the Molecular Signatures 
Database “hallmark” gene set. This gene set was developed 
using a hybrid approach combining computation with manual 
expert imputation. The advantage is a reduction of redundancy 
and the production of more robust enrichment results (Liberzon 
et al., 2015).

Results

Quality Controls

We removed 1 outlier from the SCZ group in the dataset 
GSE62333, obtaining a final dataset of 19 SCZ and 20 HC samples. 
The dataset GSE18312 consisted originally of 13 SCZ and 8 HC. 
One outlier in the SCZ group was detected, with a final sample 
size comprised of 12 cases and 8 HC. The dataset GSE27383 was 
comprised of 43 SCZ and 29 HC. The SCZ group was composed of 
22 “acutely remitted” and “remitted.” After removal of 3 outliers 
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in the patients group, the final dataset was comprised of 40 SCZ 
and 29 HC.

Differential Gene Expression Analysis

We conducted the differential gene expression analysis for 
each dataset separately to obtain the P values for the meta-
analysis based on Fisher’s Z weighted test. The complete 
results for the 3 datasets are reported in supplementary 
Tables 1 (GE62333), 2 (GSE18312), and 3 (GSE27383). After QC, 
the dataset GSE62333 had 9241 probes, with 13 of them sta-
tistically significant after correction for multiple testing and 
976 significant before correction (supplementary Table 1). 
The dataset GSE18312 had 7238 different probes. After cor-
rection for multiple testing, we did not obtain statistically 
significant results. However, 517 probes were significant 
before multiple test correction (supplementary Table 2). For 
dataset GSE27383, we analyzed 10 096 different probes. After 
correction for multiple testing, we obtained 313 probes sta-
tistically significant (supplementary Table 3), with 1747 sig-
nificant before correction. The overlap of the differentially 
expressed genes among datasets is reported in the Venn 
diagram (Figure 1). There were no overlapping genes after 
adjustment for multiple testing. We detected 2 genes sig-
nificant before adjustment across the 3 datasets: DNAJC13 
and IL18R1. However, IL18R1 showed a discordant log2 (FC) 
in the dataset GSE18312.

Microarray Gene Expression Meta-Analysis

We combined the 3 datasets, obtaining a total of 2641 common 
genes used as input in the meta-analysis. The results of the 
meta-analysis conducted with the GeneMeta package revealed 
2 genes with FDR < 0.05: atlastin GTPase 3 (ATL3) (upregulated; 
FDR = 0.048) and arachidonate 15-lipoxygenase, type B (ALOX15B) 
(downregulated; FDR = 0.049) (Table 1). A detailed report of this 
analysis is outlined in supplementary Table 4, while the box 
plots of ATL3 and ALOX15B gene expression are shown in sup-
plementary Figure 1.

As a validation method, we combined the nominal P val-
ues obtained in the differential gene expression analysis 
using the Fisher’s weighted z test, correcting the results with 
the FDR method (supplementary Table 5). In this analysis, we 
obtained 37 genes significant after correction for multiple 
testing. Interestingly, the ATL3 gene also showed a signifi-
cant upregulation as observed with the GeneMeta analysis 
(adj P = 4.8E-02), whereas ALOX15B confirmed to be downreg-
ulated, albeit with only a suggestive association signal (adj 
P = 5.3E-02).

We compared our results with our previous study, but 
ATL3 and ALOX15B were not present in the datasets, probably 
removed during QC steps. We did not detect any other overlap 
when we compared the results obtained using both methods.

NPTX2 Expression Level

In light of the results obtained in our previous study (Manchia 
et al., 2017), we checked the expression levels of the NPTX2 
gene in the analyzed datasets. The gene was not present in 
all datasets. Then, we reanalyzed the data without filtering 
out the low variance probes, detecting NPTX2 in GSE62333 
and GSE27383, but not in GSE18312. The gene was nonsig-
nificantly downregulated in the other 2 datasets, which 
showed weak NPTX2 expression (Table 2). We combined the 
2 datasets with the 2 meta-analytic methods, obtaining in 

Table 1.  Significant Results for the Meta-Analysis Conducted With the GeneMeta Package

Genes

GSE62333 GSE18312 GSE27383 Combined

z FDR z FDR z FDR z FDR

ATL3 1.460 0.573 1.925 0.545 2.830 0.084 3.630 0.048
ALOX15B −1.529 0.545 −1.918 0.538 −2.692 0.102 −3.566 0.049

GSE27383 
(n = 1,747) 

GSE62333 
(n = 976) 

GSE18312 
(n = 517) 

44 

2 

23 32 

460 

907 1,669 

A 

GSE27383 
(n = 313) 

GSE62333 
(n = 13) 

GSE18312 
(n = 0) 

0 

0 

0 0 

0 

13 313 

B 

Figure 1. Venn diagram showing the overlap of differentially expressed genes 

among included datasets. (A) Before adjustment for multiple testing; (B) after 

adjustment for multiple testing.
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both cases nonsignificant results: z = −1.326 and adj P = .700 
with GeneMeta, and adj P = .637 with the Weighted z test (not 
adjusted P = .216).

Comparison of Brain and Peripheral Gene 
Expression Data

We compared the RNA profiling results obtained in this study with 
the results from our previous study (Manchia et al., 2017) in brain tis-
sue. We used the “GeneMeta” results, computing a nonparametric cor-
relation between the z scores of the 2 analyses, representing the final 
effect size for each meta-analysis. We found 692 overlapping genes, 
and the correlation was not significant (ρ = 0.010; P = .783) (supplemen-
tary Figure 2). Further, we used the GTEx data to assess the correlation 
between 665 of the 692 overlapping genes we found in GTEx. We com-
pared the log2-transformed transcript per million counts available on 
GTEx between whole blood and cortex, frontal cortex (BA9), and ante-
rior cingulate cortex (BA24). In all regions, we obtained significant and 
positive correlations (ρ ranging from 0.261 to 0.299; P < 1E-12). The scat-
terplot with the correlation for Cortex is reported in supplementary 
Figure 3. We also compared the expression levels among these brain 
regions and whole blood observing significant lower expression val-
ues in the latter tissue compared with brain regions (Mann–Whitney 
U test: P < 2.2E-16) (supplementary Figure 4).

Pathway-Based Microarray Meta-Analysis

The meta-pathway analysis conducted with MetaPath using the 
Molecular Signatures Database Hallmark gene set did not iden-
tify biological processes significantly perturbed after FDR cor-
rection, but 3 nominally significant processes (supplementary 
Table 6).

Discussion

Findings From Gene Expression Microarray Meta-
Analysis

In this study, we performed a meta-analysis of publicly available 
gene expression datasets from peripheral tissues in the attempt 
to identify biological targets associated with SCZ. In addition, 
we tested whether the finding of a highly significant alteration 
in NPTX2 gene expression in the brain of SCZ patients (Manchia 
et al., 2017) was consistently (downregulation) or discordantly 
(upregulation) replicated in peripheral tissues. ATL3 was sig-
nificantly upregulated using both meta-analytical methods (adj 
P < .05), whereas ALOX15B (downregulated) was marginally sig-
nificant in one case but showed a suggestive signal (adj P < .10) in 
the second method. Finally, we were not able to detect a signifi-
cant association signal for NPTX2 gene expression.

Comparison With Previous Evidence

The ATL3 gene is located on chromosome 11 in the cytogenetic 
band q13.1 and is comprised of 15 exons. This chromosomal 

region has not been previously implicated in the genetic 
architecture of SCZ by linkage analysis (Mulcrone et  al., 1995) 
or genome-wide association studies (Schizophrenia Working 
Group of the Psychiatric Genomic Consortium, 2014). Of interest, 
however, is the presence in ATL3 genomic neighborhood of the 
gene encoding for a member of the neurexin family, neurexin 
2. Although the involvement of neurexin family in SCZ is mainly 
led by evidence on neurexin 1 (Kirov et al., 2009), there are find-
ings in animal models supporting a possible role of neurexin 2 
in SCZ (Dachtler et al., 2015).

The ATL3 gene encodes for a protein, atlastin-3, described in 
2008 (Rismanchi et al., 2008) that is part of a family of human 
GTPases involved in the pathogenesis of hereditary sensory 
neuropathy (Kornak et  al., 2014). Of note, atlastin-3 protein is 
widely expressed in peripheral tissues (Rismanchi et al., 2008) 
but also in the brain (Fagerberg et al., 2014). Its localization is 
predominantly in the endoplasmic reticulum (ER) membranes 
and serves as a key element of the structure and functioning 
of the ER (Kornak et al., 2014). This aspect is of great relevance 
in SCZ. Indeed, alterations in posttranslational protein modifi-
cations regulating protein targeting, trafficking, synthesis, and 
function, which take place in the ER, have been linked to SCZ 
pathophysiology (Patel et  al., 2017; Kim et  al., 2018). Although 
in the absence of a direct mechanistic link, it is plausible that 
a disruption in the ATL3 gene, resulting in the perturbation of 
physiological ER function, might play a role in the pathophysi-
ological underpinnings of SCZ.

The gene ALOX15B has 14 exons and is located on chro-
mosomal area 17p13.1 (Krieg et  al., 2001). The encoded prod-
uct is the arachidonate 15-lipoxygenase, isoform B, a member 
of lipoxygenase family that converts arachidonic acid exclu-
sively to 15S-hydroperoxyeicosatetraenoic acid (Droege et  al., 
2017). Of note, this eicosanoid pertains to the family of lipox-
ins, which, instead of promoting inflammation, exerts an anti-
inflammatory effect (Aliberti et  al., 2002). Evidence appears 
to support a biological link with SCZ. First, the presence of a 
downregulation of ALOX15B gene expression in peripheral tis-
sue seems consistent with the neuroinflammatory hypoth-
esis of SCZ (Müller, 2018). Indeed, a low level of arachidonate 
15-lipoxygenase, isoform B implies a reduction in the synthesis 
of 15S-hydroperoxyeicosatetraenoic acid, an antiinflammatory 
lipoxin, with an overall increase in inflammation in SCZ patients. 
Recently, support for the neuroinflammatory hypothesis has 
come from the recent study of Sekar et al. (2016) that dissected 
the association signal in the most significant association region 
for SCZ, which lies among genetic markers in the major his-
tocompatibility complex locus (Schizophrenia Working Group 
of the Psychiatric Genomics Consortium, 2014). In fact, these 
authors found that this highly significant association involved 
several common, structurally distinct alleles of the gene encod-
ing for complement 4 (C4) that affected expression of C4A and 
C4B, key components of immune response and inflammation, 
in the brain (Sekar et al., 2016). Overexpression of these proteins 
might lead to an excess of synaptic pruning (Sekar et al., 2016), 
possibly causative of detrimental effects at brain level.

Table 2.  Expression Levels of NPTX2 in GSE62333 and GSE27383

Dataset Probe ID log2 FC Average Expression t B P Adjusted P

GSE62333 8134463 −0.060 4.836 −0.739 −5.576 .464 .830
GSE27383 213479_at −0.051 4.086 −1.014 −5.506 .314 .700

The gene was not detected in the dataset GSE18312. All P values are 2 sided. FC, fold-change.

http://academic.oup.com/ijnp/article-lookup/doi/10.1093/ijnp/pyy103#supplementary-data
http://academic.oup.com/ijnp/article-lookup/doi/10.1093/ijnp/pyy103#supplementary-data
http://academic.oup.com/ijnp/article-lookup/doi/10.1093/ijnp/pyy103#supplementary-data
http://academic.oup.com/ijnp/article-lookup/doi/10.1093/ijnp/pyy103#supplementary-data
http://academic.oup.com/ijnp/article-lookup/doi/10.1093/ijnp/pyy103#supplementary-data
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Second, using fine mapping, Shlien et al. (2010) found a com-
mon deleted region that includes ALOX15B in patients with 
pervasive developmental disorder, bipolar disorder, aggressive 
behavior, and severe cognitive impairment.

Finally, there is evidence that the product of Disrupted in 
Schizophrenia 1 gene, strongly implicated in the genetic archi-
tecture of SCZ, regulates neuronal migration, neurite outgrowth, 
signal transduction, cyclic adenosine monophosphate signal-
ing, cytoskeleton modulation, and translational regulation, by 
interacting with, among the others, nudE neurodevelopment 
protein 1 like 1, whose gene is in the same cytogenetic band 
downstream of ALOX15B.

Comparison With Our Previous Findings

In this study, we were not able to detect the association signal 
for NPTX2 previously found in our meta-analysis using RNA pro-
filing from brain tissue. We were also not able to find an over-
all correlation between studies using the overlapping genes 
detected. However, the same genes showed a strong correlation 
between whole blood and brain in the GTEx data and a signifi-
cantly lower expression in whole blood. The absence of correla-
tion between studies can be explained in light of the following: 
(1) lower expression levels of overlapping genes in whole blood 
than in brain, with a consequent less reliable quantification and 
decreased power in this type of tissue; (2) the absence of a sig-
nificant correlation between brain and whole blood expression 
data could be caused by the fact that the same genes might be 
specifically altered in brain tissue of affected subjects, but not in 
normal controls (as in GTEx); (3) the lack of a correlation might 
depend on the different samples used in the meta-analysis. An 
ideal situation for this type of comparison would be to conduct 
the study in whole blood and brain of the same individuals.

Limitations

Our findings should be considered in light of a series of limi-
tations. First, the lack of a biological validation limits the rel-
evance of our findings. Secondly, the FDR method tends to be 
less stringent in controlling for the rate of Type 1 error com-
pared with other approaches. Further, it should be noted that 
all transcriptomic changes that were nominally significant in 
each dataset did not replicate when analyzed across all three. 
Third, our results do not present correlation with relevant clini-
cal outcomes in SCZ, such as, for instance, cognitive deteriora-
tion or severity of negative symptoms. Fourth, we were not able 
to adjust for duration of illness or for the presence of medical 
comorbidities, both factors that might influence the expression 
of genes, particular those related to inflammatory pathways. 
Fifth, since available datasets were collected cross-sectionally, 
our findings represent association but do not imply causality, 
that is, we were not able to assess whether alterations of gene 
expression anteceded or were consequent to the onset of the ill-
ness. Sixth, it is plausible that the lack of a correlation between 
brain and whole blood expression data might also depend on 
the different samples used in the meta-analysis. As explained 
in the previous section, this type of comparison should be ide-
ally conducted in the whole blood and brain samples of the 
same individuals. Finally, the total sample size was small, also 
because of the limited availability of datasets to include in the 
meta-analysis. This is reflected in the low level of significance of 
our results. The inclusion of new studies (when available) will 
improve the statistical power of the meta-analysis.

In summary, using a systematic search of publicly avail-
able gene expression datasets and 2 different meta-analytical 
approaches, we found a consistent and statistically significant 
upregulation of ATL3 gene and a downregulation of ALOX15B 
gene in peripheral tissues of SCZ patients. These data await 
replication in newly recruited SCZ samples as well as comple-
mentary analysis of their encoded peptides in blood to confirm 
their potential as reliable biomarkers of illness status in SCZ. 
It remains to be established whether these alterations in the 
pattern of gene expression might have predictive value in unaf-
fected subjects at clinical risk for SCZ.

Supplementary Materials

Supplementary data are available at International Journal of 
Neuropsychopharmacology (IJNPPY) online.
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