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A B S T R A C T   

Despite being announced as a global health concern and emergency in January by WHO, designing specific 
treatment for SARS-CoV-2 is still a summit yet to be conquered. Currently, many drugs are being tested in the 
clinical scenario and vitamins play a significant role in therapeutic management. Based on the available evi-
dence, we postulate that maintaining normal vitamin D3 levels may reduce severity, mortality risk of COVID-19. 
This review elucidates the alarming need for randomized clinical trials to determine the role of vitamin D in 
patient prognosis in COVID-19 infection and on latitude bases epidemiological outcome.   

1. Introduction 

Vitamin D, a fat-soluble vitamin, has a crucial role in bone meta-
bolism and calcium homeostasis. Vitamin D exists in two forms, namely, 
D2 (derived from plants) and D3 (cholecalciferol; derived from animals 
and humans).1 Dietary and sunlight assisted (Ultra Violet-B radiation) 
conversion of 7-dehydrocholesterol present in the skin to cholecalciferol 
is the primary sources of vitamin D.[1] The produced vitamin D3 or di-
etary vitamin D is metabolized to 25(OH)D in the liver and then to 
calcitriol in the kidneys which regulate the calcium levels by negative 
feedback mechanism with parathyroid hormone (PTH).2 

Recent research indicates that vitamin D plays a significant role in 
inflammation, immunity, and host defense mechanisms; aids in the 
prevention of RTIs in terms of frequency and mortality.3 The vitamin D 
induces the production of antimicrobial peptides, such as cathelicidins 
(LL-37) and β-defensins and activates innate immunity partly by toxin 
neutralization and chemotactic action of antimicrobial peptides.4–6 

Cathelicidins predominantly exhibit direct microbicidal activity against 
a spectrum of pathogens, including enveloped and nonenveloped vi-
ruses, gram-positive and gram-negative bacteria, and fungi.7 The 
anti-viral activity of LL-37 was verified by Barlow PG et al. in murine 
models and their research findings depicted that LL-37 decreased the 
viral replication of influenza A virus, elucidating anti-viral activity.8 In 

addition, Vitamin D also governs the activities of dendritic cells and 
macrophages, as well as the activation of Toll-Like Receptors (TLRs).9 

This in turn leads to the expression of antimicrobial peptides and the 
subsequent eradication of the pathogens.10 In COVID-19 patients, a 
proliferation of both anti-inflammatory and pro-inflammatory cytokines 
has been observed in response to innate immune system provoked by 
SARS-CoV-2.11 In the case of adaptive immunity, the role of vitamin D 
has been widely established, where it exhibits a suppressive effect on T 
helper-1 cell proliferation and activation, in turn, produce interferon γ 
and lead to macrophages activation.12 Hence, cholecalciferol modulates 
both the acquired and innate immune system. One in vitro study reported 
that interferons are responsible for acute lung injury during the late 
phase of the SARS-CoV pathology.13 A pro-inflammatory cytokine 
storms haven been identified in most severe cases of MERS-CoV and 
SARS-CoV.14,15 Vitamin D reduces the cytokine storm risk by decreasing 
the expression of pro-inflammatory cytokines.11 Hence, the effect of 
cholecalciferol on immune modulation for anti-viral protection cannot 
be ignored. 

2. Methods 

PubMed, MEDLINE, Embase, and ScienceDirect were searched to 
select all of the studies published in the last 10 years using a 
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combination terms, such as vitamin D and COVID-19, 25(OH)D and 
COVID-19, vitamin D and respiratory tract infections, case fatality ratio 
and corona virus, vitamin D and sunlight, countries and latitudes, and 
vitamin D and immune system. Gray literature; published abstracts and 
recent updates on COVID-19 were obtained through searches of Centers 
for Disease Control and Prevention (CDC; https://www.cdc.gov/cor 
onavirus/2019-ncov/index.html) and ClinicalTrials.gov database, 
technical reports, and statistical reports. The search was restricted to 
publications in the English language. More than 500 articles were found, 
but only articles published in English, those related to our search criteria 
as well as those showing evidence-based data were included. Screening 
and review of articles were conducted in accordance with the Preferred 
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 
(Fig. 1). 

Statistical analysis was done using software R version 3.6.0. 
Normality of the data was determined using the Shapiro-Wilk test. The 
continuous variables with normal distribution were presented as mean 
± standard deviation and compared using paired t-test. Mann-Whitney U 
test was performed for variables without following a normal distribu-
tion. Odds ratio (OR) was used to measure the odds of COVID-19 mor-
tality among lower (<35◦) and higher (>35◦) latitude countries. The 
correlation between case fatality ratio (CFR) and earth latitude of 
different countries was developed Spearman’s correlation analysis. A P 
value of <0.05 was considered statistically significant at 95% confi-
dence interval. 

3. Age dependency of Vitamin-D in COVID-19 infections 

A high percentage of research states that elderly persons (≥60 years) 
are at greater risk to develop vitamin D deficiency than children. Serum 
25(OH)D levels tend to decline with age as aging reduces the skin’s 
ability to produce cholecalciferol; less time outdoors and lower 

concentration of 7-DHC in the skin are being the key determinants of 
vitamin D deficiency.16,17 Moreover, pharmaceutical drug usage in-
creases with age which reduce serum 25(OH)D levels through the acti-
vation of the pregnane-X receptor.18 Such drugs constitute 
antineoplastics, antiepileptics, antibiotics, antihypertensives, 
anti-inflammatory agents, endocrine drugs, antiretrovirals, and some 
herbal medicines.18 All these factors have a major impact on pandemic 
(COVID-19) as CFRs are in direct proportion with age.19 Daneshkhah 
et al. demonstrated that the age-specific CFR of COVID-19 was highest in 
European countries with a greater incidence of severe vitamin D defi-
ciency, Italy, France, and Spain.20 Data with these characteristics are 
missing (or under-reporting) for the majority of the cases and it is quite 
difficult to demonstrate age-sex specific CFR of COVID-19. Bulut et al. 
reported that 83% mortality cases in Italy were aged ≥70 years old and 
also a similar pattern was observed in South Korea and the United states 
as well.21 Older people are the more vulnerable group to COVID-19 in 
countries, such as Sweden (70–90 years), Czech Republic (>75 years), 
Hungary (66–88 years), Spain (70–79 years), Netherlands (>75 years), 
Belgium (80–89 years), Switzerland (>80 years), Poland (75–77 years), 
Ukraine (60–69 years), and United States (>7 years).22 In contrast, in 
India, the majority (64%) of the coronavirus confirmed cases belong to 
the age group of 25–59 years and only 15% of cases are aged ≥ 60 
years.23 In an ICMR study conducted by Gupta et al. reported that 82% 
COVID-19 cases overall were aged >40 years.24 India’s age the structure 
is comparatively younger, and metropolitan cities comprise of more 
young population (labor/workforce).23 By analyzing the data (as of May 
13, 2020) provided by New York City Health, majority (48.7%) of the 
coronavirus deaths were aged ≥ 75 years following which 65–74 years 
(24.09%) and 45–64 years (22.4%) were the more vulnerable age 
groups.[25] Ningthoujam et al. reported that COVID-19 can affect all age 
groups irrespective of whether the people are young or old with a 
concluding statement “strong immunity is the key weapon to fight 

Fig. 1. PRISMA flow chart.  
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against COVID-19”.22 

4. Influence of latitude: an ignored effect? 

Casual exposure to sun ultraviolet rays (wavelengths 290–315 nm) 
results in the cutaneous production of cholecalciferol.26 During expo-
sure to the sun, the UVB photons that enter the epidermis cause a 
photochemical transformation of 7-DHC (provitamin D3) to previtamin 
D3 and eventually cholecalciferol.27 The skin’s ability to synthesize 
cholecalciferol is affected by earth’s rotation around the sun (season--
earth is closest to the sun in January and farthest from the sun in July) 
and its own axis (day and night).28 Atmospheric pollution attenuates UV 
solar radiation by absorbing and scattering sunlight before it reaches the 
earth’s surface.29 Application of sunscreen agents with the sun protec-
tion factor (SPF) ≥ 15 decreases the UVB penetration into skin epidermis 
by more than 95%, thereby limiting the cutaneous production of pre-
vitamin D3. In addition, dress code, skin pigmentation, cloudy skies, 
latitude and altitude, amount of ozone, and time of day, which all limit 
the production of cholecalciferol by the skin.28 Occurrence of outbreak 
immediately after the winter season could have attributed to increased 
mortality. Meanwhile, seasonality of viral infections, especially URTIs, 
is associated with low 25(OH)D levels. For example, respiratory syncy-
tial virus (RSV) infection is commonly observed during winter in 
temperate climates and the rainy season in tropical climates owing to 
low UVB doses.30,31 

Many studies have documented and demonstrated the effect of sea-
son and latitude on the cutaneous synthesis of cholecalciferol.28 Grant 
et al. reported a strong negative correlation between CFR and UVB dose 
during the Spanish flu (1918 influenza pandemic).32 Countries at lati-
tudes < 35◦ North are more likely to receive adequate sunlight to 
maintain serum 25(OH)D levels during the winter. Based on available 
data on COVID-19, we calculated the CFR (from Dec 31, 2019 to Jun 14, 
2020) for various countries (n = 120).33 It has been observed that mean 
CFR are relatively low in countries at latitudes < 35◦ North (2.41 ±
2.10) compared to countries at latitudes > 35◦ North (3.99 ± 3.23), 
which was statistically significant (P < 0.0001). Globally, there was a 
2-fold higher mortality rate among countries at latitudes <35◦ North 
than countries at latitudes >35◦ (OR: 1.6 95% CI: 1.61–1.63; P <
0.0001). Median and highest CFR observed in countries at latitudes 
<35◦ versus latitudes >35◦ were 1.89% and 8.02% (Mexico) versus 
2.98% and 13.2% (France), respectively (P = 0.0028; Mann–Whitney U 
test). By Spearman’s rank correlation analysis, a positive correlation was 
observed between CFR and latitude (r = 0.184; P = 0.044). Our findings 

are in accordance with findings by Rhodes et al. (r = 0.53; P < 0.0001 as 
of Apr 15, 2020). Fig. 2 indicated an increasing CFR with increasing 
latitude. 

Marik et al. calculated the CFR for each of the 50 states in the United 
States of America (USA) and reported that mortality is directly propor-
tional to latitude.34 Marik et al. also reported that cumulative CFR was 
significantly higher for Northern states >40◦ latitude (6.0%) compared 
to Southern States (3.5%; P < 0.001).34 However, CFR is relatively low 
in few countries that lie above 50◦ North (Nordic countries, Russia, 
Belarus, and Latvia), probably due to factors, such as low population 
density, adherence to social distancing, widespread usage of supple-
ments, and racial makeup.35,36 

5. Influence of vitamin D supplementation in RTIs 

Majority of the studies indicate that preventive vitamin D supple-
mentation during early spring seasons and winter can reduce the fre-
quency and incidence of RTIs, especially seasonal influenza A.37 

Manaseki-holland et al. reported that the risk of a recurrent attacks of 
community acquired pneumonia (CAP) was significantly lower in the 
children (1–36 months of age) who received a single oral vitamin D dose 
(of 100,000 IU).38 In a randomized controlled trial (RCT) conducted by 
Beig et al. reported that there was a significant reduction (P < 0.05) in 
the number of episodes of chronic cough and recurrent respiratory in-
fections (RRIs) during 12 months follow-up after vitamin D supple-
mentation (5000 IU per day for 3 months if serum Vitamin D levels less 
than 15 ng/ml and 400 IU per day if vitamin D levels in the range of 
15–20 ng/ml).39 A systematic review on five RCTs by Charan et al. re-
ported that the reduction of frequent attacks of RTIs was significantly 
lower in the interventional group (vitamin D) compared to controls (OR: 
0.58 95% CI: 0.42–0.8; P = 0.001).40 Bergman et al. reviewed 11 ran-
domized placebo-controlled trials (n = 5660; age ranging from six 
months to 75 years) and reported that the risk of RTIs was significantly 
lower with vitamin D supplementation (OR: 0.64 95% CI: 0.49–0.84; P 
= 0.0014).41 Martineau et al. in their meta-analysis (25 RCTs; n = 10, 
933; age ranging from zero months to 95 years) reported that vitamin D 
supplementation significantly reduces the risk of experiencing acute RTI 
by at least one (OR: 0.88 95% CI: 0.81–0.96; P = 0.003).42 Currently, 
many RCTs are underway to test the effects of vitamin D on risk of acute 
RTIs.43 

Fig. 2. Latitude dependent case fatality rate.  
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6. Does acute large doses of vitamin D would be beneficial? 

To date, different doses of vitamin D have been employed and still, it 
is not clear what dosage regimen would be beneficial. Manaseki-holland 
et al. evaluated whether the supplementation of a single large oral 
dosage of Vitamin D (100,000 IU) with antibiotics would reduce the risk 
of recurrent attacks and disease duration in children with CAP.38 They 
found that there was a significant reduction in the risk of a repeated 
episodes of CAP in the interventional group compared to placebo and 
concluded that a single large oral dose of vitamin D along with antibi-
otics can reduce the recurrence of pneumonia.38 Choudhary et al. re-
ported that short-term oral vitamin D supplementation (1000 to 2000 IU 
daily for five days) did not show beneficial effect on the clinical reso-
lution of severe CAP.44 Manaseki-holland et al. conducted a randomized 
placebo-controlled trial (oral vitamin D 100,000 IU [n = 1524] and 
placebo [n = 1522]; once every three months for 18 months). The au-
thors reported that quarterly bolus dosage of vitamin D has no beneficial 
effect in the reduction of incidence of CAP.44,45 Bergman et al. reported 
that prophylactic vitamin D (optimal dose: 1000 IU to 4000 IU per day) 
decreased the risk of developing RTIs (OR: 0.64 95% CI: 0.49–0.84).41 

The authors also found that the benefit was greatest in subjects living at 
latitudes > 40◦.41 Van Groningen et al. conducted a dose comparison 
study on vitamin D deficient patients and intervened with solubilized 
cholecalciferol; 100,000 IU (25,000 IU biweekly for 8 weeks), 150,000 
IU (25,000 IU every week for 6 weeks), and 200,000 IU (25,000 IU every 
week for 8 weeks).46 The authors observed that cumulative dose of 100, 
000 IU, 150,000 IU, and 200,000 IU increased mean serum 25(OH)D 
levels by29 nmol/l, 43 nmol/l, and 69 nmol/l, respectively. The loading 
dose of cholecalciferol required to reach the target serum 25(OH)D level 
of 75 nmoL/l can be estimated as follows:46 

Dose (IU)= 40 × (75 − serum 25[OH]D) × Body weight 

The National Heart, Lung, and Blood Institute (NHBLI) conducted an 
RCT to evaluate whether the single large dose of cholecalciferol 
(540,000 IU) would be beneficial in critically ill patients with severe 
vitamin D deficiency. But NHBLI failed to demonstrate any benefit from 
high dose of cholecalciferol.47 Many studies reported no adverse effects 
with high doses of vitamin D.46,48 Currently, large doses of vitamin D are 
not supported by clinical evidence and therefore, standard vitamin D 
dosage may be beneficial in providing adequate clinical response.34 

7. Influence of Vitamin-D in children 

LRTIs is the most common and leading cause of child mortality.49 

Literature indicates that children have shown low susceptibility to 
infection by MERS-CoV, SARS-CoV-1, and SARS-CoV-2 compared to 
other viruses, such as RSV and influenza.50 According to the CDC report, 
fewer children were hospitalized (5.7%–20%) and admitted to ICU 
(0.58%–2.0%) compared to adults (>30%); among them infants had a 
higher hospitalization rate (15%–62%) compared to children aged 1–17 
years (4.1%–14%).51 A recent UNICEF report entitled “Lives Upended: 
How COVID-19 threatens the futures of 600 million South Asian Chil-
dren” states that more than 8,80,000 children could die due to 
COVID-related issues in the next 12 months; most deaths likely in 
India.52 The report also says that lack of nutritious diet to children (due 
to dwindling incomes and massive job loss) would be a predisposing 
factor.52 A well-established association has been found between vitamin 
D deficiency and respiratory illness from tuberculosis to RSV.53 Onwu-
neme et al. reported a high prevalence of low 25(OH)D levels (<30 
nmol/L [64%] and ≤50 nmol/L [92%]) in preterm infants which were 
significantly associated with acute respiratory illness in preterm infants 
immediately after birth; preterm infants with vitamin D insufficiency 
required increased resuscitation at delivery and assisted ventilation.54 

Few recent observational studies have demonstrated that Vitamin D 
levels are significantly lower in children with latent TB and TB infection 
than in children without TB in the absence of any differences in dietary 

habits, sunlight exposure, or ethnic or social background.55–57 In 
developing countries, vitamin D or calcium deficiency may be potential 
predisposing factors for pneumonia in children under 5 years and 
vitamin D or calcium supplementation may lead to a significant reduc-
tion in CAP-related morbidity and mortality.58 In an Indian study on 150 
children, a significant association was found between severe lower RTI 
and sub-clinical vitamin D deficiency.59 A Canadian study reported that 
mean serum 25(OH)D levels was significantly lower in LRTI subjects 
admitted to ICU (49 ± 24 nmol/L) than subjects admitted to general 
ward (87 ± 39 nmol/L).60 Boosting children’s immunity in the amidst 
COVID-19 is prerequisite and therefore, prophylactic measures and 
treatment guidelines deserve further research and attention. 

8. Vitamin D influence on underlying medical conditions versus 
COVID-19 

Patients with chronic medical conditions have a significantly higher 
risk of mortality from RTIs than healthy people. By analyzing the data 
(as of May 13, 2020) provided by New York City Health, patients with 
underlying conditions had a higher mortality rate (75%) than patients 
without underlying conditions; among them 46% were aged ≥ 75 years 
followed by 24.6% and 25.1% in age groups of 65–74 years and 45–64 
years, respectively.25 A well-established association has been found 
between vitamin D deficiency and co-morbidities.61–63 Adequate serum 
25(OH)D levels reduce the risk of many chronic illnesses, such as car-
diovascular disease (CVD), Chronic kidney disease (CKD), chronic RTIs, 
hypertension, and diabetes mellitus (DM).64 A meta-analysis (n = 53, 
000 COVID-19 patients) reported that co-morbid conditions are risk 
factors for the severity of disease; hypertension (Relative risk [RR]: 4.49, 
95% CI: 3.7–5.4), DM (RR: 4.4, 95% CI: 3.5–5.6), CVD (RR: 6.7, 95% CI: 
5.40–8.43), and CKD (OR: 6.01, 95% CI: 2.2–16.5).65 Co-morbidities 
show an association with renin-angiotensin-aldosterone-system 
(RAAS), vitamin D status, and SARS-CoV-2. SARS-CoV-2 infection in-
hibits the counter regulatory activity to RAS via viral spike protein 
interaction with angiotensin converting enzyme2 (ACE2) on the cell 
surface.66 Thus, proinflammatory cytokines are entered into circulation 
and eventually leads to the progression of cardiovascular pathol-
ogies.65,66 Several studies reported that low serum 25(OH)D levels 
increased the plasma renin activity, RAS activity, and Ang II concen-
trations.67,68 Circulating 25(OH)D is inversely proportional to renin and 
thus, vitamin D acting as a negative RAS regulator.69 Increased secretion 
of renin in the early stages of vitamin D deficiency results in more fluid 
and salt reabsorption and a rise in vascular pressure.70 Hypertension and 
DM (16.2%) were the most comorbidities seen in critically ill COVID 
patients.71,72 Majority of the corona deaths in China were due to CVS, 
chronic RTIs, DM, and hypertension.19 Hypertensive patients (13 ± 11 
and 13 ± 10 ng/ml in males and females, respectively) had lower 25 
(OH)D concentrations compared to controls (21 ± 11 and 20 ± 11 ng/ml 
in males and females, respectively).73 Prediabetics had significantly 
lower 25(OH)D levels than controls as well as higher C-reactive protein 
as 25(OH)D levels decreased.74 In a large cohort study (n = 3296), a 
significant rise in angiotensin II and plasma renin was observed with 
decreased 25(OH)D levels, but not with aldosterone levels.67 Most cases 
(92%, 1657/1801) with metabolic syndrome had low serum 25(OH)D 
levels and 22.2% patients had very low 25(OH)D levels (<25 nmol/L).75 

A bi-directional genetic approach (26 studies; n = 42,024) showed that 
lower serum 25(OH)D levels lead to higher body mass index (BMI).65 

Obesity could be a potential risk factor in patients with metabolic syn-
drome, coronary disorders, and hypertension since adipose tissue may 
lead to RAS overreaction.76,77 Qingxian et al. conducted a cohort study 
on 383 SARS-CoV-2 infected patients and reported that overweight 
(BMI: 24–27.9) and obese patients (BMI > 28) had 86% and 142% 
greater risk of developing pneumonia, respectively compared to normal 
weight patients.78 According to a federal report (CDC), patients with 
comorbidities, such as CVD and DM were six and twelve times more 
likely to hospitalize and die, respectively compared to healthy 
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individuals infected with SARS-CoV-2; most commonly reported un-
derlying conditions in SARS-CoV-2 infected patients were heart disease 
(32%), DM (30%) and chronic lung disease (18%).79 

9. Recommendations 

Cholecalciferol supplementation should be started before winter to 
reach the target serum 25(OH)D range to reduce the risk of RTIs and 
COVID during winter.64 The half-life of calcitriol is about 15 days and 
that of calcidiol is between 13 and 15 days.80 Consequently, strict 
lockdown (longer time indoors and home quarantine) and there may be 
a risk of developing vitamin D deficiency. Although, the protective effect 
is directly proportional to serum 25(OH)D levels, the optimal 25(OH)D 
level should be in the range of 100–150 nmoL/l (40–60 ng/ml).81 

Endocrine Society recommended that 1000–4000 IU/d of vitamin D 
would be beneficial for patients with any chronic illness to maintain a 
serum 25(OH)D levels ≥30 ng/ml.82 On Mar 23, 2020, a former director 
of CDC, Dr. Tom Frieden proposed that vitamin D supplementation may 
reduce the risk of coronavirus infection.83 The U.S. Institute of Medicine 
reported that no adverse effects have been reported with supplementa-
tion of daily doses of vitamin D (<10,000 IU/d).84 Along with vitamin D, 
supplementation of 250–500 mg/d magnesium is recommended because 
it acts as a cofactor for most enzymatic reactions and helps in the acti-
vation of vitamin D.85 Naturally, we can get abundant vitamin D from 
sunshine.28 Exposure of arms and legs (18% body surface) to sun rays 
between 11 a.m. and 2 p.m. until skin turns into slight pinkness is 
equivalent to supplementation of about 3600 IU cholecalciferol; weekly 
three times can provide adequate levels of vitamin D.28,86 

Rigorous human clinical trials in different populations with different 
dosage regimens are urgently needed to check the association between 
vitamin D status and infection severity. Available evidence is very sug-
gestive of protective and preventive effect of vitamin D against in-
fections and COVID-19 pandemic. Now, it is the duty of governments to 
strengthen recommendations regarding nutritional supplementation 
(especially, immune-modulatory nutrients, such as vitamin D and C), 
particularly under quarantine and lockdown times. 
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